Advanced Test Equipment Rentals
www.atecorp.com 800-404-ATEC (2832)

ACX SERIES

AC POWER SOURCE

OPERATION MANUAL

PACIFIC POWER SOURCE

Schulz-Electronic GmbH
Dr.-Rudolf-Eberle-Straße 2
D-76534 Baden-Baden
Fon +49.7223.9636.30
Fax +49.7223.9636.90
vertrieb@schulz-electronic.de
www.schulz-electronic.de
ACX-SERIES

OPERATION MANUAL

FOR THE

MODEL
118-ACX

PPS PART NO. 150118-10

THIS MANUAL ASSIGNED TO S/N: ____________________________

THE INFORMATION CONTAINED IN THIS MANUAL IS PROPRIETARY TO PACIFIC POWER SOURCE, INC. AND MAY NOT BE COPIED OR REPRINTED WITHOUT ITS EXPRESSED WRITTEN CONSENT.

PACIFIC POWER SOURCE, INC.
17692 Fitch Irvine, CA 92614

SECOND EDITION

COPYRIGHT ©, PPS, JUNE 2011
CERTIFICATION

PACIFIC POWER SOURCE CERTIFIES THAT THIS INSTRUMENT WAS THOROUGHLY TESTED AND INSPECTED AND FOUND TO MEET OR EXCEED ITS PUBLISHED SPECIFICATIONS WHEN IT WAS SHIPPED FROM THE FACTORY.

LIMITED WARRANTY

Pacific Power Source (PPS) warrants each unit to be free from defects in material and workmanship. For the period of two (2) years from the date of shipment to the purchaser, PPS will either repair or replace, at its sole discretion, any unit returned to its factory in Irvine, California or other factory authorized service center. This warranty does not cover batteries. It does not cover damage arising from misuse of the unit or attempted field modifications or repairs. This warranty specifically excludes damage to other equipment connected to this unit.

Upon notice from the purchaser within (30) days of shipment of units found to be defective in material or workmanship, PPS will pay all shipping charges for the repair or replacement. If notice is received more than thirty (30) days from shipment, all shipping charges shall be paid by the purchaser. Units returned on debit memos will not be accepted and will be returned without repair.

This warranty is exclusive of all other warranties, express or implied.

For a listing of local contacts or other information, please visit us online at: www.pacificpower.com.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>USING THIS MANUAL</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>SAFETY NOTICES</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>GENERAL PRODUCT DESCRIPTION</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>SPECIFICATIONS</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>ELECTRICAL SPECIFICATIONS</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1</td>
<td>INPUT POWER REQUIREMENTS</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2</td>
<td>OUTPUT POWER</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3</td>
<td>OUTPUT POWER FACTOR</td>
<td>7</td>
</tr>
<tr>
<td>2.1.4</td>
<td>OUTPUT FREQUENCY</td>
<td>7</td>
</tr>
<tr>
<td>2.1.5</td>
<td>OUTPUT DISTORTION</td>
<td>7</td>
</tr>
<tr>
<td>2.1.6</td>
<td>OUTPUT LOAD REGULATION</td>
<td>7</td>
</tr>
<tr>
<td>2.1.7</td>
<td>INPUT LINE REGULATION</td>
<td>7</td>
</tr>
<tr>
<td>2.1.8</td>
<td>OUTPUT BANDWIDTH</td>
<td>7</td>
</tr>
<tr>
<td>2.1.9</td>
<td>LOAD TRANSIENT RESPONSE</td>
<td>7</td>
</tr>
<tr>
<td>2.1.10</td>
<td>OUTPUT DC OFFSET</td>
<td>8</td>
</tr>
<tr>
<td>2.1.11</td>
<td>OUTPUT PROTECTION</td>
<td>8</td>
</tr>
<tr>
<td>2.1.12</td>
<td>OUTPUT CONTROL CHARACTERISTICS</td>
<td>8</td>
</tr>
<tr>
<td>2.1.13</td>
<td>OUTPUT ISOLATION</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>MECHANICAL SPECIFICATIONS</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1</td>
<td>DIMENSIONS</td>
<td>8</td>
</tr>
<tr>
<td>2.2.2</td>
<td>INPUT POWER CONNECTION</td>
<td>10</td>
</tr>
<tr>
<td>2.2.3</td>
<td>OUTPUT POWER CONNECTION</td>
<td>10</td>
</tr>
<tr>
<td>2.2.4</td>
<td>CHASSIS SLIDE MOUNTS</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>ENVIRONMENTAL SPECIFICATIONS</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1</td>
<td>TEMPERATURE RANGE</td>
<td>10</td>
</tr>
<tr>
<td>2.3.2</td>
<td>COOLING</td>
<td>10</td>
</tr>
<tr>
<td>2.3.3</td>
<td>ALTITUDE</td>
<td>10</td>
</tr>
<tr>
<td>2.3.4</td>
<td>POLLUTION DEGREE</td>
<td>10</td>
</tr>
<tr>
<td>2.3.5</td>
<td>THERMAL PROTECTION</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>INSTALLATION</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>CHASSIS PLACEMENT</td>
<td>11</td>
</tr>
<tr>
<td>3.2</td>
<td>OUTPUT RANGE CONFIGURATION</td>
<td>12</td>
</tr>
<tr>
<td>3.3</td>
<td>INPUT POWER CONNECTION</td>
<td>12</td>
</tr>
<tr>
<td>3.4</td>
<td>OUTPUT POWER CONNECTION</td>
<td>14</td>
</tr>
<tr>
<td>3.5</td>
<td>REMOTE INTERFACE</td>
<td>15</td>
</tr>
<tr>
<td>3.6</td>
<td>AUX I/O INSTALLATION</td>
<td>15</td>
</tr>
<tr>
<td>3.7</td>
<td>EXTERNAL SENSE CONNECTION</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>OPERATION</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>FRONT PANEL CONTROLS</td>
<td>17</td>
</tr>
<tr>
<td>4.2</td>
<td>INITIAL POWER-UP</td>
<td>18</td>
</tr>
<tr>
<td>4.3</td>
<td>ROUTINE POWER-UP</td>
<td>19</td>
</tr>
<tr>
<td>4.4</td>
<td>SYSTEM TURN-OFF</td>
<td>19</td>
</tr>
<tr>
<td>4.5</td>
<td>SYSTEM SHUTDOWN</td>
<td>20</td>
</tr>
<tr>
<td>4.5.1</td>
<td>SHUTDOWN CONDITIONS</td>
<td>20</td>
</tr>
<tr>
<td>4.5.2</td>
<td>RESETTING SHUTDOWN FAULTS</td>
<td>20</td>
</tr>
<tr>
<td>4.6</td>
<td>OUTPUT VOLTAGE FORMS</td>
<td>21</td>
</tr>
<tr>
<td>4.7</td>
<td>AUDIBLE ALERT</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>MAINTENANCE</td>
<td>22</td>
</tr>
<tr>
<td>5.1</td>
<td>MAINTENANCE INTERVAL</td>
<td>22</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

