5200A

AC Calibrator

Instruction Manual

This change/errata contains information necessary to ensure the accuracy of the following manual. Enter the corrections in the manual if either one of the following conditions exist:

1. The revision letter stamped on the indicated $P C B$ is equal to or
higher than that given with each change.
2. No revision letter is indicated at the beginning of the change/errata.

MANUAL

Title: 5200A
Print Date: September 1975
Rev.- Date: 3, 5/85

C/E PAGE EFFECTIVITY

> Page No. Print Date

1	$7 / 89$
2	$7 / 89$
3	$7 / 89$
4	$7 / 89$
5	$7 / 89$
6	$7 / 89$
7	$7 / 89$
8	$7 / 89$
9	$7 / 89$
10	$7 / 89$
11	$7 / 89$
12	$7 / 89$
13	$7 / 89$
14	$7 / 89$
15	$7 / 89$
16	$7 / 89$
17	$7 / 89$
18	$7 / 89$
19	$7 / 89$
20	$7 / 89$
21	$7 / 89$
22	$7 / 89$
23	$7 / 89$
24	$7 / 89$
25	$7 / 89$
26	$12 / 92$

ERRATA 3

At the top of page 1-3,
CHANGE: ACCURACY
(for 90 days, $23+-5^{\circ} \mathrm{C}$, after
1-hour warmup.)
TO: ACCURACY
(for 180 days, $23+-5^{\circ} \mathrm{C}$, after
1-hour warmup.)

ERRATA \#5

On page $1-3$, replace the following,

EROM:

SHORT TERM AMPLITUDE STABILITY

$1 \cdot \mathrm{mV}$ to 100 V Ranges:

The chonge in rms value will be less than $(0.007 \%$ of setting $+0.0003 \%$ of range) $\mathrm{p} \cdot \mathrm{p}$ for the 1 kHz thru 1 MHz ranges and $(0.007 \%$ of setting $+0.004 \%$ of range) p.p for the 100 Hz range over a ten minute interval.

LONG TERM AMPLITUDE STABILITY (At Constant Line, Load and Temperature)
$\pm 0.005 \%$ of scting for 24 hours
$\pm 0.01 \%$ of scting for 6 months

TO:
Stability:

Voliage Ranges	$\underset{\substack{112}}{\text { Frequency }}$	$\begin{gathered} \text { Slabllitys } \\ \text { (ppmselting }+ \text { rpin range) } \end{gathered}$	
		10 Minutes	180 Days
$\begin{gathered} 1 \mathrm{mV} \\ 10 \mathrm{mV} \end{gathered}$	$\begin{aligned} & 10 \cdot 30 \\ & 30 \cdot 20 k \\ & 20 k \cdot 100 k \end{aligned}$	$\begin{aligned} & 70+40 \\ & 70+3 \\ & 70+3 \end{aligned}$	$\begin{aligned} & 300+60 \\ & 100+30 \\ & 130+40 \end{aligned}$
$100 \mathrm{mv}$	$\begin{aligned} & 10 \cdot 30 \\ & 30 \cdot 1 k \\ & 1 k \cdot 20 k \\ & 20 k \cdot 50 k \\ & 50 k \cdot 100 k \end{aligned}$	$\begin{aligned} & 70+40 \\ & 70+3 \\ & 70+3 \\ & 70+3 \\ & 70+3 \end{aligned}$	$\begin{array}{r} 300+60 \\ 70+40 \\ 100+30 \\ 120+50 \\ 100+130 \end{array}$
$\begin{gathered} 1 \mathrm{~V} \\ 10 \mathrm{~V} \\ 100 \mathrm{~V} \end{gathered}$	$10-30$ $\because 30 \cdot 20 \mathrm{k}$ $20 \mathrm{k} \cdot 50 \mathrm{k}$ $30 \mathrm{k} \cdot 100 \mathrm{k}$	$\begin{aligned} & 70+40 \\ & 35+5 \\ & 55+5 \\ & 70+3 \end{aligned}$	$\begin{array}{r} 200+20 \\ 45+5 \\ 65+5 \\ 220+20 \end{array}$
$1000 \mathrm{~V}^{4}$	$\begin{aligned} & \therefore 10 \cdot 30 \\ & \because 30 \cdot 100 \\ & \therefore 100 \cdot 10 k \\ & \because \quad 10 k \cdot 20 k \\ & \therefore \quad 20 k \cdot 50 k \\ & 30 k \cdot 100 k \end{aligned}$	$\begin{aligned} & 100+20 \\ & 35+s \\ & 35+s \\ & 35+s \\ & 70+s \\ & 70+s \end{aligned}$	$\begin{array}{r} 200+20 \\ 60+10 \\ 60+10 \\ 70+10 \\ 110+10 \\ 350+90 \end{array}$

Notes: 4. Output is through 5205A or 5215A amplifier
5. Constant line, load, and temperature.
6. Total peak to peak random change in rms value.

