1652B/1653B Logic Analyzer Programming Reference

01652-40903

December 1989

Christina Samii
1652B/1653B Logic Analyzer Programming Reference

Christina Samii
01652-40903

Christina Samii
December 1989

ME NNV

ProgrammingReference

HP 1652B/HP 1653B Logic Analyzers

HEWLETT
[b/a] PACKARD

@Copyright Hewlett-Packard Company 1989

Manual Number 0165240903 Printed in the U.S.A. December 1989

Printing History

New editions are complete revisions of the manual. Update packages,
which are issued between editions, contain additional and replacement
pages to be merged into the manual by the customer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporated.

A software code may be printed before the date; this indicates the version
level of the software product at the time of the manua or update was
issued. Many product updates and fixes do not require manua changes
and, conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one to one correspondence
between product updates and manual updates.

Edition 1 December 1989 0165240903

List of Effective Pages

The List of Effective Pages gives the data of the current edition and of any
pages changed in updates to that edition. Within the manual, any page
changed since the last edition will have the date the changes were made
printed on the bottom of the page. If an update is incorporated when a
new edition of the manual is printed, the change dates are removed from

the bottom of the pages and the new edition date is listed in Printing
History and on the title page.

Pages Effective Date

All December 1989

Contents

Chapter 1

HP 1652B/1653B
Programming Reference

Introduction to Programming an Instrument

INErOAUCHION ...t e LRt
About ThisManualociiiil s 1-1
Programming Syntaxiiiiiiiiiiiiii o 1-2
Talking to the Instrument ..., [-2
INStIUCtION SYNTAX ..o\t ee e e 12
Output Commandvt it -3
Device Addressoovviiniii i 1-3
INSETUCTIONS Lttt et e .13
Instruction Headercccviiiiiiii e, [-3
White Spaceo vt e 1-4
Instruction Parameters.ccoiiiiiiiiinennan.. .1-4
Header Typescoovieiii i .. 1-4
Combining Commands from the Same Subsystem I-5
Duplicate Keywordscu oo, I-5
QueryUsageooiiiiiiiiiiiiiiiia e ..1.6
Program Header Optionsccieiiiiiiiiennnnnn.. -7
Parameter Syntax Rules ..., [-7
Instruction Terminatorc.viiuiiiiiianinnannn. .19
Selecting Multiple Subsystems ..., .19
Programming an INStrumentcooeueieeenn... I-10
Initialization i [-10
Example Programc..oiiviiiiiiiiiiiee ... 1-11
ProgramOverview I-11
Receiving Information from the Instrument [-11
Response Header Optionsccoviiiiiiininnnn.n 1-12
Response Data FOrmatscooiuiiiinnni... 1-13
String Variables 1-14
NumericBaseccooiiiiiiiiii i 1-15
Numeric Variables ..., I-15
Definite-Length Block Response Data «........ovovvvvnnnnn. .1-16
Multiple QUENESvo i [-17
InStrument SEatusooviiriiriiiiiei e 1-17

Contents « 1

Chapter 2 Programming Over HP-IB
INtroduction ... i W2-1
Interface Capabilities, .2-1
Command and Data Conceptsovvvieiiiiiiiii2-1
AAreSSING ottt e 2-1
Communicating Over the HP-IB Bus (HP 9000 Series 200/300
Controller) ..o .2-2
Local, Remote, and Local Lockout -« - .. v 2-2
BusCommandscc ittt .2-3
Device Clear ..ot e .2-3
Group Execute Trigger (GET)covvviiiiiii i 2-3
Interface Clear (IFC) ... e 2-3
Chapter 3 Programming Over RS-232C
INtroduction ... W31
Interface Operation ...t i .31
CablES « et 32
Minimum Three-Wire Interface with Software Protocol 32
Extended Interface with Hardware Handshake 33
Cable Examplet 3-4
Configuring the Instrument Interface 35
Interface Capabilitiescoiiii i .3-5
Protocol35
DataBitsttt .36
Communicating Over the RS-232C Bus (HP 9000 Series 200/300
Controller) ..o .3-6
Lockout Commandcooinll W37
L]
Chapter 4 Programming and Documentation Conventions
Introduction s i 4-|
Truncation Rule e 4-|
Infinity Representation Vb e 4-2
Sequential and Overlapped Commands 4-2
Response Generationccovvviie i 4-2
Syntax Diagrams ...t 4-2
Notation Conventions and Definitions 4-3
The Command Tree ... i 4-4

