A드 Advonced Test Equipment Corp. www.atecorp.com

Advanced Networking and PC Connectivity

Web Server Functions
Connect the DL750 to your PC through the Ethernet connection. This allows for easy remote operation using Internet Explorer.

Software for Waveform Measurement on a PC

Software for Remotely Controlling the DL Series

This software program can be downloaded from the following URL (requires registration):
http://www. yokogawa.com/tm/Bu/DLsoft/wire/
Further details are available at the YOKOGAWA web site.

Software for Using Your PC to Check Waveform Data Captured in Long Memory

Waveform Viewer for DL Series

The Waveform Viewer software program lets you view waveform signals on your PC just as they appear on the DL screen. This includes zoom display, $X-Y$ display and the history memory thumbnail displays. In addition, data can be converted to CSV format for use in programs like Excel.

A trial version of this software program can be downloaded from the following URL:
http://www. yokogawa. com/tm/Bu/700919/
Further details are available at the YOKOGAWA web site.

Main Unit Specifications

abbreviations for zoom area 1 and zoom 2 respectively)
$X Y$ Single Mode (X is fixed, Y is set by user), Quad Mode (XY1, XY2, XY3, XY4)
Accumulation
PERSIST Overlays in one color
. The LCD may contain some pixels that are always off or always on In addition, brightness may vary due to the characteristics of the liquid crystal display. This is not an indication of any problem with the display

Recorder
 Built-in printer
 Printing method Paper width
 Thermal line-dot printing
 Functions Screen printing, long printing
 - Real-time hard drive recording (with /C8 option)
 Data capacity
 GW (for one time record)
 Maximum sam
 100 kS/s (using 1 channel)

DualCapture

This function captures the same waveform data at two different sampling rates Main (low-speed) maximum sampling rate

Roll mode area at $100 \mathrm{kS} / \mathrm{s}$
Sub (high-speed) maximum sampling rate
$10 \mathrm{MS} / \mathrm{s}$
Main maximum memory length
100 MW (with /M3 option)
Sub memory length $\quad 10 \mathrm{~kW}$ (fixed)
Sub maximum number of captured screens
100

Analysis Functions

- Channel-to-channel calculation function

Definable math waveforms
Calculable record length 800 kW (using MATH1 only)
00 kW (using MATH1 through MATH8
Standard operators Addition, subtraction, multiplication, division, binary
conversion, phase shifting, FFT
FFT type PS (Power Spectrum)
Number of points 1000, 2000, 10,000
Window functions Rectangular, Hanning, Flat-Top
User-defined math function (with /G2 option)
Operators ABS, SQR, LOG, EXP, NEG, SIN, COS, TAN
ATAN PH DIF DDIF INTG, BIN, P2 P3 F1 F2
FV, PWHH, PWHL, PWLH, PWLL, PWXX, FILT1,
FILT2, HLBT, MEAN, MAG, LOGMAG, PHASE,
REAL, IMAG
FFT types LS, PS, PSD, CS, TF, CH
Number of points 1000, 2000, 10,000
Window functions Rectangular, Hanning, Flat-Top

For detailed specifications, go to the following URL: http://www.yokogawa.com/tm/Bu/DL750/

Screen Data Output (Printer)

Destinations Select built-in printer, external USB printer, or
Formats Normal Outputs hard copy of screen sho
Long Zooms displayed waveform along time axis and outputs (The zoom factor differs depending on the time/div.)

Screen Data Output (Image Saving)

Destinations
Installed drive (floppy drive, Zip ${ }^{\circledR}$ drive, or PC card), external SCSI drive, internal hard drive (with /C8 option), network drive (with /C10 option)
Formats
PNG, JPEG, BMP, PostScript

External I/O

- LOGIC input specifications

Input points 8 bits $\times 2$
Maximum sampling rate $10 \mathrm{MS} / \mathrm{s}$
Compatible probes 8 -bit non-isolated (700986), 8-bit isolated (700987)
EXT TRIG IN/EXT TRIG OUT
Connector RCA pin jack
Input/output level TTL (0 to 5 V)

- EXT Clock IN

Connector
Input level \quad RTL pin jack
Input frequency Up to 1 MHz (for module 701250/701251/701255), up to 100 kHz (for module 701260/701270/701271, DSP-CH), up to 500 Hz (for module 701265)

- Communication interfaces

GP-IB, USB peripheral equipment jacks (USB keyboards and USB printers), USB (complies with Rev. 1.1, for connection to PC), Ethernet (complies with 100BASE-TX and 10BASE-T; with /C10 option), serial (RS232), and SCSI

- GO/NO-GO I/O

Connector type Modular jack (RJ12)
I/O level TTL (0 to 5 V)

- Probe power terminal (with /P4 option)

Maximum number of probes powered 4
Compatible probes Current probes 700937 (15 Apeak) and 701930 (150 Arms)
Maximum number of current probes that can be used at one time
4 (for module 700937), 2 (for module 701930)
Voice Memo Function

- Voice memo

Record (roll mode)
Flexible: Multiple recording (min. 3 sec up to 100 sec , total 100 sec)
Fixed: Select from $5 \mathrm{sec} \times 20,10 \mathrm{sec} \times 10,20 \mathrm{sec} \times 5$, $25 \sec \times 4,50 \sec 2,100 \mathrm{sec} \times 1$ Save ta
nit is outputted micreal and speaker output

3 to 100 sec
Record
When image saving is executed (separate file)
Playback from microphone terminal and speaker output terminal (GO/NO-GO)

Acquisition Memory Backup

type name:LR6) or four nickel metal-hydride
Acquisition memory, waveform data, voice data
Backup duration (reference value) ${ }^{2}$
Approximately 10 hours (with /M3 option)

