Frequency

Range

8648A: 100 kHz to 1000 MHz 8648B: 9 kHz to 2000 MHz
8648C: 9 kHz to 3200 MHz
8648D: 9 kHz to 4000 MHz

Resolution

Settable
8648A/B/C/D: 0.001 Hz
Display
10 Hz

Accuracy ${ }^{1}$

Typically $\pm 3 \times 10^{-6} \mathrm{x}$ carrier frequency (Hz), $\pm 0.15 \times 10^{-6} \mathrm{x}$ carrier frequency (Hz) for Option 1E5

Switching speed (typical)

8648A/B/C/D
$<1001 \mathrm{MHz}:<75 \mathrm{~ms}$
$\geq 1001 \mathrm{MHz}:<100 \mathrm{~ms}$

Internal reference oscillator

Accuracy and stability ${ }^{1}$
(typical, calibration adjustment dependent)
\pm Aging rate \pm temperature effects \pm line voltage effects

	Standard timebase (typical)	High stability timebase (Opt 1E5)
Aging	$< \pm 2 \mathrm{ppm} /$ year	$< \pm 0.1 \mathrm{ppm} /$ year 2
		$< \pm 0.0005 \mathrm{ppm} /$ day 2
Temperature	$< \pm 1 \mathrm{ppm}$	$< \pm 0.01 \mathrm{ppm}^{3}$ (typical)
Line Voltage 4	$< \pm 0.5 \mathrm{ppm}$	$< \pm 0.1 \mathrm{ppm}$ (typical)

Output

10 MHz , typically $>0.5 \mathrm{~V}_{\mathrm{rms}}$ level into 5Ω

External reference oscillator input

Accepts $2,5,10 \mathrm{MHz} \pm 10 \mathrm{ppm}$ typical ($\pm 1 \mathrm{ppm}$ typical with option 1E5) and a level range of 0.5 V to $2 \mathrm{~V}_{\mathrm{rms}}$ into 5Ω

Spectral purity

Harmonics

$<-30 \mathrm{dBc}$ (output $\leq+4 \mathrm{dBm}$)
Subharmonics (output $\leq+4 \mathrm{dBm}$)
$<1001 \mathrm{MHz}:<-60 \mathrm{dBc}$
$\leq 3200 \mathrm{MHz}:<-50 \mathrm{dBc}$
_ $4000 \mathrm{MHz}:<-40 \mathrm{dBc}$
Nonharmonics ($\geq 5 \mathrm{kHz}$ offset, output $\leq+4 \mathrm{dBm}$)
8648A/B/C/D
$<249 \mathrm{MHz}:<-55 \mathrm{dBc}$
$<1001 \mathrm{MHz}:<-60 \mathrm{dBc}$
$<2001 \mathrm{MHz}:<-54 \mathrm{dBc}$
$\leq 4000 \mathrm{MHz}:<-48 \mathrm{dBc}$

Residual FM (CCITT, rms) 8648A/B/C/D

$<249 \mathrm{MHz}:<7 \mathrm{~Hz}$, typically $<4 \mathrm{~Hz}$
$<501 \mathrm{MHz}:<4 \mathrm{~Hz}$, typically $<2 \mathrm{~Hz}$
$<1001 \mathrm{MHz}:<7 \mathrm{~Hz}$, typically $<4 \mathrm{~Hz}$
$<2001 \mathrm{MHz}:<14 \mathrm{~Hz}$, typically $<8 \mathrm{~Hz}$ $\leq 4000 \mathrm{MHz}:<28 \mathrm{~Hz}$, typically $<12 \mathrm{~Hz}$

SSB phase noise (at 20 kHz offset, typical) 8648A/B/C/D
at fc $500 \mathrm{MHz}:<-120 \mathrm{dBc} / \mathrm{Hz}$ at fc $1000 \mathrm{MHz}:<-116 \mathrm{dBc} / \mathrm{Hz}$ at fc $2000 \mathrm{MHz}:<-110 \mathrm{dBc} / \mathrm{Hz}$ at fc $3000 \mathrm{MHz}:<-106 \mathrm{dBc} / \mathrm{Hz}$ at fc $4000 \mathrm{MHz}:<-104 \mathrm{dBc} / \mathrm{Hz}$