TTL compatible, or contact closures to ground. Connection of the programming control lines to the Remote Control Unit is by means of a card-edge connector accessed through an opening in the rear panel of the 5200A.

1-9. The 5200A may be bench or 19 inch rack mount-
ed. (The overall dimensions of the unit are shown in Figure 1-1.) Input power requirements are $100,115,200$, or 230 V $\mathrm{ac} \pm 10$ percent, 50 to $60 \mathrm{~Hz}, 150 \mathrm{VA}$. A 50 -to- 400 Hz Input Power Modification (-02 option) is available to permit the unit to operate from 400 Hz , as well as $50-$ and $60-\mathrm{Hz}$, power lines.

Figure 1-1. EOUIPMENT DIMENSIONS

1-10. SPECIFICATIONS

VOLTAGE RANGES

$1 \mathrm{mV}, 10 \mathrm{mV}, 100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$
(1000V with 5205A Power Amplifier)

Overrange

20% on all ranges (120 V maximum)
(1100 V with 5205A Power Amplifier)

Range Limits

10% to $120 \%(100 \mu \mathrm{~V}$ and above)
Resolution
0.0001% of Range (1 nV on $1-\mathrm{mV}$ range)

FREQUENCY RANGES
$100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}, 100 \mathrm{kHz}, 1 \mathrm{MHz}$

Overrange

20% on all ranges (1.2 MHz maximum)

Range Limits

10% to 120% (10 Hz and above)

Resolution

0.01% of Range (.01 Hz on $100-\mathrm{Hz}$ Range)
$\pm 0.1 \%$ of Range (100 kHz Range)
$\pm 1.0 \%$ of Range (1 MHz Range)

ACCURACY

(for 90 days, $23 \pm 5^{\circ} \mathrm{C}$, after
1-hour warmup.)

Amplitude

10 Hz to 30 Hz
$\pm(0.1 \%$ of setting $+0.005 \%$ of range)
1, 10,100 volt ranges.
$\pm 10.1 \%$ of setting $+10 \mu \mathrm{~V}$
1, 10,100 millivolt ranges.
30 Hz to 20 kHz
$\pm(0.02 \%$ of setting $+0.002 \%$ of range)
1, 10, 100 volt ranges.
$\pm(0.02 \%$ of setting $+10 \mu \mathrm{~V})$
$1,10,100$ millivolt ranges.
20 kHz to 100 kHz
$\pm(0.05 \%$ of setting $+0.005 \%$ of range)
$1,10,100$ volt ranges
$\pm\{0.05 \%$ of setting $+20 \mu \mathrm{~V}$
$1,10,100$ millivolt ranges.
0.1 MHz to $1 \mathrm{MHz}{ }^{1}$
$\pm(0.33 \%$ of setting $+0.03 \%$ of range $)$
1, 10, 100 volt ranges.
$\pm(0.33 \%$ of setting $+30 \mu \mathrm{~V})$
1, 10, 100 millivolt ranges.

Frequency

$$
\begin{array}{ll}
100-\mathrm{Hz} \text { to } 100-\mathrm{kHz} \text { Ranges } & \pm(1 \% \text { of setting } \\
& +0.1 \% \text { of range }) \\
& \pm(3 \% \text { of setting } \\
& +0.3 \% \text { of range })
\end{array}
$$

SHORT TERM AMPLITUDE STABILITY

$1-\mathrm{mV}$ to 100 V Ranges:

The change in rms value will be less than (0.007% of setting $+0.0003 \%$ of range) p-p for the 1 kHz thru 1 MHz ranges and (0.007% of setting $+0.004 \%$ of range) p-p for the 100 Hz range over a ten minute interval.

LONG TERM AMPLITUDE STABILITY

(At Constant Line, Load and Temperature)

$\pm 0.005 \%$ of setting for 24 hours
$\pm 0.01 \%$ of setting for 6 months

FREQUENCY STABILITY

$\pm 0.05 \%$ for 24 hours
$\pm 0.1 \%$ for 6 months
${ }^{1}$ NOTE: on 1 mV range, at output frequencies above 100 kHz , specifications apply for measuring instruments with bandwidths less than 2 MHz .