Media Drives

General Specifications

Rated supply voltage 100 to 120 VAC/ 200 to 240 VAC (automatically
Rated supply frequency $50 / 60 \mathrm{~Hz}$
Maximum voltage Approximately 200 VA-
Insulating resistance $10 \mathrm{M} \Omega$ or greater at 500 VDC across power supply
Exterior
$355 \times 250 \times 180 \mathrm{~mm}(W H D)$, excluding knobs and
Approx. 6.6 kg (main unit with full options, including M3, C8, C10, and P4)
Approx. 9 kg (main unit and eight 701250 modules)
ang

Plug-In Module Specifications

High-Speed 10 MS/s 12-Bit Isolation Module (701250)

Input channels	2
Input couplings	AC, DC, GND
Maximum sampling rate	$10 \mathrm{MS} / \mathrm{s}$
A/D conversion resolution	12 bits (150 LSB/div)
Input type	Isolated unbalanced
Frequency range(-3 dB) ${ }^{1}$	DC, up to 3 MHz
Input range (10:1)	$50 \mathrm{mV} / \mathrm{div}$ to $200 \mathrm{~V} / \mathrm{div}$ (in steps of 1, 2, or 5),
(1:1)	$5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ (in steps of 1, 2 , or 5)
Effective measurement range	20 div (display range: 10 div)
DC offset	± 5 div
Maximum input voltage (1	kHz or less)
In combination with 70	929 (10:1) ${ }^{2}$
	600 V (DC + ACpeak)
Direct input (1:1) ${ }^{6,10}$	250 V (DC + ACpeak)
Maximum allowable in-pha	se voltage
In combination with 70	(10:1) ${ }^{3}$
	400 Vrms (CAT I), 300 Vrms (CAT II)
In combination with 70	19 in steps of 1, 2, or 5+701954 (1:1) ${ }^{9}$
	400 Vrms (CAT I), 300 Vrms (CAT II)
Main unit only (1:1) ${ }^{11}$	42 V (DC + ACpeak) (CAT I and CAT II, 30 Vrms)
DC accuracy ${ }^{1}$	$\pm(0.5 \%$ of 10 div$)$
Input impedance	$1 \mathrm{M} \Omega \pm 1 \%$, approx. 35 pF
Connector type	Isolation type BNC connector
Input filter	OFF, $500 \mathrm{~Hz}, 5 \mathrm{kHz}, 50 \mathrm{kHz}, 500 \mathrm{kHz}$
Temperature coefficient	
Zero point	$\pm(0.05 \%$ of 10 div$) /{ }^{\circ} \mathrm{C}$ (typical value)
Gain	$\pm(0.02 \%$ of 10 div$) /{ }^{\circ} \mathrm{C}$ (typical value)

Input channels 2 AC, DC, GND	
Maximum sampling rate	$1 \mathrm{MS} / \mathrm{s}$
A/D conversion resolution	16 bits (2400 LSB/div)
Input type	Isolated unbalanced
Frequency range ($-3 \mathrm{~dB})^{1} \quad \mathrm{DC}$, up to $300 \mathrm{kHz}(20 \mathrm{~V} /$ div to $5 \mathrm{mV} /$ div $)$Input range	
(10:1)	$10 \mathrm{mV} / \mathrm{div}$ to $200 \mathrm{~V} / \mathrm{div}$ (in steps of 1, 2, or 5)
(1:1)	$1 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ (in steps of 1, 2, or 5)
Maximum input voltage (1 kHz or less)	
In combination with 700929 (10:1) ${ }^{2}$	
	600 V (DC + ACpeak)
Direct input (1:1) ${ }^{6,10}$	140 V (DC + ACpeak)
Maximum allowable in-phase voltage	
In combination with 700929 (10:1) ${ }^{3}$	
	400 Vrms (CAT I), 300 Vrms (CAT II)
In combination with 701901+701954 (1:1) 9 ,	
	400 Vrms (CAT I), 300 Vrms (CAT II)
Main unit only (1:1) ${ }^{11}$	42 V (DC + ACpeak) (CAT I and CAT II, 30 Vrms)
DC accuracy ${ }^{1}$ (1)	
$5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} /$ div	$\pm(0.25 \%$ of 10 div)
$2 \mathrm{mV} / \mathrm{div}$	$\pm(0.3 \%$ of 10 div)
$1 \mathrm{mV} / \mathrm{div}$	$\pm(0.5 \%$ of 10 div$)$
Input impedance	$1 \mathrm{M} \Omega \pm 1 \%$, approx. 35 pF
Connector type	Isolated type BNC connector
Input filter	OFF, $400 \mathrm{~Hz}, 4 \mathrm{kHz}, 40 \mathrm{kHz}$
Temperature coefficient	
Zero point	$5 \mathrm{mV} /$ div to $20 \mathrm{~V} /$ div: $\pm\left(0.02 \%\right.$ of 10 div) ${ }^{\circ} \mathrm{C}$ (typical value)
	$2 \mathrm{mV} / \mathrm{div}: \pm(0.05 \%$ of 10 div$) /{ }^{\circ} \mathrm{C}$ (typical value)
	$1 \mathrm{mV} / \mathrm{div}$: $\pm(0.10 \%$ of 10 div$) /{ }^{\circ} \mathrm{C}$ (typical value)
Gain	$1 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$: $\pm(0.02 \%$ of 10 div$) /{ }^{\circ} \mathrm{C}$ (typical value)

High-Speed 10 MS/s 12-Bit Non-Isolation Module (701255)