6 CALIBRATION ..23
 6.1 CALIBRATION INTERVAL ...23
 6.2 TEST EQUIPMENT REQUIREMENTS ...23
 6.3 CALIBRATION PROCEDURE ..23
 6.3.1 CALIBRATE CONTROLLER ...24
 6.3.2 POWER SOURCE LOAD TEST ..24
7 SERVICE ...25
 7.1 SERVICE PROCEDURE ...25
 7.2 SYSTEM LEVEL FACTORY PART NUMBERS ...25
 7.3 SUB-ASSEMBLY AND CHASSIS COMPONENT PART NUMBERS25
8 INDEX ..26
9 MODIFICATIONS AND CHANGE NOTICES ...27

LIST OF ILLUSTRATIONS

FIGURE 1.3 ACX-SERIES POWER SOURCE FRONT VIEW ...4
FIGURE 2.1.1 INPUT CURRENT VS. OUTPUT POWER ..5
FIGURE 2.1.2 OUTPUT RATING CURVES ..6
FIGURE 2.2.1 OUTLINE DRAWING ..9
FIGURE 3.3 INPUT AND OUTPUT CONNECTION ..13
FIGURE 3.4 ACX-SERIES SYSTEM ARCHITECTURE ..15
FIGURE 3.7 EXTERNAL SENSE WIRING ..16
FIGURE 4.1 FRONT PANEL CONTROLS ..17
SECTION 1 GENERAL

1 GENERAL

This manual provides information required to properly use a 118-ACX AC Power Source. This is a general Operations Manual and it describes the operation of the basic power source. Installation, operation, and calibration are the subjects covered.

The 118-ACX is configured with a digital UPC (Universal Programmable Controller). Detailed operating instruction and control and metering specifications are described in the UPC Series Operation Manual which is supplied with the unit.

1.1 USING THIS MANUAL

This manual provides instructions for installation and use of the 118-ACX Power Source equipment. For this reason, it is very important that the user reads sections 1 GENERAL information, 3 INSTALLATION, and 4 OPERATION, prior to using this equipment. A thorough understanding of these sections is required to safely and properly operate this equipment.

Section 2 lists the specifications of the equipment. Knowledge of this information is required to gain maximum use of this equipment for a given application. The user is encouraged to read this section in order to gain a deeper understanding of the capabilities of the 118-ACX Power Source.

Sections 5 and 6 list MAINTENANCE and CALIBRATION requirements of this equipment. Refer to these sections when either maintenance or calibration is required.

Section 7 describes SERVICE methodology and provides system, sub-assembly, and component part numbers to aid the operator in making any factory authorized field repairs.

Section 8 contains the INDEX for this manual.

Section 9 contains product change notices, errata, and data relative to customer specified modifications. Read Section 9 before operating the equipment. This is especially true when modifications (MODs) have been installed, since these can change system operation.

If questions arise while reading this manual, the user is encouraged to call the Pacific Power Source customer service department. Pacific maintains a toll-free number: 1-800-854-2433 (1-800-472-8465 within California).
1.2 SAFETY NOTICES

The 118-ACX is capable of transferring very large amounts of electrical energy very quickly. This basic quality is fundamental to any high-performance power source. The warnings and cautions listed below should be observed at all times.

WARNINGS are conditions which are hazardous to user personnel. All warnings throughout this manual will be formatted as shown below. A condition which is hazardous to both personnel and equipment will be issued as a warning.

CAUTION statements indicate a dangerous situation which may damage the equipment but is not a threat to life or limb. Cautions will assume the format shown on page 3. All cautions should be rigorously observed.

WARNING

THIS EQUIPMENT CONTAINS HIGH ENERGY, LOW IMPEDANCE CIRCUITS!! LETHAL POTENTIALS ARE CONTAINED WITHIN THE CABINET.

CARE MUST BE EXERCISED WHEN SERVICING THIS EQUIPMENT IN ORDER TO PREVENT SERIOUS OPERATOR INJURY OR EQUIPMENT DAMAGE.

VOLTAGE AT THE TERMINALS RESPONDS INSTANTLY WHEN THE OUTPUT IS ACTIVATED.

OBSERVE THE FOLLOWING WHEN SERVICE, MAINTENANCE, OR CALIBRATION ARE REQUIRED:

1) REMOVE ALL JEWELRY FROM HANDS, ARMS AND NECK WHEN SERVICING THIS EQUIPMENT. THIS PREVENTS THE POSSIBILITY OF SHORTING THROUGH THE JEWELRY AND CAUSING BURNS OR ELECTROCUTION OF THE OPERATOR.

2) WEAR SAFETY GLASSES WHEN SERVICING THIS EQUIPMENT TO PREVENT EYE INJURY DUE TO FLYING PARTICLES CAUSED BY ACCIDENTAL SHORT CIRCUIT CONDITIONS.

3) DO NOT REMOVE ANY PANEL OR COVER WITHOUT FIRST REMOVING THE INPUT SERVICE BY OPENING ALL CIRCUIT BREAKERS.