Typical phase noise of the 8648A/B/C/D at 500 MHz

[^0]
Output

Range

8648A
+10 to -136 dBm
8648B/C/D
$\leq 2500 \mathrm{MHz}:+13$ to -136 dBm
$\leq 4000 \mathrm{MHz}:+10$ to -136 dBm

Maximum leveled power
 (High power option 1EA)

8648B/C/D only ${ }^{1}$
$\leq 100 \mathrm{kHz}:+17 \mathrm{dBm}$
$\leq 1000 \mathrm{MHz}:+20 \mathrm{dBm}$
$\leq 1500 \mathrm{MHz}:+19 \mathrm{dBm}$
$\leq 2100 \mathrm{MHz}:+17 \mathrm{dBm}$
$\leq 2500 \mathrm{MHz}:+15 \mathrm{dBm}$
$\leq 4000 \mathrm{MHz}:+13 \mathrm{dBm}$
Option 1EA-Typical power versus frequency (GHz)

Display resolution

0.1 dB

Accuracy

8648A/B/C/D ${ }^{2,3,4}$
$\leq 2500 \mathrm{MHz}: \pm 1.0 \mathrm{~dB}$
$\leq 3200 \mathrm{MHz}: \pm 1.5 \mathrm{~dB}$
$\leq 4000 \mathrm{MHz}: \pm 2.0 \mathrm{~dB}$
Reverse power protection (watts into 50Ω)
$\leq 2000 \mathrm{MHz}: 50$ watts
$\leq 4000 \mathrm{MHz}$: 25 watts
SWR (output <-6 dBm, typical)
8648A/B/C/D
$<249 \mathrm{kHz}:<2.5: 1$
<2500 MHz: <1.5:1
$\leq 4000 \mathrm{MHz}:<2.0: 1$

Output impedance

Nominally 50 ohms

Amplitude modulation $\left(f_{c}>1.5 \mathrm{MHz}\right)^{5}$

Range
0 to 100% (output $\leq+4 \mathrm{dBm}$)

Resolution

0.1\%

Accuracy ${ }^{6}$ (1 kHz rate)
$\pm 5 \%$ of setting $\pm 1.5 \%$

Rates

8648A/B/C/D
Internal: 400 Hz or 1 kHz or 10 Hz to 20 kHz with Opt 1E2
External: DC: dc to 25 kHz (typical, 3 dB BW)
AC: 1 Hz to 25 kHz (typical, 3 dB BW)
Distortion (1 kHz rate, THD +N , 0.3 to 3 kHz BW)
(at $30 \% \mathrm{AM}$): $<2 \%$
8648A (at 90\% AM): <3\%
8648B/C/D (at 70\% AM): $<3 \%$

[^1]
Frequency modulation

Peak deviation (rates $>25 \mathrm{~Hz}$ ac FM)

8648A/B/C/D
$<249 \mathrm{MHz}$: 0 to 200 kHz
$<501 \mathrm{MHz}: 0$ to 100 kHz
< $1001 \mathrm{MHz}: 0$ to 200 kHz
<2001 MHz: 0 to 400 kHz
$\leq 4000 \mathrm{MHz}: 0$ to 800 kHz

Resolution

For $\leq 10 \%$ peak deviation
<2001 MHz: 10 Hz
$\geq 2001 \mathrm{MHz}: 20 \mathrm{~Hz}$
For $>10 \%$ to maximum peak deviation
<2001 MHz: 100 Hz
$\geq 2001 \mathrm{MHz}: 200 \mathrm{~Hz}$

Deviation accuracy (internal 1 kHz rate) 8648A/B/C/D
 $<1001 \mathrm{MHz}: \pm 3 \%$ of FM deviation $\pm 30 \mathrm{~Hz}$
 $<2001 \mathrm{MHz}: \pm 3 \%$ of FM deviation $\pm 60 \mathrm{~Hz}$
 $\leq 4000 \mathrm{MHz}: \pm 3 \%$ of FM deviation $\pm 120 \mathrm{~Hz}$