Input channels	2
Input couplings	AC, DC, GND
Maximum sampling rate	$10 \mathrm{MS} / \mathrm{s}$
A/D conversion resolution	12 bits (150 LSB/div)
Input type	Non-isolated unbalanced
Frequency range (-3dB) ${ }^{1}$	DC , up to 3 MHz
Input range (10:1)	$50 \mathrm{mV} / \mathrm{div}$ to $200 \mathrm{~V} / \mathrm{div}$ (in steps of 1, 2, or 5)
(1:1)	$5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ (in steps of 1, 2, or 5)
Effective measurement range	20 div (display range 10 div)
DC offset	± 5 div
Maximum input voltage (1 kHz or less)	
In combination with 70	$1940(10: 1)$
	600 V (DC + ACpeak)
Direct input (1:1)	250 V (DC + ACpeak)
DC accuracy ${ }^{1}$	$\pm(0.5 \%$ of 10 div$)$
Input impedance	$1 \mathrm{M} \Omega \pm 1 \%$, approx. 35 pF
Connector type	Metal type BNC connector
Input filter	OFF, $500 \mathrm{~Hz}, 5 \mathrm{kHz}, 50 \mathrm{kHz}, 500 \mathrm{kHz}$
Temperature coefficient	
Zero point	$\pm(0.05 \%$ of 10 div$) /{ }^{\circ} \mathrm{C}$ (typical value)
Gain	$\pm(0.02 \%$ of 10 div$) /{ }^{\circ} \mathrm{C}$ (typical value)
Adaptive passive probe (10:1)	701940

High-Voltage 100 kS/s 16-Bit Isolation Module (with RMS) (701260)
Input channels
Maximum sampling rate
A/D conversion resolution
Input type
Frequency range $(-3 \mathrm{~dB})^{1}$
Waveform measurement mode
RMS measurement mode DC, up to 40 kHz to 10 kHz
nput range (10:1) $200 \mathrm{mV} /$ div to $2000 \mathrm{~V} / \mathrm{div}$ (in steps of 1, 2, or 5)
(1:1) 20 mV /div to $200 \mathrm{~V} /$ div (in steps of 1, 2, or 5)
Effective measurement range 20 div (display range 10 div)
DC offset
± 5 div
Maximum input voltage (1 kHz or less)
In combination with 700929 (10:1)
1000 V (DC + ACpeak)
In combination with $701901+701954$ (1:1)
Maximum allowable in-phase voltage
In combination with 700929
H side: 1000 Vrms (CAT II) ${ }^{4}$, L side: 400 Vrms (CAT II) ${ }^{5}$

In combination with 701901+701954 (1.1)
H side: 700 Vrms (CAT II) ${ }^{7}$, L side: 400 Vrms (CAT II) ${ }^{8}$
Direct input (when using a cable which doesn't comply with the safety standard) H/ sides. 30 Vrms (42 V DC + ACpeak)
DC accuracy (waveform measurement mode) $\pm(0.25 \%$ of 10 div$)$
DC accuracy (RMS measurement mode) $\pm(1.0 \%$ of 10 div$)$
AC accuracy (RMS measurement mode) ${ }^{1}$

$$
\begin{aligned}
\text { Sine wave input } & \pm(1.5 \% \text { of } 10 \mathrm{div}) \\
\text { actor of } 2 \text { or less } & \pm(2.0 \% \text { of } 10 \mathrm{div})
\end{aligned}
$$

Crest factor of 2 or less $\pm(2.0 \%$ of 10 div
Crest factor of 3 or less $\pm(3.0 \%$ of 10 div
input impedance $\quad 1 \mathrm{M} \Omega \pm 1 \%$, approx. 35 pF
Connector type Isolated type BNC connector
Input filter OFF, $100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$
Temperature coefficient (waveform measurement mode)
Zero point $\pm(0.02 \%$ of 10 div$) /{ }^{\circ} \mathrm{C}$ (typical value
esponse time (RMS mo $\pm\left(0.02 \%\right.$ of 10 div) $/{ }^{\circ} \mathrm{C}$ (typical value)
Rise (0 to 90% of 10 div)
Fall (100 to 10% of 10 div) 100 ms (typical)
rast factor to of 10 div) 250 ms (typical)
3 or less

* Please use 701901 (1:1 safety adaptor lead) or 700929 (10:1 safety probe), which
complies with the safety standard, for high-voltage input.
* It is very dangerous to use cables that do not comply with the safety standard.

Temperature/High-Precision Voltage Module (701265)
Input channels
Input couplings
${ }_{\mathrm{T}}^{2}$ (thermocouple), DC, GND
Input type Isolated unbalanced
Applicable sensors (input coupling: TC)
Data updating rate $\quad 500 \mathrm{~Hz}$, 100 Hz
Voltage accuracy ${ }^{1}$ (at voltage mode)
$\pm(0.08 \%$ of $10 \mathrm{div}+2 \mu \mathrm{~V})$
Temperature measurement accuracy ${ }^{1,12}$

Type	Measured range	Accuracy
K	$-200^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+1.5^{\circ} \mathrm{C}\right)$
E	$-200^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$	except -200 to $0^{\circ} \mathrm{C}$:
J	$-200^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$	$\pm\left(0.2 \%\right.$ of reading $\left.+1.5^{\circ} \mathrm{C}\right)$
T	$-200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$	
L	$-200^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$	
U	$-200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$	
N	$0^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$	
R, S	$0^{\circ} \mathrm{C}$ to $1700^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+3^{\circ} \mathrm{C}\right)$
		except 0 to $200^{\circ} \mathrm{C}: \pm 8^{\circ} \mathrm{C}$
		200 to $800^{\circ} \mathrm{C}: \pm 5^{\circ} \mathrm{C}$
B	$0^{\circ} \mathrm{C}$ to $1800^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+2^{\circ} \mathrm{C}\right)$,
		except 400 to $700^{\circ} \mathrm{C}: \pm 8^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $2300^{\circ} \mathrm{C}$	Effective range: 400 to $1800^{\circ} \mathrm{C}$
W	$0\left(0.1 \%\right.$ of reading $\left.+3^{\circ} \mathrm{C}\right)$	
Iron-doped gold/chromel	0 to 300 K	0 to $50 \mathrm{~K}: \pm 4 \mathrm{~K}$