4) SERVICE OTHER THAN EXTERNAL CLEANING SHOULD BE REFERRED TO PERSONNEL AUTHORIZED BY THE FACTORY TO SERVICE THIS EQUIPMENT.
SAFETY NOTICES (continued)

WARNING

IF THIS EQUIPMENT IS NOT USED IN A MANNER SPECIFIED BY THE MANUFACTURER, THE PROTECTION PROVIDED BY THE EQUIPMENT MAY BE IMPAIRED

CAUTION

READ SECTIONS 1, 3, AND 4 OF THIS MANUAL BEFORE INSTALLING OR OPERATING THIS EQUIPMENT.

SAFETY SYMBOLS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>![Alternating current]</td>
<td>Alternating current</td>
</tr>
<tr>
<td>2</td>
<td>![Earth (ground) TERMINAL]</td>
<td>Earth (ground) TERMINAL</td>
</tr>
<tr>
<td>3</td>
<td>![PROTECTIVE CONDUCTOR TERMINAL]</td>
<td>PROTECTIVE CONDUCTOR TERMINAL</td>
</tr>
<tr>
<td>4</td>
<td>![On (Supply)]</td>
<td>On (Supply)</td>
</tr>
<tr>
<td>5</td>
<td>![Off (Supply)]</td>
<td>Off (Supply)</td>
</tr>
<tr>
<td>6</td>
<td>![Caution, risk of electric shock]</td>
<td>Caution, risk of electric shock</td>
</tr>
<tr>
<td>7</td>
<td>![Caution, risk of danger]</td>
<td>Caution, risk of danger</td>
</tr>
</tbody>
</table>
1.3 GENERAL PRODUCT DESCRIPTION

The 118-ACX Power Source is a high-performance AC power conversion instrument. It is intended for indoor use and the chassis is designed to fit into a standard 19 inch instrument rack or to be used on any test bench surface. The power source is suitable for use as a frequency converter as well as for sophisticated AC test power generation.

These power sources are typically configured with a digital controller. Controller options are:
- UPC1M for basic manual control - allowing the user to adjust voltage, frequency and current limit via the front panel controls.
- UPC1 for sophisticated programmable control - provides all of the manual control capability, plus a wide variety of additional features including program storage, waveform editing, and remote interface (Serial or GPIB).

Model 118-ACX has dual-range output voltage capability, able to operate at either 0-150 volts or 0-300 volts. When operated in the high voltage range, the output may be used as either a single-ended or split-phase configuration. The phase separation of L1 and L2 is fixed at 180 degrees in that case. Optional output transformers can be provided for higher or lower voltage range.

Output power is up to 1.8kVA at any nominal input voltage from 100 to 240 Vac.

External Voltage Sense capability is provided and will display the actual voltage at the remote sense location. The CSC (Continuous Self Calibration) feature will allow the controller to regulate the voltage at the sense location. (CSC)

Output voltage and current metering is provided on the system display. Specifications of the metering functions are described in the UPC Series Operation Manual.

FIGURE 1.3 ACX-SERIES POWER SOURCE - FRONT VIEW
SECTION 2

SPECIFICATIONS

2 SPECIFICATIONS
This section states the electrical and mechanical specifications of the 118-ACX Power Source. Some specifications are controller dependent and are noted as such.

2.1 ELECTRICAL SPECIFICATIONS

2.1.1 INPUT POWER REQUIREMENTS
The following input power requirements are accepted by the 118-ACX

INPUT VOLTAGE
The Model 118-ACX accepts any single phase input voltage of 100-240 Vac, 47-63 Hz and is tolerant of transient overvoltages typically present on the AC MAINS power distribution lines.

INPUT CURRENT
The input current required by the Model 118-ACX at full rated load is stated below for most common nominal line voltages. Recommended input service is also stated. Overload conditions will result in higher input currents that still fall within the recommended input service.

NOTE: In low voltage operations the max input current is 28A (RMS). At least 10AWG input cable wire is recommended.

<table>
<thead>
<tr>
<th>V_{in}</th>
<th>INPUT CURRENT</th>
<th>SERVICE RECOMMENDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 VAC</td>
<td>26 A_{rms}</td>
<td>30 A</td>
</tr>
<tr>
<td>110 VAC</td>
<td>24 A_{rms}</td>
<td>30 A</td>
</tr>
<tr>
<td>120 VAC</td>
<td>22 A_{rms}</td>
<td>30 A</td>
</tr>
<tr>
<td>200 VAC</td>
<td>13 A_{rms}</td>
<td>15 A</td>
</tr>
<tr>
<td>208 VAC</td>
<td>13 A_{rms}</td>
<td>15 A</td>
</tr>
<tr>
<td>220 VAC</td>
<td>12 A_{rms}</td>
<td>15 A</td>
</tr>
<tr>
<td>230 VAC</td>
<td>12 A_{rms}</td>
<td>15 A</td>
</tr>
<tr>
<td>240 VAC</td>
<td>11 A_{rms}</td>
<td>13 A</td>
</tr>
</tbody>
</table>

FIGURE 2.1.1 INPUT CURRENT VS. OUTPUT POWER
SECTION 2 SPECIFICATIONS

2.1.2 OUTPUT POWER

OUTPUT VOLTAGE RANGE

The standard output voltage ranges of the 118-ACX are:

- 0-150 Vac when operated in low range (FORM 1)
- 0-300 Vac when operated in high range (FORM 2)

OUTPUT CURRENT

FULL-RATED CURRENT

The full-rated output current of the 118-ACX Power Source is:

<table>
<thead>
<tr>
<th>1φ</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{out, rms}</td>
<td>I_{max, rms}</td>
<td>I_{out, pk}</td>
</tr>
<tr>
<td>20 A</td>
<td>30 A</td>
<td>40 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2φ</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{out, rms}</td>
<td>I_{max, rms}</td>
<td>I_{out, pk}</td>
</tr>
<tr>
<td>10 A</td>
<td>15 A</td>
<td>20 A</td>
</tr>
</tbody>
</table>

Refer to the Rating Curve charts of Figure 2.1.2 for maximum output current at a specific output form, voltage, or power factor.