Rates

8648A/B/C/D
Internal: 400 Hz or 1 kHz or 10 Hz to 20 kHz with Opt 1E2 External: DC: dc to 150 kHz (typical, 3 dB BW)

AC: 1 Hz to 150 kHz (typical, 3 dB BW)
Distortion (1 kHz rate, THD + N, 0.3 to 3 kHz BW)
$<1001 \mathrm{MHz}:<1 \%$ at deviations $>4 \mathrm{kHz}$
$<2001 \mathrm{MHz}:<1 \%$ at deviations $>8 \mathrm{kHz}$
$\leq 4000 \mathrm{MHz}:<1 \%$ at deviations $>16 \mathrm{kHz}$
(88 to $108 \mathrm{MHz}:<0.5 \%$ at deviations $\geq 75 \mathrm{kHz}^{1}$)

Carrier frequency accuracy (relative to CW in dcFM) ${ }^{2}$

8648 A/B/C/D

$<1001 \mathrm{MHz}: \pm 100$ (typical 40) Hz, deviations $<10 \mathrm{kHz}$
$<2001 \mathrm{MHz}: \pm 200$ (typical 80) Hz, deviations $<20 \mathrm{kHz}$
$\leq 4000 \mathrm{MHz}: \pm 400$ (typical 160) Hz, deviations $<40 \mathrm{kHz}$

FM + FM

Internal 1 kHz or 400 Hz source plus external. In internal plus external FM mode, the internal source produces the set level of deviation. The external input should be set to $\leq \pm 0.5 \mathrm{~V}$ peak or 0.5 Vdc (one-half the set deviation).

Phase modulation

Peak deviation

$<249 \mathrm{MHz}$: 0 to 10 radians
< $501 \mathrm{MHz}: 0$ to 5 radians
$<1001 \mathrm{MHz}$: 0 to 10 radians
$<2001 \mathrm{MHz}$: 0 to 20 radians
$\leq 4000 \mathrm{MHz}$: 0 to 40 radians

Resolution

<2001 MHz: 0.01 radians
$\geq 2001 \mathrm{MHz}: 0.02$ radians
Deviation accuracy (internal 1 kHz rate, typical) 8648A/B/C/D
$<1001 \mathrm{MHz}: \pm 3 \%$ of deviation ± 0.05 radians
$<2001 \mathrm{MHz}: \pm 3 \%$ of deviation ± 0.1 radians
$\leq 4000 \mathrm{MHz}: \pm 3 \%$ of deviation ± 0.2 radians

Rates:

Internal
400 Hz or 1 kHz or 10 Hz to 20 kHz with Opt $1 \mathrm{E} 2^{1}$

External

20 Hz to 10 kHz (typical, 3 dB BW)

Distortion (1 kHz rate)

8648 A/B/C/D
$<1001 \mathrm{MHz}:<1 \%$ at deviations ≥ 3 radians
$<2001 \mathrm{MHz}:<1 \%$ at deviations ≥ 6 radians
$\leq 4000 \mathrm{MHz}:<1 \%$ at deviations ≥ 12 radians

Modulation source

Internal

400 Hz or 1 kHz , front panel BNC connector provided at nominally 1 Vpk into 600Ω.

External

1 Vpk into 600Ω (nominal) required for full scale modulation. (High/Low indicator provided for external signals $\leq 10 \mathrm{kHz}$.)

[^2]
Modulation generator (0ption 1E2)

Adds variable frequency modulation source. Functions also included in Option 1EP Pager encoder/signalling option.

Waveforms

Sine, Square, Triangle, Sawtooth (Ramp)

Frequency range

Sine: 10 Hz to 20 kHz
Square, Triangle, Sawtooth: 100 Hz to $2 \mathrm{kHz}^{2}$

Frequency accuracy

$\pm 0.01 \%$ typical

Frequency resolution

1 Hz (3 digits or 10 Hz displayed)

Depth and deviation accuracy (1 kHz sine)

Refer to AM, FM, and Phase Modulation Accuracy specs

Output

Front panel BNC. Nominally 1 Vpk

Pulse modulation (Option 1E6) (8648B/C/D Only)