Contents «2

HP 1652B/1653B
Programming Reference

Command TYPES .« vt vv ittt i 4-4

TreeTraversal Rules i, .4-4

Examples ... 45
Command Set Organizationc.ooiiiiiieniniinnn... .4-10

SUDSYSIEMS .\ v v o e i e 4-10
Program Examples 411

Chapter 5

|
Chapter 6

HP 1652B/1653B
Programming Reference

Common Commands

Introduction.. 51
ML 53
RS . 5-4
FESR 56
DN 5-8
P C . 59
RS 5-10
FORE 511
L L= T 513
AL .5-15

System Commands

Introduction i 6-1
ARMBnc 64
DA T A 65

Logic Analyzer Block Datacovviiiiiiiiii.n. 6-8

Section Header Descriptionccveiiiieinannn. .6-8
Section Data . ..ot .6-8
Data Preamble Descriptionccoiiiiiieenn. 6-8
Acquisition Data Description, .6-11
Oscilloscope Block Datao oo i 6-18
Oscilloscope Data Sectionccoiiiiiinnn.. 6-18
Section Header Descriptioncccviiiiieeinn.. 6-18
SectionDataccc i ..6-18

Oscilloscope Display Data Section6-19
DO .6-20
ERROT i it e e 6-21
HEADE .. oo e 6-2 2
KEY . e e e e e 6-23
LER . e 6-25
LOCKout ... 6-2 6

Contents = 3

MENU oo i e e .6-28
MESE « i tiitt ittt et e e 6-29
MESR .ot e 6-31
PPOWer ... 6-3 3
PRINt ..o 6- 34
RMODE oottt e 6-35
SETUD ettt s 6-36
ST AR .. 6-38
Y 0) PP 6-39

|

Chapter 7 MMEMory Subsystem

Introduction 7-1

AUToload o T1-4
CATalogo .7-5
COPY it e e .7-6
DOWNIloadc it it 7-7
INITializecc i 7- 8
LOADD .. e 7- 9
LOADD .. o 7-10
PACK o 7-11
PURGE e 7-12
RENGMEt 7-13
STORE ... 7-14
UPLoado i 7-15

|

Chapter 8 DLISt Subsystem

INtroduction..ot 81

15) 5 K S 8-2
COLUMN ... e e et 8-3
LINE.. 85

Contents = 4 HP 1652B/1653B

Programming Reference

Chapter 9 WLISt Subsystem

Introduction . . . S |
WLISt . . e e e e i e 9-2
OSTate . B T Ve e e 93
XSTate . O e e N
OTIMe . v i e < K.
XTIMe . Gl e e R« X
|
Chapter 10 MACHine Subsystem
INEFOUCHION v v ettt e e e e et e e e 10-1
MACHINE ..o i e e e e e e 10-3
ARM o e e e 10-4
ASSIZI . oottt 10-5
AUToscale 10-6
NAME e 10-7
TY PE e e e 10-8
|
Chapter 11 SFORmat Subsystem
INtrodUCtion ... -1
SFORmaAt .. oo e e e - 3
CLOCK oo - 4
CPERiod - 5
LABel ..o - 6
MAST T .ot 11-8
REMOVE oot -9
SLAVE .11-10
THReshold o -11
Chapter 12 STRace Subsystem
INErOUCEION - oo e e e e J12-1
STRaACE ... 12- 4
BRANch .. i 12- 5
FIND .. o e e e 12- 8
PRESIOre 12-10
RANGE .. e .12-12
HP 1652B/1 653B Contents =5