OVERLOAD OPERATION

The 118-ACX Power Source can deliver up to 120% of rated RMS output current at 25°C ambient temperature with any input line voltage of 100 Vac or higher. Elevated ambient temperature, low input voltage, or power factors between 0.8 and 1.0 will increase the internal dissipation of the power source and can cause shutdown due to over-temperature conditions. Length of time to reach over-temperature varies with the above parameters.

RATED CONTINUOUS LOAD CURRENT AS A FUNCTION OF POWER FACTOR AND OUTPUT VOLTAGE – NOMINAL INPUT LINE

Rated continuous load current as a function of Power Factor and Output Voltage – Nominal Input Line

Short term overloads to 30 Amps are permitted. Operating time before thermal shutdown or circuit breaker trip will vary from seconds to several minutes depending upon line and temperature conditions.

RATED CONTINUOUS LOAD CURRENT AS A FUNCTION OF POWER FACTOR AND OUTPUT VOLTAGE – NOMINAL INPUT LINE

Rated continuous load current as a function of Power Factor and Output Voltage – Nominal Input Line

Short term overloads to 15 Amps are permitted. Operating time before thermal shutdown or circuit breaker trip will vary from seconds to several minutes depending upon line and temperature conditions.

FIGURE 2.1.2 OUTPUT RATING CURVES
2.1.3 OUTPUT POWER FACTOR

The 118-ACX Power Source is designed to operate into any load power factor. However, the Rating Curve charts of Figure 2.1.2 should be consulted for system capabilities at specific output power factors. The amount of heat generated by the amplifier increases as the power factor approaches 1.

2.1.4 OUTPUT FREQUENCY

The output frequency range of the 118-ACX Power Source is determined by the controller which is installed in the system. Refer to the appropriate controller manual for output frequency specifications.

2.1.5 OUTPUT DISTORTION

The output distortion of the 118-ACX Power Source is typically:

- less than 0.25% THD for output frequencies in the range of 15 to 200 Hz
- less than 0.50% THD for output frequencies in the range of 200 to 800 Hz
- less than 1.00% THD for output frequencies in the range of 800 to 1200 Hz

2.1.6 OUTPUT LOAD REGULATION

Uncompensated load regulation of the 118-ACX Power Source is typically:

- less than 1% for output frequencies in the range of 15 to 200 Hz
- less than 2% for output frequencies in the range of 200 to 800 Hz
- less than 3% for output frequencies in the range of 800 to 1200 Hz

2.1.7 INPUT LINE REGULATION

Input line regulation of the 118-ACX Power Source is less than 0.1% for a ±10% change in line voltage (provided, input line voltage remains within the specified range).

2.1.8 OUTPUT BANDWIDTH

The output bandwidth of the 118-ACX Power Source is:

Full Power:
- 15 to 200 Hz (±0.10 db [± 1%])
- 200 to 800 Hz (±0.25 db [± 3%])
- 800 to 1200 Hz (±0.36 db [± 4%])

Small Signal:
- 5 to 5,000 Hz (±0.5 db [±6%])
 (rated at 10% of full-scale output voltage)

2.1.9 LOAD TRANSIENT RESPONSE

Output load transient response and recovery time is approximately:

80 μsec. for a 10-90% load induced step transient
SECTION 2 SPECIFICATIONS

2.1.10 OUTPUT DC OFFSET

The DC offset present on the output is: less than 5 mVDC.

2.1.11 OUTPUT PROTECTION

The output of the 118-ACX Power Source is protected through the use of electronic current limiting. The output will automatically recover when the output fault is removed. Thermal overload protection is also provided. Refer to paragraph 2.3.5 for details.

The universal AC output socket that is located on the front of the 118-ACX is limited to 10 A(RMS) operation. It is protected by a 10A circuit breaker located at the rear of the power source. If the current draw at the socket exceeds the 10A rating, the circuit breaker will disconnect power to the socket. Reduce the load at the socket and press the circuit breaker button to reset.

NOTE: The digital controller also provides programmable current limit. Refer to the UPC Series Operation Manual for details.

2.1.12 OUTPUT CONTROL CHARACTERISTICS

Output control characteristics, sync I/O signals, and metering capabilities are determined by the controller which is installed. Refer to the UPC Series Operation Manual for details.

2.1.13 OUTPUT ISOLATION

The output of the 118-ACX is galvanically isolated from the chassis and input power. Output Neutral to Chassis voltage is allowed to be 150 VAC, maximum. See paragraph 3.4, Output Power Connection, for grounding information.

2.2 MECHANICAL SPECIFICATIONS

The 118-ACX Power Source mechanical characteristics are:

2.2.1 DIMENSIONS

MODEL 118-ACX

Height: 3.5" [89 mm]; 2U (rack units)
Width: 19.00" [483 mm] (front panel with mounting brackets);
 16.75" [426 mm] (main chassis)
Depth: 23.62" [600 mm] (measured from back side of front panel, excludes terminal blocks)
Weight: 40 lbs. [18.2 kg]
2.2.1 DIMENSIONS (continued)

FIGURE 2.2.1 OUTLINE DRAWING
2.2.2 INPUT POWER CONNECTION

Input power is brought into the 118-ACX at the Input Power terminal block on the rear panel.

2.2.3 OUTPUT POWER CONNECTION

Output power is taken from the 118-ACX Power Source via rear panel mounted terminal blocks. Remote Sense terminals are also provided at this terminal block.

Terminal block TB5 on the rear of the 118-ACX may be used to remotely enable/disable the output of the power source. An electrical connection between terminals TB5-1 and TB5-3 enables the output of the 118-ACX allowing normal operation from the front panel or remote interface. An open connection between TB5-1 and TB5-3, disables the output of the 118-ACX. The 118-ACX is supplied with a jumper installed in TB5 such that the output is enabled. That jumper may be replaced by a switch or relay which can operate as a safety interlock or remote disconnect.

2.2.4 CHASSIS SLIDE MOUNTS

The 118-ACX Power Source is designed to accept slide rails. These can be provided as a cost option. Contact your local sales representative or the Pacific Power Source Sales Office.

2.3 ENVIRONMENTAL SPECIFICATIONS

2.3.1 TEMPERATURE RANGE

The 118-ACX Power Source is rated for full operation in ambient temperatures of: 0 - 40°C, relative humidity in the range of 0 - 95%, non-condensing.