AMPLITUDE LIMITS WITH TEMPERATURE (0° to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$)

Add $\pm(0.025 \mathrm{x}$ accuracy $)$ per ${ }^{\circ} \mathrm{C}$ to stated accuracy limits

FREQUENCY LIMITS WITH TEMPERATURE

 $\left(0^{\circ}\right.$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$)Add $\pm(0.025$ of setting $)$ per ${ }^{\circ} \mathrm{C}$ to stated accuracy limits

MAXIMUM OUTPUT CURRENT (For Rated Accuracy)

50 mA rms from 10% to 120% of range
NOTE: Min. Load impedance for specified accuracy:

$$
\begin{aligned}
& \text { 1-, } 10 \text {-, } 100 \mathrm{mV} \text { Ranges } \cdot . \quad 6 \mathrm{k} \Omega \\
& \text { 1V Range } 50 \Omega \text { above } \\
& .1 \mathrm{MHz}
\end{aligned}
$$

CURRENT LIMIT

The output is protected against overloads and short circuits by a current limiter.* Upon removal of the overload, the output will recover automatically.
*NOTE: See MAX. INDUCTIVE LOAD.

MAXIMUM CAPACITIVE LOAD

1000 pF

MAXIMUM INDUCTIVE LOAD

Maximum inductive current allowed is shown below.

The above limit does not restrict the use of precision inductive dividers that have a maximum voltage limit of $(0.35 \mathrm{x}$ frequency) or higher.

MAXIMUM OUTPUT VOLTAGE

120 V rms, up to 83.33 kHz . Beyond that, maximum output voltage decreases as frequency increases. At highest frequency (1.2 MHz), maximum output voltage is 8.33 V rms. Maximum volt-hertz product is 1.0×10^{7} or $1.0 \times$ $10^{7} \times$ (Voltage Range/10), whichever is less (See graph below).

RESPONSE TIME

For any programmed amplitude, the output voltage and frequency will settle to within 0.01% of change as follows:

$10 \mathrm{~Hz}-30 \mathrm{~Hz}$	4 to 15 seconds
$30 \mathrm{~Hz}-100 \mathrm{~Hz}$	4 seconds
$100 \mathrm{~Hz}-400 \mathrm{~Hz}$	2 seconds
$400 \mathrm{~Hz}-1 \mathrm{MHz}$	1 second*

The output will recover from short circuits and overload conditions within the specified settling time.
*Typically below 0.5 seconds from 400 Hz to 1.2 MHz except for frequency range changes.

TOTAL HARMONIC DISTORTION AND LINE RELATED NOISE

(Bandwidth 10 Hz to 10 MHz) Effects of broadband noise included in accuracy specification for both RMS and average responding instruments.

10 Hz to 100 kHz . . . 0.04% of setting $+10 \mu \mathrm{~V}$ rms * \dagger
100 kHz to 500 kHz . . 0.3% of setting $+30 \mu \mathrm{~V} \mathrm{rms}$
500 kHz to 1 MHz . . 1% of setting $+30 \mu \mathrm{~V} \mathrm{rms}$
*For output currents exceeding 15 mA , see below:
tThe specification on the $1-\mathrm{Volt}$ range between 10 Hz and 15 Hz is 0.08% of setting +10 uV rms.

20 kHz to 100 kHz

$$
\left[0.04+\left(\frac{0.3}{V}\right)\left(\frac{F}{100}\right)\left(\frac{1}{50}\right)^{2}\right] \%
$$

$$
V=\text { volts }, \quad F=k H z, \quad I=m A
$$

LOAD REGULATION (EXT. SENSE MODE)

0.005% of selected range, no load to full load, up to 10 kHz . Beyond that, regulation is a function of both range and frequency selected (See following graph).

NOTE: Output impedance on the 1-mV through 100 mV ranges in less than 1.5Ω in series with $1.5 \mu H$.

LINE REGULATION

$\pm 0.001 \%$ of setting for a 10% change in line voltage.

EXTERNAL FREQUENCY PHASE LOCK INPUT

The oscillator of the 5200A has the capability of being phased locked to an external signal. Phase lock accuracy is $\pm 3^{\circ}$ below 30 Hz , and $\pm\left(1^{\circ}+0.05^{\circ}\right.$ per kHz$)$ over a $\pm 2 \%$ band around the center frequency, (BNC connector on rear panel). Input is 1 volt to 10 volts rms (useable down to 100 mV rms).