Programming Reference

RESTart12-14
SEQUENCE ... viee e .12-16
ST ORE ittt e e e .12-17
TAG 12-19
TERM e 12-21

|

Chapter 13 SLISt Subsystem

Introduction 2A3-1

SLISt . e 13-5
COLUmMD13-6
DA T A .13-8
LINE 13- 9
MMODeE ... e .13-10
OPATHEIT . oot e L1311
OSEarch13-13
OSTate13-14
OTAG o 13-15
RUNTIl13-16
TAVEIage ...vovviritiiiiiii i .13-18
TMAXIMUM i .13-19
TMINIMUm ..o e e 13- 20
VRUNS .13-21
XOTag ..o 13-2 2
XPATtern ... 13-2 3
XSEarch 1325
XOTate ...ttt e 13- 26
XTAG A13-27

|

Chapter 14 SWAVeform Subsystem

Introduction..14-1

SWAVeform i J14-3
ACCumulate ...ttt . 14-4
DELay ... 14-5
INSert .14- 6
RANGE ... 14-7
REMOVEo e .14-8

Contents «6 HP 1652B/1653B

Programming Reference

Chapter 15 SCHart Subsystem
Introduction15-1
SCHaArtoovii i .. 15-3
ACCumulatecoiiiir i ..15-4
HAXIS .o A58
VAXIS ..o 15- 7
=
Chapter 16 COMPare Subsystem
Introduction16-1
COMPare ... e .16- 3
CMASK .. 16- 4
COPY 16-5
DAT A i i e i et e e 16-6
FIND .. e e 16-8
RANGE ..ottt ittt e et e ettt eanan e 16-9
RUNTI .. e e e e 16-10
. =
Chapter 17 TFORmat Subsystem
INrOdUCEION ... ot e 171
TFORMALo L17-2
LABel ... e W17-3
REMOVE17-5
THResholdccoviiiii it 17-6
I
Chapter 18 TTRace Subsystem
Introduction........... 18-1
TTRace 18-3
AMODe......... i vvvns 18-4
DURation 18-5
EDGE viivenen Ve 18-6
GLITch, C - Ve 18-8
PATTern'vivese i e 1899

HP 1652B/1653B
Programming Reference

Contents « 7

Chapter 19 TWAVeform Subsystem
INtroduction19-1

TWAVeform ...t .19- 5
ACCUMUIEEE oot e e e e 196
15)2)) A 197
INSEIt ..o .19- 8
MMODeE .. i e e .19- 9
[01000)\ (o110 E 19-10
OPATtern e 19-11
OSEarch19-13
OTIME - o e e e .19-14
RANGeE ... e .19-15
REMOVE ..o e e e .19-16
RUNTH . .19-17
SPERIODo .19-19
TAVerage ... 19-20
TMAXIMUM ..o e e e e 19-21
TMINIMUM ... e 19-2 2
VRUNS oo s 19-2 3
XCONION ..ottt e e e i .19-2 4
XOTIME ... e .19- 25
XPATtern .. oo e .19- 26
XSEarch ... e .19- 28
XTIMeE e 19-2 9

|

Chapter 20 SYMBol Subsystem

INtroductiont e .20-1

SYMBOI i .20- 3
BASE .. 20-4
PATTerno ..20-5
RANGE .o ..20-6
REMoOVE20-7
WIDTh20- 8

Contents =8

HP 1652B/1653B
Programming Reference

Chapter 21 SCOPe Subsystem
Introduction 21-1
SCOPE . .ottt e e e e 21-2
AUToscale ... 21- 3
SMODE ... 21-4
]
Chapter 22 CHANnel Subsystem
Introduction 22-1
CHANRnRel i, 22- 3
COUPHNRE ..o it eas 22-4
OFFSet - .22- 5
PROBeE ... o 22- 6
RANGE oottt it it ie et n i nnaneaaanenes 22-7
|
Chapter 23 TRIGger Subsystem
Introduction i 231
The Edge
TriggerMode 2231
The Immediate Trigger Modeccovvvinn... .23-1
TRIGger ... 23-3
LEVEL ... ettt inases 23-4
MODE ... e 235
K] 0) o 23-6
SOURCE ..ot 23-7
|
Chapter 24 ACQuire Subsystem
INtroduction24-1
Acquisition TypeNormal ..., 24-2
Acquisition Type AVErageoiurieeeaiiiii e 24-2
ACQUITE .. o .24- 3
COUNL i e s 24- 4
TY PE 24- 5
HP 1652B/1653B Contents -9