Operation from 40°C to 55°C is permitted with output power decreasing linearly with increasing ambient temperature. Available power at 55°C is 600W.

2.3.2 COOLING

The 118-ACX Power Source utilizes thermally regulated forced-air cooling to maintain proper temperatures throughout. The maximum airflow is 240 CFM.

2.3.3 ALTITUDE

The 118-ACX Power Source is rated for full operation at altitudes of: 0 – 10,000 feet/3,000m.

2.3.4 POLLUTION DEGREE

The 118-ACX Power Source is rated for full operation in environments of mild pollution severity: Pollution Degree 2.

2.3.5 THERMAL PROTECTION

Temperature sensors are installed in the power assemblies. If safe operating temperature is exceeded, the output is opened and the Shutdown LED on the front panel, is lighted. A shutdown fault must be reset to restore normal operation. See paragraph 4.5 for details.
SECTION 3
INSTALLATION

3 INSTALLATION

This section describes the installation of the 118-ACX AC Power Source.

3.1 CHASSIS PLACEMENT

The 118-ACX Power Source is designed to operate as a bench-top unit, or to fit into a standard 19-inch rack. Provisions for mounting slide rails are included on the chassis.

--- WARNING ---

THE 118-ACX WEIGHS 44 lbs (20 kg)
USE EXTREME CARE WHEN MOVING THE UNIT.
IN ORDER TO REDUCE CHANCE OF PHYSICAL INJURY.

WHEN MOUNTING SLIDE RAILS TO THE 118-ACX CHASSIS,
MAXIMUM SCREW LENGTH IS 8 mm.

--- PACKING NOTICE ---

It is the customer's responsibility to insure that units are adequately packaged when they are moved to a different location. The 118-ACX should always be packaged in the original shipping container when moved or returned to the factory for service.

--- PACKING NOTICE ---

Once the unit has been removed from its shipping container, select an appropriate location for the unit. Key points to consider when locating the chassis are:

1. PROXIMITY TO THE LOAD - The power source should be located as close to the load as possible. This helps to reduce distribution losses. These losses increase as the output frequency increases.

2. VENTILATION - The chassis requires good ventilation to adequately cool the internal components. Airflow should allow 240 CFM. The air intake is located on both sides near the front. A minimum clearance of two inches on each side and 12 inches to the rear is required for proper operation.
3.1 CHASSIS PLACEMENT (continued)

When the unit is placed in a 19 inch rack, it must be supported by either chassis slides or full depth angle brackets. The front panel alone will not support the weight of the chassis. Chassis slides are available from Pacific Power Source as a cost option. Call factory service for details.

After the location for the chassis is selected, verify that the input voltage of the power source is correct. Input voltage is stated on the system ID label.

After the input voltage form has been verified as correct, slide the chassis into the rack or set it into its final position. Make input and output connections as stated in paragraphs 3.3 and 3.4, respectively.

If either the Remote Interface (GPIB or RS-232) or External Sense feature is to be used, refer to paragraphs 3.5 and 3.7 for connection

Before activating the 118-ACX output, check that the output voltage is correct to prevent possible damage to any attached equipment.

3.2 OUTPUT RANGE CONFIGURATION

The 118-ACX is a dual-range power source. The output voltage range is selected by the FORM setting selected in the UPC controller. See the UPC Series Operation Manual for setup. The standard output configurations are:

FORM 1: 0 – 150 Vac
FORM 2: 0 – 300 Vac

AMPS TO VOLTS RATIO:
For accurate current meter display, the Amps to Volts Ratio Setting of the UPC is always set to 5 for the Model 118-ACX. Refer to the UPC Series Operation Manual for details.

3.3 INPUT POWER CONNECTION

The 118-ACX Power Source has been designed to accept most standard single-phase input voltage forms. This is accomplished by incorporating an active wide-range power factor correction circuit. Any single-phase input voltage from 100 to 240 Vac ±10% can be applied. No range selection is required.

WARNING

LETHAL VOLTAGE IS PRESENT AT INPUT TERMINALS OF THIS DEVICE.
ALWAYS CONNECT "CHS or GND" TERMINAL TO EARTH POTENTIAL.
FAILURE TO DO SO WILL CREATE A SHOCK HAZARD.
The 118-ACX Power Source is provided with a terminal block for input power connection. This allows hard-wired connection for system applications or attachment of an appropriate input power cord. Refer to Paragraph 2.1.1 for minimum input service requirements for various input voltages and size the input cable wires accordingly.

Refer to the table below for the proper wire color of each connection.

<table>
<thead>
<tr>
<th>Wire Color (USA)</th>
<th>Wire Color (Europe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE (HI)</td>
<td>Black</td>
</tr>
<tr>
<td>NEUTRAL (LO)</td>
<td>White</td>
</tr>
<tr>
<td>GROUND (CHS)</td>
<td>Green</td>
</tr>
</tbody>
</table>

```
NOTE: It is the user's responsibility to meet all local and national electrical codes when installing this equipment. Proper installation requires a power service circuit breaker sized appropriately to protect the facility wiring.
```
3.4 OUTPUT POWER CONNECTION

The 118-ACX provides output connections at both the front and rear of the chassis. The front panel connection is a universal outlet which will accommodate most standard line plugs found throughout the world. Available current at this connector is 10 amps, protected by a circuit breaker located at the rear of the unit. Rear panel output is provided on a terminal block which is rated for the full output current of the 118-ACX. Figure 3.3 illustrates connection of a single-phase load to the 118-ACX rear-panel terminal. Refer to Paragraph 2.1.2 for minimum output service requirements for various output voltages and size the output wires accordingly.

NOTE: It is the user’s responsibility to meet all local and national electrical codes when installing this equipment.

For safe operation, the “CHS” ground terminal should always be connected to the chassis of the load.

Output power should also be referenced to the chassis, unless demanded by a particular application. The output is isolated but insulation specifications require that no more than 150 Vac be present between the output neutral (LINE2 or N) and chassis. For most single-phase applications, a jumper should be attached between LINE2 and CHS.