Adds high performance pulse modulation capability

On/off ratio

<2000 MHz: >80 dB
$\leq 4000 \mathrm{MHz}:>70 \mathrm{~dB}$
Rise/fall times
$<10 \mathrm{~ns}$

Maximum repetition rate

10 MHz

Video feedthrough

$<30 \mathrm{mV}$ (typical)

Delay

<60 ns (typical)

Pulse input

TTL level ($\pm 15 \mathrm{~V}$ max)

Pager encoder/signaling (Option 1EP)

(8648A only)
Adds functionality for testing POCSAG, FLEX $^{\text {TM3 }}$ and FLEX-TD. Also includes Modulation Generator functions of Option 1E2. Instrument characteristics are the same as the 8648 A except as noted below.

Frequency

Accuracy with Option 1E54 : Typically $\pm 0.15 \times 10^{-6} \mathrm{x}$ carrier frequency in Hz or $0.092 \times 10^{-6} \mathrm{x}$ carrier frequency in Hz within 90 days of calibration.

Frequency modulation

FSK Deviation Accuracy with Option 1EP: $\pm 60 \mathrm{~Hz}^{5}$

Pager signaling

Supported Pager Protocols: POCSAG, FLEX ${ }^{\text {TM }}$, and FLEX-TD

POCSAG

Speed: 512, 1200, and 2400 bps
Message Format: Tone only, Numeric, Alphanumeric

FLEX/FLEX-TD

Speed
2 Level FSK: 1600 and 3200 bps
4 Level FSK: 3200 and 6400 bps
Message Format: Tone only, Numeric (standard and special),
Alphanumeric, HEX/Binary
Address Type: Short, Long
Messaging accessible from front panel or GP-IB
Message Types: Five fixed (built-in), one user-defined
Message Length: 40 characters maximum
Repetition Modes: Single, Burst, Continuous
Messaging accessible only over GP-IB
Message Type: Arbitrary (user-defined)
Batch Length
FLEX/FLEX-TD: 128 Frames
POCSAG: 128 Batches
Repetition Mode: Single only
Data Rate Accuracy: $\pm 5 \mathrm{ppm}^{6}$

[^3]
Modulation source

Internal: 400 Hz or 1 kHz , or audio generator (see Option 1E2 for characteristics), front panel BNC connector provided at nominally 1 Vp into 600Ω.

General

Storage Registers: 70 storage registers with sequence and register number displayed. Up to 10 sequences are available with 30 registers each.

ISO 9002 compliant

The Agilent 8648A/B/C/D signal generators are manufactured in an ISO 9002 registered facility in concurrence with Agilent Technologies' commitment to quality.

Environmental

Operating temperature range
 $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$

Shock and vibration

Meets MIL STD 28800E Type III, Class 5

Leakage

Conducted and radiated interference meets MIL STD 461B RE02 Part 2 and CISPR 11. Leakage is typically $<1 \mu \mathrm{~V}$ (nominally $0.1 \mu \mathrm{~V}$ with a two-turn loop) at $\leq 1001 \mathrm{MHz}$, when measured with a resonant dipole antenna one inch from any surface (except the rear panel) with output level $<0 \mathrm{dBm}$ (all inputs/outputs properly terminated).

Remote programming

Interface

GP-IB (IEEE-488.2-1987) with Listen and Talk.

Control languages

SCPI version 1992.0. 8656B and 8657 code compatibility on 8648A/B/C/D.

Functions controlled

All functions are programmable except the front-panel power key, the knobs, the increment set key, the arrow keys, the reference keys and the rear-panel display contrast control.

IEEE-488 functions

SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT0, C0, E2.

General

Power requirements

90 to $264 \mathrm{~V} ; 48$ to $440 \mathrm{~Hz} ; 170$ VA maximum

Internal diagnostics

Automatically executes on instrument power-up.
Assists user in locating instrument errors and locating faulty module.

Storage registers

300 storage registers with sequence and register number displayed. Up to 10 sequences are available with 30 registers each.