Programming Reference

I
Chapter 25

Chapter 26

Contents « 10

TIMebase Subsystem
INEFOAUCHION o v e e et et e e e e e e e e e e 25-|
TIMebaseot .25 2
DELAY o e e e e .25-3
MODE ..ttt 25-4
RANGE ..ottt e e 25-6
WAVeform Subsystem
INtrodUCEiON 26-1
Waveform
RECOM .ottt ..26-3
Data ACQUISItion TYPES vvvrrr et .26-3
NormalMode i .26- 3
AverageMode 26-3
Format for Data Transfer it .26-4
BYTEFOrmatcoiiiiiiiitniiia e 26-4
WORD Formatccoiiiiiiii i .26-5
ASCH FOrmMAtovitee e s e 26-5
Data CONVEISION ...ttt et e et e et e e .26-6
Conversion from Data Value to Voltage26-6
Conversion from Data ValuetoTime26-6
Conversion from Data Value to Trigger Point26-6
WAVeformo i .26-7
COUNL o 26-8
DAT A L e e 26-9
FORMat .. oo e ..26-10
POINtS26-11
PREAmDbIE26-12
RECord26-13
SOURCE ... e .26-14
TY PE e e e ..26-15
VAL26-16
D € 12 (00 ¢ 111=) 1| (R 26-17
XORIZIN oot ..26-18
XREFerenceccuiiiiiiiiiiiiniiinnnn o 26-19
YINCrement.....ooovni it 26-20
N (0) T R 2621
YREFerencecccoiiiiiiiiiiiiiiinnn... .26-2 2

HP 1652B/1653B
Programming Reference

Chapter 27

MEASure Subsystem

I
Appendix A

HP 1652B/1653B
Programming Reference

INtrodUCLION « oo e et 27-
Frequencyooiiiiiiii i 27-2
PEiOd .. 27-2
Peak-to-Peakooovvrvtt e e 27-2
Positive Pulse Width. ... 272
NegativePulse Widtho i, 27-2
RISEIMIE - vttt e ettt e e 27-2
Falltimeoooin .27- 2
Preshoot and Overshootcccoiiiiiiiinnnnnnns 27-2
Preshoot . ..o e 27-2
OVErShOOt . 27- 2

MEASUIE i 27- 4
N 27-5
FALLTIME ... 27- 6
FREQuencyccoiiiiiiiiiiiiiiinaanns 27- 7
NWIDth 27-8
OVERShOOt ... 279
PERiOd27-10
PRESHOOlo .27-11
PWIDEh - oot 2712
RISETIME ... 27-13
SOURCE ...ttt 27-14
VAMPIlitude i i e e it 27-15
VBASE ... 27-16
VM AX 27-17
VMIN 27-18
VPP .27-19
VTOP .27-.

Message Communication and System Functions

Introduction JA- 1

ProtocCols. . o A- 2
Functional Elementsccoiiiiiiiiiiiiiiiiiaannn. A-2
Protocol OVErVIEW A-3
Protocol Operationc.c.oviiiiiii i A-3
Protocol EXCEPtiONS A-4

Syntax Diagramsvvit e A-S

Contents = 11

Syntax Overview
Device Listening Syntax
Device Talking Syntax

Common Commands................