Refer to Paragraph 3.7 for connection of the External Sense connection, when used.

The 118-ACX Power Source output can be configured for single and split phase voltage forms. Figure 3.4 is a simplified block diagram of the possible output architectures.

The FORM1 (low range, 0-150 Vac) mode of operation is a one vector output form, single-phase only. The power amplifiers are connected in parallel to form one output vector. The load can be attached from LINE1 to LINE2 or LINE1 to N. In this form, LINE2 and Neutral are connected. This output form is capable of 0-150 VAC_{p-p}.

The FORM2 (high range, 0-300 Vac) mode of operation is a two vector output form where the vectors are separated by 180° and equal in amplitude. This output form uses power amplifiers in pairs, one for each vector.

For single phase 0-300 VAC_{p}, connect the load from LINE1 to LINE2. For loads that require three connections (L1-N-L2), commonly referred to as “Split-Phase” power, LINE 1 and LINE 2 are equal in voltage and 180 degrees apart, referenced to Neutral. Loads can be connected from either LINE to Neutral or from LINE1 to LINE2.
3.4 OUTPUT POWER CONNECTION (continued)

FORM1 OUTPUT
SINGLE PHASE, LOW RANGE

FORM2 OUTPUT
SINGLE PHASE, HIGH RANGE
OR
SPLIT PHASE

![Diagram of ACX-Series System Architecture](image)

FIGURE 3.4
ACX-SERIES SYSTEM ARCHITECTURE

3.5 REMOTE INTERFACE

The 118-ACX with a UPC Series programmable controller is supplied with one of two remote interfaces. These are GPIB (General Purpose Interface Bus) or RS-232 Interface. Connection and communication information relative to these interfaces is described in detail in the *UPC Series Operation Manual*.

3.6 AUX I/O INSTALLATION

On the rear panel J5, the AUX I/O (Auxiliary Input/Output) connector, contains synchronizing outputs (digital), external oscillator inputs (analog), and amplitude modulation inputs (AM, analog). These are extremely useful in certain test applications. The use of any of these signals is optional and connection to these points is required only when these features are used.

All signals contained within the AUX I/O connector are low-level (less than ±15 VDC) and are referenced to chassis (earth) ground reference. Refer to the UPC controller operation manual for complete definition of the signals present on the AUX I/O connector.

The AUX I/O connector is a DB-25S connector. A DB-25P connector is required for connection to AUX I/O connector.
SECTION 3 INSTALLATION

3.7 EXTERNAL SENSE CONNECTION

The 118-ACX Power Source includes connections for external sense of the output voltage. This allows measurement of the output voltage at an external sense point. This feature can be completely disabled, so the wiring detailed in this paragraph is optional.

WARNING

LETHAL VOLTAGES ARE PRESENT AT THE OUTPUT TERMINALS OF THIS DEVICE!
WHEN EXTERNAL SENSE IS CONNECTED, THE SAME VOLTAGE APPEARS ON THE SENSE TERMINALS.
REFER OUTPUT CONNECTION TO A QUALIFIED ELECTRICIAN.

Figure 3.7 shows external sense wiring for the 118-ACX. There is very little current flowing through the External Sense Feedback lines. Standard 22 AWG, 600 Volt control wire is recommended for this application. Twisting the External Sense wiring is recommended and, in some cases, can improve performance. In noisy environments, shielding may become necessary to minimize interference. If shielded cable is used, be sure to ground the shield at one end only to prevent the possibility of creating a ground loop.

FIGURE 3.7 EXTERNAL SENSE WIRING
SECTION 4
OPERATION

4 OPERATION

This section describes the operation of a 118-ACX AC Power Source. The procedure described in the following paragraphs is a general procedure and does not detail operation of any specific control functions. Refer to the UPC Series Operation Manual for detailed information regarding the features of the controller.

4.1 FRONT PANEL CONTROLS

The location of the front panel controls and indicators of the 118-ACX Power Source is shown below. A brief description of each is also given. Figure 4.1 is a front view of the 118-ACX. Refer to the UPC Series Operation Manual for information relative to the installed controller.

1. INPUT POWER SWITCH (Circuit Breaker @ 30A)

 Circuit Breaker used as the main input ON/OFF control and protects the power source from drawing excessive input current from the input AC line.

2. OUTPUT POWER SWITCH and INDICATORS

 Switch used to control the output relay of the ACX-Series Power Source. An indicator shows the status of the output. The power source will shutdown for over-temperature or other internal fault. Shutdown is reset when the Output Power Switch is set to OFF and the fault has cleared. Refer to Paragraph 4.5 for details.

FIGURE 4.1 FRONT PANEL CONTROLS
4.2 INITIAL POWER-UP

This paragraph describes the procedure used to power-on the 118-ACX Power Source for the first time. The steps below are the recommended order of operation.

1. For new installations, check input connections (including proper input voltage). Do not connect the load at this time. Also verify that the OUTPUT POWER switch is in the OFF position.

2. Switch the INPUT POWER switch to the ON position. The controller display will light up and begin to present output data.

3. Set the controller for the desired output voltage, frequency, etc. (Refer to the UPC Operation Manual for adjustment of output parameters.)

4. Set the OUTPUT POWER switch of the 118-ACX to the ON/AUTO position and press the UPC OUTPUT ENABLE switch to set it to the ON position.

5. Verify proper voltage, frequency and waveform at the output terminal block. If the output is not correct, set the output to proper values. Refer to the controller manual for details.

6. When the desired output has been verified, turn the system OFF by first setting the OUTPUT POWER SWITCH to the OFF position and then opening the INPUT POWER SWITCH. Connect the load.

7. Re-start the unit beginning at step 2, above. Verify that the system delivers power to the load.

WARNING

LETHAL VOLTAGES ARE PRESENT AT THE INPUT AND OUTPUT TERMINALS OF THIS MACHINE!

CAUTION

DO NOT CONNECT ANY LOADS TO THE OUTPUT OF THE POWER SOURCE UNTIL THE OUTPUT VOLTAGE AND FREQUENCY HAVE BEEN VERIFIED AS CORRECT.