Maximum input voltage (1 kHz or less)
42 V (DC + ACpeak) (CAT I and CAT II, 30 Vrms)
Input range (for 10 div display
Input connector
Input impedance Binding post
Input filter OFF,2 Hz, $8 \mathrm{~Hz}, 30 \mathrm{~Hz}$
Temperature coefficient (for voltage)
Zero point $\pm\left((0.01 \%\right.$ of 10 div$\left.) /{ }^{\circ} \mathrm{C}+0.05 \mu \mathrm{~V}\right) /{ }^{\circ} \mathrm{C}$ (typical value) Gain $\pm(0.02 \%$ of 10 div$) /{ }^{\circ} \mathrm{C}$ (typical value)
Strain Module (NDIS) (701270)
Input channels
Input types
Automatic balancing method
Automatic balancing range
Bridge voltages
Gauge resistances

Gauge rate
A/D resolution
Maximum sampling rate
Frequency range $(-3 \mathrm{~dB})^{1} \mathrm{DC}$, up to
DC accuracy ${ }^{1}$
Measurement range/measurable range

$\overline{\text { Measurement range (FS) }}$	Measurable range (-FS to +FS)
500μ STR	-500μ STR to 500μ STR
1000μ STR	-1000μ STR to 1000μ STR
2000μ STR	-2000μ STR to 2000μ STR
5000μ STR	-5000μ STR to 5000μ STR
$10,000 \mu$ STR	$-10,000 \mu$ STR to $10,000 \mu$ STR
$20,000 \mu$ STR	$-20,000 \mu$ STR to $20,000 \mu$ STR

mV / V range support mV / V range $=0.5 \times(\mu \mathrm{STR}$ range $/ 1000)$
Maximum allowable input voltage (1 kHz or less)
10 V (DC + ACpeak)
Maximum allowable in-phase voltage
42 V (DC + ACpeak) (CAT I and CAT II, 30 Vrms)
Temperature coefficien
Zero point $\pm 5 \mu \mathrm{STR} /{ }^{\circ} \mathrm{C}$ (typical value)
Gain $\pm(0.02 \%$ of FS$) /{ }^{\circ} \mathrm{C}$ (typical value)
Internal filter
OFF, $1 \mathrm{kHz}, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$
Input connector NDIS standard
Accessory (a set of connector shell for solder connection)
2 NDIS connectors (A1002JC)
Recommended bridge head (NDIS type) (sold separately)
701955 (bridge resistance of 120Ω) (w/5 m cable)
701956 (bridge resistance of 350Ω) (w/5 m cable)

Strain Module (DSUB, Shunt-cal) (701271)

nput channels

nput types
Automatic balancing method
Automatic balancing range
Bridge voltages
Gauge resistances
Gauge rate
A/D resolution
Maximum sampling rate
Frequency range $(-3 \mathrm{~dB})^{1}$
DC accuracy ${ }^{1}$
${ }^{2}$ C bridge input (automatic balancing), balanced
differential input, DC amplifier (floating)
Electronic auto-balance
$\pm 10,000 \mu$ STR (1 gauge method)
Select from $2 \mathrm{~V}, 5 \mathrm{~V}$, or 10 V
120 to 1000Ω (bridge voltage of 2 V)
350 to 1000Ω (bridge voltage of $2 / 5 / 10 \mathrm{~V}$)
1.90 to 2.20 (variable in steps of 0.01)

16 bits (4800 LSB/div: Upper=+FS, Lower=-FS)
100 kS/s
DC, up to 20 kHz
$\pm(0.5 \%$ of $\mathrm{FS}+5 \mu \mathrm{STR}$)
Measurement range (FS) Measurable range (-FS to +FS)
500μ STR
1000μ STR
2000μ STR
5000μ STR
$10,000 \mu$ STR
20,000 μ STR
-500μ STR to 500μ STR
-1000μ STR to 1000μ STR
-2000μ STR to 2000μ STR
-5000μ STR to 5000μ STR
$-10,000 \mu$ STR to $10,000 \mu$ STR
$-20,000 \mu$ STR to $20,000 \mu$ STR
mV / V range support mV / V range $=0.5 \times(\mu$ STR range $/ 1000)$
Maximum allowable input voltage (1 kHz or less)
0 V (DC + ACpeak)
42 V (DC
Temperature coefficient
Zero point $\pm 5 \mu \mathrm{STR} /{ }^{\circ} \mathrm{C}$ (typical value)

High-Speed Logic Probe (700986)

Number of inputs
Input types
8
Non-isolated (common ground for all bits; logic module and bits share common ground)
Maximum input voltage (1 kHz or less) (between probe tip and case ground) 42 V (DC +ACpeak) (CAT I and II, 30 Vrms)
Response time
Input impedance
Threshold level
$1 \mu \mathrm{~S}$ or less
Approximately $100 \mathrm{k} \Omega$
Approximately 1.4 V

Isolated Logic Probe (700987)

Number of inputs
Input types
Input connector
Input switching capability
Applicable input ranges
DC input H / L detection for 10 V DC to 250 V DC AC input H / L detection $(50 / 60 \mathrm{~Hz})$ for 80 V AC to 250 V AC
Threshold levels
DC input $6 \mathrm{VDC} \pm 50 \%$ AC input $50 \mathrm{VAC} \pm 50 \%$
Response times
DC input 1 ms or less
AC input 20 ms or less
Maximum input voltage (1 kHz or less)
(between H and L of each bit) 250 Vrms (CAT I and II)
Maximum allowable in-phase voltage
250 Vrms (CAT I and II)
Maximum allowable voltage between bits
250 Vrms (CAT I and II)
Input impedance Approximately $100 \mathrm{k} \Omega$

1. Under reference operating conditions (ambient temperature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, ambient humidity (RH) of $55 \% \pm 10 \%$; after calibration following 30 - minute warmup period) 12. Does not include reference contact compensation accuracy.