Weight

8648A
7 kg (15 lb.) net, 9 kg (20 lb.) shipping
8648B/C/D
8.5 kg (19 lb.) net, 11 kg (24 lb.) shipping

Dimensions

8648A/B/C/D
$165 \mathrm{H} \times 330 \mathrm{~W} \times 368 \mathrm{D} m \mathrm{~m}$ ($6.5 \mathrm{H} \times 13 \mathrm{~W} \times 14.6 \mathrm{D}$ inches)

Options

1EA: High power (8648B/C/D)
1E2: Modulation generator (8648A/B/C/D)
1E5: High stability time base
1E6: Pulse modulation (8648B/C/D)
1EP: Pager encoder/signaling (8648A)
1CM Rack kit
0B0: Delete manual
0B1: Extra manual (includes service information)
W30: Three year warranty

Accessories

Transit case

8648A/B/C/D: P/N 5961-4720
83300A Remote Interface

83301A Memory Interface

Translated operating manuals

Options	Language	Part number
8648A/B/C/D		
AB0	Chinese for Taiwan	$08648-90002$
AB1	Korean	$08648-90006$
AB2	Chinese for PRC	$08648-90004$
ABD	German	$08648-90019$
ABE	Spanish	$08648-90003$
ABF	French	$08648-90020$
ABJ	Japanese	$08648-90005$

8648 Rear panel

Agilent Technologies' Test and Measurement

Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlay Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contacting us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

For more assistance with your test and measurement needs go to

www.agilent.com/find/assist

Or contact the test and measurement experts at Agilent Technologies
(During normal business hours)
United States:
(tel) 18004524844

Canada:

(tel) 18778944414
(fax) (905) 2064120

Europe:

(tel) (31 20) 5472000
Japan:
(tel) (81) 426567832
(fax) (81) 426567840

Latin America:

(tel) (305) 2674245
(fax) (305) 2674286

Australia:

(tel) 1800629485
(fax) (61 3) 92720749

New Zealand:

(tel) 0800738378
(fax) 6444958950
Asia Pacific:
(tel) (852) 31977777
(fax) (852) 25069284
Product specifications and descriptions in this document subject to change without notice.

Copyright © 2000 Agilent Technologies Printed in USA 07/2000
5965-3432E

[^0]: ${ }^{1}$ After one hour warm-up and within one year of calibration.
 ${ }_{3}^{2}$ After four days warm-up and within one year of calibration.
 3^{3} Applies over the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ range.
 ${ }^{4}$ Applies for line voltage change of $\pm 5 \%$.

[^1]: ${ }^{1}$ Combining option 1 E 6 with 1EA reduces maximum output power by 2 dB above 100 MHz . Below 100 MHz , maximum output is +13 dBm (typically +16 dBm for carrier frequencies between 100 kHz and 100 MHz).
 ${ }^{2}$ Accuracy is valid from maximum specified output power to -127 dBm . Below -127 dBm , accuracy is typically $\pm 3 \mathrm{~dB}$ in the range 100 kHz to 2500 MHz , and is not specified outside this frequency range.
 3^{3} Accuracy applies at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$; and typically degrades up to $\pm 0.5 \mathrm{~dB}$ over $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ or at output power levels $>13 \mathrm{dBm}$.
 ${ }^{4}$ Accuracy is $\pm 3 \mathrm{~dB}$ for power levels between -100 dBm and -127 dBm for frequencies
 below 100 kHz or above 2500 MHz .
 ${ }^{5}$ AM is typical above 1001 MHz .
 ${ }^{6} \mathrm{AM}$ accuracy applies at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and at $<70 \%$ depth: it is typically $\pm 7 \%$ of setting $\pm 1.5 \%$ over $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

[^2]: ${ }^{1}$ Only on 8648 series.
 2 Specifications apply over the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ range within one hour of dc FM calibration.

[^3]: 1 Only on 8648 series.
 2 Useable from 10 Hz to 20 kHz ; however, bandwidth limitations may result in wave-form degradation. Refer to AM, FM, and Phase ModulationRate specs (External AC mode).
 3 FLEX is a Motorola trademark.
 ${ }^{4}$ After one hour warm-up and within one year of calibration.
 5 Specifications apply over the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ range, 4.8 kHz deviation.
 Meets FLEX requirements at 274 to 288,322 to 329,929 to 932 MHz .
 6 Specifications apply over the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ range.