APPLICATION OF IMPROPER VOLTAGE OR FREQUENCY CAN DAMAGE LOADS.
4.3 ROUTINE POWER-UP

After it has been verified that the installation is correct, follow the steps below for routine operation.

1. Set the OUTPUT POWER switch to the OFF position. Switch the INPUT POWER switch to the ON position. The controller will light up and begin to display output data.
2. Set the OUTPUT POWER switch to the ON/AUTO position and press the UPC OUTPUT ENABLE switch to set it to the ON position.

CAUTION

DO NOT CONNECT ANY LOADS TO THE OUTPUT OF THE POWER SOURCE UNTIL THE OUTPUT VOLTAGE AND FREQUENCY HAVE BEEN VERIFIED AS CORRECT. APPLICATION OF IMPROPER VOLTAGE OR FREQUENCY CAN DAMAGE USER LOADS.

4.4 SYSTEM TURN-OFF

The 118-ACX Power Source is turned off by:

1. Set the OUTPUT POWER Switch to the OFF position.
2. Open the INPUT POWER circuit breaker.
SECTION 4 OPERATION

4.5 SYSTEM SHUTDOWN

This paragraph describes the conditions which will cause an automatic system shutdown and the procedure used to reset the ACX-Series Power Source.

4.5.1 SHUTDOWN CONDITIONS

The Output Contactor of the ACX-Series Power Source will be opened automatically when:

1. Excessive temperature is detected. Either the input power circuit or one of the power amplifiers has become too hot. Over-temperature is usually caused by either an overload on the system output or restricted air-flow (air inlets may be blocked, dirty fan filters, or a clogged or non-functioning fan).

2. The Output FORM (UPC controller) has been changed. While the Output Contactor is engaged, any change of FORM, low range to high range or high range to low range, will force the unit to open the output contactor so that the range can be changed safely.

When the Output Contactor has been opened due to one of the above faults, the red SHUTDOWN LED on the front panel of the power source will be lighted. The output contactor will remain open while the SHUTDOWN LED is lighted. This LED will remain lighted until the unit is reset.

If the Output Power Switch is in the ON/AUTO position when the unit is turned on, the SHUTDOWN LED will light. This is normal operation. The LED is turned off simply by placing the Output Power Switch into the OFF position.

4.5.2 RESETTING SHUTDOWN FAULTS

A shutdown fault is reset as follows:

1. Set the OUTPUT POWER Switch to the OFF position. If the unit is controlled through the remote (GPIB or RS-232) port, command the output OFF (:OUTP OFF).

2. Wait for the SHUTDOWN LED to extinguish. This LED will remain lighted until the condition which caused the shutdown to occur has been corrected. In the case of shutdown due to over-temperature this may take some time while the unit cools. The output contactor cannot be engaged until the shutdown fault has been cleared.

3. After the SHUTDOWN LED has been extinguished, the unit will function normally.

NOTE: The SHUTDOWN LED is latched ON when a fault occurs. The OUTPUT POWER Switch or the Output Enable of the UPC MUST be placed in the OFF position before the SHUTDOWN LED will extinguish, even if the original fault no longer exists.
4.6 OUTPUT VOLTAGE FORMS

The 118-ACX is a dual-range power source. The output voltage range is selected by the FORM setting selected in the UPC controller. See the **UPC Series Operation Manual** for setup. The standard output configurations are:

- FORM 1: 0 – 150 Vac
- FORM 2: 0 – 300 Vac

A recommended strategy for selecting the optimum output voltage form is to select the minimum voltage range necessary to drive the load. That will provide the maximum available current and allows the power source to operate more efficiently. This results in less heat being created within the unit.

4.7 AUDIBLE ALERT

An audible alert within the 118-ACX will sound to indicate any of several conditions:

1) When power is applied, it will "beep" 2X indicating normal start-up.

2) If the AutoStart option has been ordered, the unit will "beep" several times indicating normal start-up and activation of the unit output. Power may be present at the output terminals immediately, depending on the active program settings. See the Modification insert for more information.

3) During operation a steady tone may be produced, indicating one of the following operational limits has been exceeded:
 - Input AC voltage is too high or too low; not within the 90-264 Vac specification.
 - Input current has exceeded 28 Arms. This could occur at very low input voltage and high power output combination.
 - Output power demand exceeds the specified 120% overload condition.
SECTION 5
MAINTENANCE

5 MAINTENANCE

This section describes the maintenance of the 118-ACX Power Source.

5.1 MAINTENANCE INTERVAL

Maintenance is required once every six months and consists of performing regular calibration. Refer to Section 6 for details. For critical applications or if system operation is suspect or operating conditions are extreme the calibration interval may be shortened.

It is recommended to check/clean the air intake and exhaust areas and the fans when calibrating, or more often as required by operating conditions.
SECTION 6
CALIBRATION

6 CALIBRATION

This section describes the calibration requirements of the 118-ACX AC Power Source.

6.1 CALIBRATION INTERVAL

The 118-ACX Power Source requires calibration once every six months or after service has been performed to the system.

6.2 TEST EQUIPMENT REQUIREMENTS

The test equipment listed below is required for calibration of the ACX-Series Power Source.

1. Digital Voltmeter: 4½ Digit True-RMS responding 5000 Hz bandwidth, minimum
2. Frequency counter: 5 digit counter, minimum
3. Digital Ammeter: 3½ Digit True-RMS responding 5000 Hz bandwidth, minimum
 (Alternate: Current transformer used in conjunction with the DVM.)
4. Oscilloscope: (Optional but recommended)
5. Load (Resistive): 15 Amps at 150 VAC, 7.5 amps at 300 VAC

6.3 CALIBRATION PROCEDURE

This calibration procedure verifies that system gains for output and metering are set properly and that the system performance, relative to output power capability is intact. Gains in various signal paths within the controller are adjusted by the procedure of Paragraph 6.3.1. Output power capability of the power source is tested by the procedure of Paragraph 6.3.2.
SECTION 6 CALIBRATION

6.3 CALIBRATION PROCEDURE (cont.)

WARNING

THIS EQUIPMENT CONTAINS HIGH ENERGY, LOW IMPEDANCE CIRCUITS!! LETHAL POTENTIALS ARE CONTAINED WITHIN THE CABINET.