© Warning
Do not exceed the maximum input voltage, withstand voltage, or surge current. in order to prevent electric shock, be sure to ground the main unit. In order to prevent electric shock, be sure to tighten the module's screws. Electrical protective functions and mechanical protective functions will not be effective.

Accessories

Input Section

Compatible input signals

Input type
Input coupling
Input voltage
Max input voltage (1 kHz or less)
When combined with 700929 (10:1) ${ }^{2}$
Direct input $(1: 1)^{10}$
When combined with $700929(10: 1)^{3}$
Input impedance:
Connector type
Input filters
Input pullup function (ON/OFF) Input chatter suppression (ON/OFF) Comparator section Presets

Threshold range
LED display (each CH) $\begin{gathered}\text { Hysteresis }\end{gathered}$ OVER (red)
Compatible probes/cables

- Measurement Function Details Measurable items

Effective measurement range
Resolution of measured data
Measurement items and ranges

Measured Item	Measurement Range	Range
Frequency (Hz)	$0.01 \mathrm{~Hz}-200 \mathrm{kHz}$	$0.1 \mathrm{~Hz} /$ div- $50 \mathrm{kHz} /$ div
rpm	$0.01 \mathrm{rpm}-100,000 \mathrm{rpm}$	0.1 rpm/div-10,000 rpm/div
rps	$0.001 \mathrm{rps}-2000 \mathrm{rps}$	$0.01 \mathrm{rps} / \mathrm{div}-200 \mathrm{rps} / \mathrm{div}$
Period (sec)	$5 \mu \mathrm{~s}-50 \mathrm{~s}$	$10 \mu \mathrm{~s} / \mathrm{div}-5 \mathrm{~s} / \mathrm{div}$
Duty (\%)	0\%-100\%	1\%/div-20\%/div
Power supply freq (Hz)	$(50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 400 \mathrm{~Hz}) \pm 20 \mathrm{~Hz}$	$0.1 \mathrm{~Hz} /$ div-2 Hz/div
Pulse width (sec)	$2 \mu \mathrm{~s}-50 \mathrm{~s}$	$10 \mu \mathrm{~s} / \mathrm{div}-5 \mathrm{~s} / \mathrm{div}$
Pulse integration	up to 2×10^{9} count	$100 \times 10^{-21 / d i v-500 \times 10^{18} / \text { div }}$
Velocity	Same as freq. (can be converted to km/h and other units)	

Auxiliary Measurement Functions
Smoothing Filter
(moving average)

- Pulse Average Function

Deceleration Prediction

(Braking Applications)

- Stop Prediction
(Braking Applications)
- Offset Observation Function

Apring
Moving average constant is specified from 0.2 ms to 1000 msec and increases the resolution
Measure the specified number of pulses at once, and specify 1 to ame effect as the average value output mode. This has he exact at the pulse interval. Even if encoder gaps are unequal, you can measure pulses together and average them.
A measuring function that automatically compensates for the lack of encoder pulse information during deceleration and hypothesizes a deceleration curve
Predicts stop from a specified time after pulse stop
(set up to 10 stages).
et an observational center, then zoom and display surrounding
rea (for fluctuation observation)
■ Measurement Accuracy ${ }^{15}$
■ Frequency/Revolution/Velocity Measurements
Frequency/Revolution//elocity Measu
Measurement accuracy
(0.05% of $10 \mathrm{div}+$ accuracy depending on the input frequency)
Accuracy depending on the input frequency
$\mathrm{Hz}-2 \mathrm{kHz}$:
$2 \mathrm{kHz}-10 \mathrm{kHz} . \quad 0.05 \%$ of input waveform freq +1 mHz
$10 \mathrm{kHz}-20 \mathrm{kHz} \quad 0.3 \%$ of input waveform freq
$20 \mathrm{kHk}-200 \mathrm{kHz} \quad 0.5 \%$ of input waveform freq

- Period Measurement

Measurement accuracy $\pm(0.05 \%$ of 10 div + accuracy depending on the input period) $500 \mu \mathrm{~s}-50 \mathrm{~s} \quad 0.05 \%$ of input waveform interval $100 \mu \mathrm{~s}-500 \mu \mathrm{~s} \quad 0.1 \%$ of input waveform interval $5 \mu \mathrm{~s}-50 \mu \mathrm{~s} \quad 0.5 \%$ of input waveform interval $+0.1 \mu \mathrm{~s}$