Appendix B Status Reporting

INtroduCtion B-l
Event StatusRegister ...t B-3
Service Request Enable Register B-3
Bit Definitionst B-3
KeyFeatures B-4
Serial Poll B-6
Using Seria Poll (HP-IB)o B-6
Parallel Poll B-8
Polling HP-IBDeVICeSoovviririninianianananns B-10
Configuring Parallel Poll Responses B-10
Conducting a Parallel Poll B-11
Disabling Parallel Poll Responsesc.cccovus. B-11
HP-IBCOMMANdS c.viiiiiiiiiiiiiiiiiiiiiiiinnns B-12
=
Appendix C Error Messages
Device Dependent Errors e, C-l
Command BITOrS - -« v vietiit ittt C2
Execution EIMOrs C3
Internal Errorst C-4
QueryErrors C5
]
Index

Contents - 12

HP 1652B/16538
Programming Reference

Introduction to 1
Programming an Instrument
__|

Introduction This chapter introduces you to the basics of remote programming. The
programming instructions explained in this book conform to the

IEEE 488.2 Standard Digital Interface for Programmable
Instrumentation. These programming instructions provide a means of
remotely controlling the HP 1652B/53B. There are three general
categories of use. You can:

1 Set up the instrument and start measurements
1 Retrieve setup information and measurement results
1 Send measurement data to the instrument

Theinstructions listed in this manual give you access to the measurements
and front panel features of the HP 1652B/53B. The complexity of your
programs and the tasks they accomplish are limited only by your
imagination. This programming reference is designed to provide a
concise description of each instruction.

|
About This This manual is organized in 27 chapters. Chapter 1 is divided into two
Manual sections. The first section (pages 2 through 9) concentrates on program

syntax, and the second section (pages 10 through 17) discusses
programming an instrument. Read either chapter 2, “Programming Over
HP-1B,” or chapter 3, "Programming Over RS-232C” for information
concerning the physical connection between the HP 1652B/53B and your
controller. Chapter 4, “Programming and Documentation Conventions,”
gives an overview of all instructions and also explains the notation
conventions used in our syntax definitions and examples. The remaining
chapters 5 through 27 are used to explain each group of instructions.

HP 1652B/1653B Introduction to Programming an Instrument
Programming Reference [-1

Programming
Syntax

Talking to the
Instrument

Instruction Syntax

In general, computers acting as controllers communicate with the
instrument by sending and receiving messages over a remote interface,
such as HP-IB or RS-232C. Ingtructions for programming the HP
1652B/53B will normally appear as ASCII character strings embedded
inside the output statements of a “host” language available on your
controller. The host language's input statements are used to read in
responses from the HP 1652B/53B.

For example, HP 9000 Series 200/300 BASIC uses the OUTPUT

statement for sending commands and queries to the HP 1652B/53B. After
a query is sent, the response is usualy read in using the ENTER

statement. All programming examples in this manua are presented in
BASIC. The following BASIC statement sends a command which causes
the HP 1652B/53B's machine 1 to be a state analyzer:

OUTPUT XXX:":MACHINE1:TYPE STATE" <terminator>

Each part of the above statement is explained in the following pages.

To program the instrument remotely, you must have an understanding of
the command format and structure expected by the instrument. The IEEE
488.2 syntax rules govern how individual elements such as headers,
separators, parameters and terminators may be grouped together to form
complete ingtructions. Syntax definitions are aso given to show how
query responses will be formatted. Fiie I-I shows the main syntactical
parts of a typical program statement.

INSTRUCTION

OQUTPWT XXX ;" :SYSTEM:MENU LRISPLAY, 2’

OUTPUT COMMAND
DEVICE ADDRESS
INSTRUCTION HEADER
WHITE SPACE
INSTRUCTION ~ PARAMETERS

Figure I-l. Program Message Syntax

Introduction to Programming an Instrument HP 1652B/1653B

[-2

Progmmming Reference

Output Command

Device Address

Instructions

instruction Header

HP 1652B/1653B
Programming Reference

The output command is entirely dependant on the language you choose to
use. Throughout this manual HP 9000 Series 2007300 BASIC 4.0 is used in
the programming examples. People using ancther language will need to
find the equivalents of BASIC commands like OUTPUT, ENTER and
CLEAR in order to convert the examples. The instructions for the

HP 1652B/53B are always shown between the double-quotes.