CARE MUST BE EXERCISED WHEN SERVICING THIS EQUIPMENT IN ORDER TO PREVENT SERIOUS OPERATOR INJURY OR EQUIPMENT DAMAGE.

VOLTAGE AT THE TERMINALS Responds INSTANTLY WHEN THE OUTPUT IS ACTIVATED.

OBSERVE THE FOLLOWING WHEN SERVICE, MAINTENANCE, OR CALIBRATION ARE REQUIRED:

1) REMOVE ALL JEWELRY FROM HANDS, ARMS AND NECK WHEN SERVICING THIS EQUIPMENT. THIS PREVENTS THE POSSIBILITY OF SHORTING THROUGH THE JEWELRY AND CAUSING BURNS OR ELECTROCUTION OF THE OPERATOR.

2) WEAR SAFETY GLASSES WHEN SERVICING THIS EQUIPMENT TO PREVENT EYE INJURY DUE TO FLYING PARTICLES CAUSED BY ACCIDENTAL SHORT CIRCUIT CONDITIONS.

3) DO NOT REMOVE ANY PANEL OR COVER WITHOUT FIRST REMOVING THE INPUT SERVICE BY OPENING ALL CIRCUIT BREAKERS.

4) SERVICE OTHER THAN EXTERNAL CLEANING SHOULD BE REFERED TO PERSONNEL TRAINED AND AUTHORIZED BY THE FACTORY TO SERVICE THIS EQUIPMENT.

6.3.1 CALIBRATE CONTROLLER

The first step in system calibration is to calibrate the UPC controller as stated in the controller manual. Refer to Section 8 of the UPC Series Operation Manual.

6.3.2 POWER SOURCE LOAD TEST

These tests are used to verify that the power source is able to deliver full rated output power. Additionally, the output metering function of the controller is also checked.

1. Set the Power Source for FORM2 Output, CSC Enabled.

2. Attach a 6A, 2000W load to the rear panel Output Terminal.

3. Set the output for 300 V and close the Output Contactor.

4. Verify that the output voltage remains constant (within load regulation limits) and that the Output metering reads correct values.

5. Open the Output Contactor.

6. Configure for FORM1 Output. Repeat above procedure with a 12A, 2000W load and 150 V.

7. Verify that the output voltage and Power Source meters read properly.
SECTION 7
SERVICE

7 SERVICE

This section describes service of the 118-ACX AC Power Source.

7.1 SERVICE PROCEDURE

The 118-ACX Power Source contains no user serviceable parts. Service is properly accomplished by returning the unit to the factory or authorized service center. Under some circumstances, the factory may authorize the user to perform limited sub-assembly or component changes as deemed allowable by the factory service representative. For this purpose, many sub-assembly and component level Pacific Power Source part numbers have been included here. Part numbers for various components are listed separately for each Model.

When questions regarding operation arise or service is required, call the factory for instructions. Pacific Power Source Corporation maintains a staff of highly trained technicians who are ready to assist. The phone number to call is (714)898-2691.

7.2 SYSTEM LEVEL FACTORY PART NUMBERS

<table>
<thead>
<tr>
<th>MODEL NAME</th>
<th>PART No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL 118-ACX</td>
<td>1.8 kVA AC Power Source 200405-AA</td>
</tr>
</tbody>
</table>

7.3 SUB-ASSEMBLY AND CHASSIS COMPONENT PART NUMBERS

The factory part numbers given in the following list are provided to aid the user in obtaining spare or repair sub-assemblies and components where the factory has given permission, in advance, for the user to perform field repairs on the Power Source.

<table>
<thead>
<tr>
<th>SUB-ASSEMBLY</th>
<th>FACTORY PART No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPC1 Programmable 1φ Controller:</td>
<td>141170</td>
</tr>
<tr>
<td>LCD Display Assembly:</td>
<td>139071</td>
</tr>
<tr>
<td>Power Amplifier Assembly:</td>
<td>200431-AA</td>
</tr>
<tr>
<td>Input PFC Assembly:</td>
<td>200418-AA</td>
</tr>
<tr>
<td>Keyboard Assembly:</td>
<td>200437-AA</td>
</tr>
<tr>
<td>Input Filter Assembly:</td>
<td>200434-AA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>FACTORY PART No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Circuit Breaker:</td>
<td>716094</td>
</tr>
<tr>
<td>Front Panel Handle:</td>
<td>200526-AA</td>
</tr>
<tr>
<td>Output Terminal Block:</td>
<td>705113</td>
</tr>
<tr>
<td>Input Terminal Block:</td>
<td>705113</td>
</tr>
<tr>
<td>Fan:</td>
<td>703200</td>
</tr>
<tr>
<td>Fuse:</td>
<td>712088</td>
</tr>
</tbody>
</table>
SECTION 8

INDEX

A
Airflow ..10, 11
Altitude ...10
Amps to Volts Ratio Setting12
Audible Alert ...21
AUX I/O ..15

B
Bandwidth ..7

C
Caution ...3, 13, 18
Controller
 Manual Controller ...4
 Programmable Controller4, 15
CSC ...4
Current Limit ...8

D
DC Offset ...8

E
External Sense ...16

I
Input Current
 118-ACX ..5
Isolation ..8

O
Output Current ..6
Overload ...6
Over-temperature ..20

P
Pollution Degree ...10
Power Factor ..6, 7

R
Regulation ...7
Remote Interface
 GPIB ...12, 15
 RS-232 ..12, 15

S
Shutdown
 Conditions ...20
 Fault ...10, 20
 Reset ...20
Split Phase ...14

T
THD ...7
Transient Response ...7

V
Ventilation ...11

W
Warning ..2, 3, 11, 12, 14
SECTION 9

MODIFICATIONS AND CHANGE NOTICES

9 MODIFICATIONS AND CHANGE NOTICES

In cases where customer specified modifications have been installed in the equipment, the modifications will be described on the following pages. If present, be sure to notice any special instructions relative to operation and calibration of the system.

Product change notices or manual errata will also be placed in this section.