Duty Measurement
Accuracy depending on
input frequency
$0.1 \mathrm{~Hz}-1 \mathrm{kHz}$
$\pm 0.1 \%$ of 100% $10 \mathrm{kHz}-50 \mathrm{kHz} \quad \pm 10 \%$ of 100% $50 \mathrm{kHz}-100 \mathrm{kHz} \quad \pm 2.0 \%$ of 100% $100 \mathrm{kHz}-200 \mathrm{kHz} \pm 4.0 \%$ of 100%
-Pulse Width Measurement Measurement accuracy
(20)
$\pm(0.05 \%$ of 10 div + accuracy depending on the input pulse wid $500 \mu \mathrm{~s}-100 \mathrm{~s} \quad 0.05 \%$ of input waveform pulse width $100 \mu \mathrm{~s}-500 \mu \mathrm{~s} \quad 0.1 \%$ of input waveform pulse width $50 \mu \mathrm{~s}-100 \mu \mathrm{~s} \quad 0.3 \%$ of input waveform pulse width $2 \mu \mathrm{~s}-50 \mu \mathrm{~s} \quad 0.5 \%$ of input waveform pulse width $+0.1 \mu \mathrm{~s}$
-Power Supply Frequency Measuremen
Measurement accuracy
Center freq. at $50,60 \mathrm{~Hz}$, accuracy of $\pm 0.03 \mathrm{~Hz}$, resolution of 0.01 Hz

1 Under standard operating conditions: (temperature $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, humidity $55 \% \pm 10 \% \mathrm{RH}$, warmup of at least 30 minutes, and after calibration.)
5 Given a minimum input of 0.2 Vpp . Measurement conditions:
-During freq./Period measurement: $1 \mathrm{Vpp} / 1 \mu \mathrm{~s}$ square wave input (range $= \pm 10 \mathrm{~V}$, bandwidth=FULL,
hysteresis $= \pm 1 \%$)
During Duty/pulse width measurement: $1 \mathrm{Vpp} / 5 \mathrm{~ns}$ square wave input (range $= \pm 10 \mathrm{~V}$, bandwidth=FULL
hysteresis $= \pm 1 \%)$
During power sup
6 Electromagnetic pickup: given output withinent: 90 Vms sinewave input (ratye $=\mathrm{AC} \mathrm{V}$ (, $\mathrm{BW}=100 \mathrm{kHz}$) with $1: 1$ cable. For types that requires a power supply or terminal resistance, apply it to the sensor side
In combination with 700929
Direct input
(With a cable

701275 Acceleration/Voltage Module (with AAF)

Input format
Input coupling
Max sampling rate
A/D conversion resolution
Input type
Frequency band (-3 dB)
AC coupling (-3 dB point) acceleration/voltage
For acceleration ($\pm 5 \mathrm{~V}=\mathrm{X} 1$ range) For voltage ($10: 1$)
For voltage (1:1)
Effective measuring range
DC offset
Max input voltage (1 kHz or less) ${ }^{12}$
Max allowable common mode voltage ${ }^{11}$ Accuracy ${ }^{1}$ For voltage (DC accuracy) Input impedance
Connector type
Input filters
Anti-aliasing filter (AAF
Cutoff frequency ${ }^{13}$
Cutoff characteristics
Temperature coefficient (for voltage) ${ }^{14}$ Zero point
Acceleration sensor bias
Example of compatible acceleration sensor: ${ }^{15}$
Sensor usage Notes:

Compatible probes/cables for voltage
Switchable between acceleration and voltage input
AAF (anti-aliasing filter) supports both acceleration and voltage
(AC coupling for acceleration) ACCL, (voltage) AC,DC,GND
$100 \mathrm{kS} / \mathrm{s}$
16 -bit (2400 LSB/div)
Isolated, unbalanced
(acceleration) $0.4 \mathrm{~Hz}-40 \mathrm{kHz}$ (voltage) DC-40 kHz
0.4 Hz or less

X0.1-X1-X100 (1-2-5 steps)
$50 \mathrm{mV} / \mathrm{div}-100 \mathrm{~V} / \mathrm{div}(1-2-5 \text { steps })^{12}$
$5 \mathrm{mV} / \mathrm{div}-10 \mathrm{~V} / \mathrm{div}(1-2-5 \mathrm{steps})^{12}$
20 div (10 div display range)
± 5 div
42 V (DC+ACpeak)
42 V (DC+ACpeak) 30 Vrms (CAT II)
$\pm(0.25 \%$ of 10 div$)$
$\pm(0.5 \%$ of 10 div) (at 1 kHz$)$
$1 \mathrm{M} \Omega \pm 1 \%$, approx. 35 pF
Metal BNC connector
OFF/Auto (AAF)/4 kHz/400 Hz/40 Hz
fc (cutoff frequency)=fs (sampling frequency) $\times 40 \%$
fc automatically moves to the sampling frequency.
-65 dB at 2Xfc (Typical)
$\pm(0.02 \%$ of 10 div$) /{ }^{\circ} \mathrm{C}$ (Typical)
$\pm(0.02 \%$ of 10 div$) /{ }^{\circ} \mathrm{C}$ (Typical)

Built-in amp type: Kistler Piezotron ${ }^{\text {TM }}$, PCB ICP ${ }^{T M}$, Endevco: Isotron2 ${ }^{\text {TM }}$
Something that supports acceleration sensor and bias is $4 \mathrm{~mA} / 22 \mathrm{~V}$ The sensor is highly sensitive to heat and shocks. If changes in mperature or shocks occur that are outside of the standard operating conditions, measurement may not be possible for several minutes.
(10:1 probe) 701940/700929 (1:1 cable) 366926
1 Under standard operating conditions: (temperature $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, humidity $55 \% \pm 10 \% \mathrm{RH}$, warmup of at least 30 minutes, and after Calibration.)
12 The module's insulation is functional insulation. Even when using a probe, input above 42 V is not considered safe.
13 when $\mathrm{fs}=50 \mathrm{~Hz}-100 \mathrm{kHz}$, (when fs $<=50 \mathrm{~Hz}$, fc is fixed to 20 Hz) 14 excludes AUTO Filter
15 Piezotron is a registered trademark of Kistler Instrument Corp.. ICP is a registered trademark of PCB Piezotronics Inc.. ISOTRON2 is a registered trademark of ENDEVCO Corp..