QUADRATURE OUTPUT

(Minimum Load $Z=3 \mathrm{k} \Omega$)

Amplitude

$10 \mathrm{Vrms} \pm 10 \%$ when 100% of range is selected. Quadrature amplitude is proportional to the dialed output voltage from 10% to 100% of Range. (BNC connector on rear panel.)

Phase

$90^{\circ} \pm\left(1^{\circ}+0.03^{\circ}\right.$ per $\left.k H z\right), 40 \mathrm{~Hz}$ to 1.2 MHz .
$90^{\circ} \pm 3^{\circ}, 10 \mathrm{~Hz}$ to 40 Hz

COUNTER OUTPUT

Auxiliary frequency counter output (BNC Connector) on rear panel; 3 V pulse, short circuit protected.

EXTERNAL SENSE

A two powition switch is provided to control Internal or External Sensing on the $1 \mathrm{~V}, 10 \mathrm{~V}$, and 100 V ranges. When in Remote Sense (1, 10 and 100 V ranges) and the sense leads are accidently disconnected, the output voltage will not exceed the programmed setting by more than 2.0 volts.

VOLTAGE ERROR MEASUREMENT

0 to $\pm 0.3 \%$ with 0.001% resolution
0 to $\pm 3 \%$ with 0.01% resolution

An "OFF" error switch position is provided to easily lock out the error measurement function which is automatically disabled in program mode.

OUTPUT TERMINALS

High, Low, High Sense, Low Sense, Guard, and Ground terminals on front and rear panels. Front panel terminals are five-way binding post. Rear panel terminals are pins of a pcb card-edge connector, with mating connector supplied (P/N 337675).

LOCAL/REMOTE OPERATION

Two-position CONTROL switch, interlocked with the optional remote programming function. In the LOCAL position, all control is implemented from the front panel switches. In the REM position, control is obtained via the programming lines through a rear panel connector. When the REMOTE function is called on the programming line, the 5200A will be locked in the Remote condition (regardless of the position of the CONTROL switch), disabling the error measurement control and all other front panel controls except the POWER switch. When the LOCAL function is called on the programming line, the 5200A may be operated in either the Local or the Remote condition, at the operator's discretion.

SAFETY FEATURES

When the ac power is turned on, the instrument is automatically set to the Standby condition. When in Remote Sense and the sense leads are accidentally disconnected, the output voltage will not exceed 2.0 volts above the programmed setting on the 1 V thru 100 V ranges. The 1 mV thru 100 mV ranges are not affected.

CALIBRATION REQUIREMENTS

The 5200A is calibrated at the factory by instrumentation traceable to the Naional Bureau of Standards. Periodic calibration of the $1 \mathrm{~V}, 10 \mathrm{~V}$, and 100 V ranges may be accom-
plished through the use of a thermal transfer standard and a precision dc source, such as the Fluke Models 540B and 332D. The accuracy on the $1-10$-, and 100 mV ranges depends on precision inductive dividers which are tested at the factory with special verification equipment, and do not require periodic adjustment. All other adjustments can be made with general purpose laboratory equipment.

GENERAL

Input Power

100, 115, 200, 230 V ac $\pm 10 \%$ (switch selectable), 50 to 60 Hz ($50-\mathrm{to}-400-\mathrm{Hz}$ Option available, 150 VA.

Maximum Isolation Voltages

500 V de or peak ac, "Guard" to "Chassis"
100 V de or peak ac, "Lo" to "Guard"

Dimensions

$7^{\prime \prime}(178 \mathrm{~mm}) \times 17^{\prime \prime}(432 \mathrm{~mm}) \times 21.75^{\prime \prime}(533 \mathrm{~mm})$

Weight

53 pounds (24 kg)

ENVIRONMENTAL

Cooling

Forced air cooled. Air intake through re-useable filter on rear panel. Air exit along both sides.

Temperature

$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, operating
$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, storage

Relative Humidity

0 to 80 percent ($0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$)
0 to 70 percent ($+40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$)

Shock

15G, 11 -ms half-sine wave

Vibration

$3.1 \mathrm{G}, 10 \mathrm{~Hz}$ to 55 Hz

Altitude

0 to 10,000 feet, operating 50,000 feet, non-operating

Protection Class 1 (relates solely to insulation and grounding properties further defined in IEC 348.)