Input channels
AAF (anti-aliasing filter)
Input couplings
Input typesi
Maximum sampling rate
Data updating rate
A/D conversion resolution
mp
Frequency range $(-3 \mathrm{~dB})$ \qquad emperage DC to 40
Input range \quad Voltage (1:1) $5 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$ (10 div display, in steps of 1-2-5
Temperature K, E, J, T, L, U, N, R, S, B, W, iron-doped gold/chrome
Effective measurement range (voltage) 20 div (display range 10 div)
DC offset (voltage)
DC accuracy ${ }^{1}$ (voltage)
Temp. measured range/accuracy ${ }^{1,2}$

Type	Measured Range	Accuracy
K	$-200^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+1.5^{\circ} \mathrm{C}\right)$
E	$-200^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$	However, for $-200^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, $\pm 0.2 \%$ of reading $+1.5^{\circ} \mathrm{C}$)
J	$-200^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$	
T	$-200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$	
L	$-200^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$	
U	$-200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$	
N	$0^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$	
$\overline{R, S}$	$0^{\circ} \mathrm{C}$ to $1700^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+3^{\circ} \mathrm{C}\right)$
		However, $0^{\circ} \mathrm{C}$ for $200^{\circ} \mathrm{C}: \pm 8^{\circ} \mathrm{C}$ $200^{\circ} \mathrm{C}$ for $800^{\circ} \mathrm{C}: \pm 5^{\circ} \mathrm{C}$
B	$0^{\circ} \mathrm{C}$ to $1800^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+2^{\circ} \mathrm{C}\right)$
		However, $400^{\circ} \mathrm{C}$ to $700^{\circ} \mathrm{C}: \pm 8^{\circ} \mathrm{C}$
		Effective range.: $400^{\circ} \mathrm{C}$ to $1800^{\circ} \mathrm{C}$
W	$0^{\circ} \mathrm{C}$ to $2300^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+3^{\circ} \mathrm{C}\right)$
Gold/chromel		$\begin{aligned} & 0 \mathrm{~K} \text { to } 300 \mathrm{~K} \quad 0 \text { to } 50 \mathrm{~K}: \pm 4 \mathrm{~K} \\ & 50 \text { to } 300 \mathrm{~K}: \pm 2.5 \mathrm{~K} \\ & \hline \end{aligned}$

Max. input voltage (1 kHz or less)
Max. allowable common mode volt. (1 kHz or less)
Input impedance
Input filters
42 V (DC+ACpeak): for satisfying safety standards
42 V (DC +ACpeak) (CAT I \& CAT II, 30 Vrms
Binding post
Approximately $1 \mathrm{M} \Omega$
Voltage OFF, AUTO (AAF), $4 \mathrm{kHz}, 400 \mathrm{~Hz}, 40 \mathrm{~Hz}(-12 \mathrm{~dB} /$ oct except AUTO) Voltage OFF, AUTO (AAF), 4 kH
mperature OFF, $30 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2 \mathrm{~Hz}$
AAF (anti-aliasing filter) ${ }^{5} \quad 701262$ only Cutoff frequency fc $=$ fs (sampling frequency) $\times 40 \%$ fc automatically linked with the sampling frequency.
Temp. coefficient (for voltage) ${ }^{6}$ Zeropoint $\pm\left(0.01 \%\right.$ of 10 div) $/{ }^{\circ} \mathrm{C}$ (typical value)
Compatible cable

1. Under reference operating conditions (ambient temp. of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, ambient humidity of $55 \% \pm 10 \% \mathrm{RH}$, after 30 minute warmup period and calibration)
2. Does not include reference junction/temperature compensation accuracy.
3. Since the input connecter is of a binding post type, it is possible to touch. the metal part of the connector.

Therefore, for safety reasons, the maximum value is 42 V ($\mathrm{DC}+\mathrm{ACpeak}$).
4. Maximum value at which the input circuit will not be damaged.
5. When $\mathrm{fs}=50 \mathrm{~Hz}$ to 100 KHz . When $\mathrm{fs} \leq 50 \mathrm{~Hz}, \mathrm{fc}=20 \mathrm{~Hz}$ (fixed).
6. Except when filters set to AUTO.
6. Except when filters set to AUTO.

DL750/DL750P Model Numbers and Suffix Codes

Model	Suffix Code	Description
701210		"DL750 main unit (16 isolated channels + 16-bit logic) ${ }^{1}$ 112 mm width A6 thermal printer built-in"
701230		"DL750P main unit (16 isolated channels + 16-bit logic) ${ }^{1}$ 210 mm width A4 thermal printer built-in"
Power cable	-D	UL/ CSA standard
	-F	VDE standard
	-R	AS standard
	-Q	BS standard
	- H	GB standard(Complied with CCC)
Internal media drive ${ }^{2}$	-J1	Floppy drive
	-J2	$\mathrm{Zip}^{\text {® }}$ drive (available for the DL750 only) ${ }^{3}$
	-J3	PC card drive
Default Help language	-HE	English online help
	-HJ	Japanese online help
	-HC	Chinese online help
	-HG	German online help
	-HF	French online help
	-HL	Italian online help
	-HK	Korean online help
Memory expansion	/M1	Memory expansion to $10 \mathrm{MW} / \mathrm{CH}^{4}$
	/M2	Memory expansion to $25 \mathrm{MW} / \mathrm{CH}^{4}$
	/M3	Memory expansion to $50 \mathrm{MW} / \mathrm{CH}^{4}$
Other specifications	/C8	Internal 30 GB hard drive (FAT32)
	/C10	Ethernet interface
	/G2	User-defined math function
	/G3	DSP channel function
	/P4	Probe power (4-output)
	/DC	DC12 V power (DC10-18 V) (DL750 only) ${ }^{3}$

1. Plug-in modules are not included
2. Zhip drive and DC12V power supply cannot be specified together with the DL750P.
3.
4. Cannot be specified together.

Standard Accessories

Product	Order Qty.
Power cable	1
User's manuals (one set)	1
Transparent front cover	
Printer roll paper	DL750 (A6 10 m/roll)
	DL750P (A4 20 m/roll)
Cover panel (for blank module slots)	
Rubber feet (four per set)	1
Soft case (for storing accessories)	

Zip is a registered trademark of lomega Corporation in the United States and/or other countries. Other company names and
product names appearing in this document are trademarks or registered trademarks of their respective companies.

Plug-in Module Model Numbers ${ }^{5}$

Model No .	Description	Firmware
701250	High-speed $10 \mathrm{MS} / \mathrm{s} 12$-bit isolation module $(2 \mathrm{CH})$	1.07 or later
701251	High-speed $1 \mathrm{MS} / \mathrm{s} 16$-bit isolation module $(2 \mathrm{CH})$	1.07 or later
701255	High-speed $10 \mathrm{MS} / \mathrm{s} 12$-bit non-solation module $(2 \mathrm{CH})$	2.02 or later
701260	High-voltage $100 \mathrm{kS} / \mathrm{s} 16$-bit isolation module $(2 \mathrm{CH}$, with RMS)	2.02 or later
701261	Universal Module $(2 \mathrm{CH})$	5.01 or later
701262	Universal Module (with AAF 2 CH)	5.01 or later ${ }^{7}$
701265	Temperature/high-precision voltage module (2 CH)	1.07 or later
701270	Strain module (NDIS, 2 CH)	2.02 or later
701271	Strain module (DSUB, Shunt-CAL, 2 CH)	2.02 or later
701275	Acceleration/voltage module (with AAF, 2 CH)	3.01 or later
701280	Frequency module $(2 \mathrm{CH})$	3.01 or later

5. Probes are not included with any modules.
6. The latest firmware for the DL750 series is available on our Web site http://www.yokogawa.com/tm/DL750/
DL750 support to be offered by 3rd quarter 2005 (ver. 6.01 or later)

DL750/DL750P Accessories

Product	Model No.	Description1
Isolated probe	700929	1000 Vrms-CATII for 701250, -51, and -60 (10:1)
"1:1 BNC safety adapter lead (in combination with the following)"	701901	1000 Vrms-CATII for 701250, -51, and -60
Safety mini clip (hook type)	701959	1000 Vrms-CATII, 1 set each of red and black
Large Alligator clip (dolphin type)	701954	1000 Vrms-CATII, 1 set each of red and black
Alligator adapter (rated volt.: 1000 V)	758929	1000 Vrms-CATII, 1 set each of red and black
Alligator adapter (rated volt.: 300 V)	758922	300 Vrms-CATII, 1 set each of red and black
Fork terminal adapter	758921	1000 Vrms-CATII, 1 set each of red and black
Passive probe for DL750/750P ${ }^{2}$	701940	Non-isolated 600 Vpk (701255) 42 V or less (other) (10:1)
1:1 BNC-alligator cable	366926	Non-isolated 42 V or less, for 701250, -51, -55, 1 m
1:1 Banana-alligator cable	366961	Non-isolated 42 V or less, for 701261, $-62,-65,1.2 \mathrm{~m}$
Current probe ${ }^{3}$	701933	30 Arms, DC to 50 MHz , supports probe power
Current probe ${ }^{3}$	701930	150 Arms , DC to 10 MHz , supports probe power
Current probe ${ }^{3}$	701931	500 Arms , DC to 2 MHz , supports probe power
Probe power ${ }^{4}$	701934	Large current output, external probe power supply (4 outputs)
Differential probe	700924	1400 V pk, 1000 Vrms-CAT II
Bridge head (NDIS, $120 \Omega / 350 \Omega$)	701955/56	With 5 m cable
"Bridge head (DSUB, Shunt-cal $120 \Omega / 350 \Omega$)"	701957/58	With 5 m cable
GO/NO-GO cable	366973	For GO/NO-GO I/O and start input
Safety BNC-banana adapter	758924	500 Vrms-CATII, for 701250, -51, -55, -60
Printer roll paper	B9988AE	DL750, A6 size (120 mm wide $\times 10 \mathrm{~m}$), include 10 rolls
Printer roll paper	701966	DL750P, A4 size (210 mm wide $\times 20 \mathrm{~m}$), include 6 rolls
High-speed logic probe ${ }^{5}$	700986	8-bit, non-isolated, response speed: $1 \mu \mathrm{~s}$
Isolated logic probe6	700987	8 -bit, each channel isolated, response speed: 20 ms (for AC)
Isolated logic measurement leads	758917	"Isolated logic measurement leads (2 per set) Alligator clip required separately. "
Conversion adaptor	366928	BNC (jack)-RCA (plug) conversion
Safety BNC cable (1 meter)	701902	1000 Vrms-CATII (BNC-BNC)
Safety BNC cable (2 meters)	701903	1000 Vrms-CATII (BNC-BNC)
Soft carrying case	701963	For DL750, with 3 storage pockets
Soft carrying case	701967	For DL750P, with 3 storage pockets

1. Actual allowable voltage is the lower of the voltages specified for the main unit and the cable
2. 42 V is safe when using the 701940 with a Non isolated type BNC input.
3. The number of current probes that can be powered from the main unit probe power is limited. See the following
for details. http://www.yokogawa.com/tm/probe/
. One of each
4. One of each connection lead (B9879PX a and B9i879KX) is included.
5. 758917 , and either 758922 or 758929 is required for measurement.

Exterior Dimensions