The location where the device address must be specified is also dependent
on the host language which you are using. In some languages, this could
be specified outside the output command. In BASIC, this is aways
specified after the keyword OUTPUT. The examples in this manual use a
generic address of XXX. When writing programs, the number you use
will depend on the cable you use in addition to the actual address. If you
are using an HP-IB, see chapter 2. RS-232C users should refer to

chapter 3, “Programming Over RS-232C."

Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host language, such as BASIC, Pascal or
C. The only time a parameter is not meant to be expressed as a string is
when the ingtruction’s syntax definition specifies <block data > . There
are only five ingtructions which use block data.

Instructions are composed of two main parts: The header, which specifies
the command or query to be sent; and the parameters, which provide
additional data needed to clarify the meaning of the instruction.

The instruction header is one or more keywords separated by colons (:).
The command tree in figure 4-I illustrates how al the keywords can be
joined together to form a complete header (see chapter 4, “Programming
and Documentation Conventions”).

The example in figure I-| shows a command. Queries are indicated by
adding a question mark (?) to the end of the header. Many ingtructions
can be used as either commands or queries, depending on whether or not
you have included the question mark. The command and query forms of
an ingtruction usualy have different parameters. Many queries do not use
any parameters.

When you look up a query in this programming reference, you'll fmd a
paragraph labeled “Returned Format” under the one labeled “Query
Syntax.” The syntax definition by “Returned format” will always show the
instruction header in square brackets, like [:SYSTem:MENU), What this

Introduction to Programming an Instrument
1-3

really means is that the text between the brackets is optiona, but it's dso a
quick way to see what the header looks like.

White Space White space is used to separate the instruction header from the
instruction parameters. If the instruction does not use any parameters,
you do not need to include any white space. White space is defined as one
or more spaces. ASCII defines a space to be character 32 (in decimal).
Tabs can be used only if your controller first converts them to space
characters before sending the string to the instrument.

Instruction Parameters Instruction parameters are used to clarify the meaning of the command or
query. They provide necessary data, such as whether a function should be
on or off, which waveform is to be displayed, or which pattern is to be
looked for. Each instruction’s syntax definition shows the parameters, as
well as the values they accept. This chapter's “Parameter Syntax Rules’
section has dl of the generd rules about acceptable values.

When there is more than one parameter they are separated by
commas (,). You are alowed to add spaces around the commas.

Header Types There are three types of headers. Simple Command; Compound
Command; and Common Command.

Simple Command Header. Simple command headers contain a single
keyword. START and STOP are examples of simple command headers
typicaly used in this instrument. The syntax is:

<function > c terminator >

When parameters (indicated by < data >) must be included with the
simple command header (for example, :RMODE SINGLE) the syntax is:

< function > <white space > <data > <terminator >

Compound Command Header. Compound command headers are a
combination of two or more program keywords. The first keyword selects
the subsystem, and the last keyword selects the function within that
subsystem. Sometimes you may need to list more than one subsystem
before being alowed to specify the function. The keywords within the
compound header are separated by colons. For example:

To execute a single function within a subsystem, use the following:

Introduction to Progmmming an Instrument HP 1652B/1653B
14 Programming Reference

Combining
Commands from the
Same Subsystem

Duplicate Keywords

HP 1652B/1653B
Programming Reference

. < subsystem > : ¢ function > <white space > <data > <terminator >

(For example :SYSTEM:LONGFORM ON)

To traverse down a level of a subsystem to execute a subsystem within that
subsystem:

. <subsystem >: < subsystem >: <function > < white 8pace > « data > <terminator >

(For example :MMEMORY:LOAD:CONFIG “FILE__")

Common Command Header. Common command headers control IEEE
488.2 functions within the instrument (such as clear status, etc.). Their
syntax is:

*< command header > < terminator >
No space or separator is alowed between the asterisk and the command
header. *CLS is an example of a common command header.

To execute more than one function within the same subsystem a
semi-colon (;) is used to separate the functions:

: <subsystem > : <function > <white space > <data>;
< function > < white space > < data > < terminator >

(For example :SYSTEM:LONGFORM ON;HEADER ON)

Identical function keywords can be used for more than one subsystem.
For example, the function keyword MMODE may be used to specify the
marker mode in the subsystem for state listing or the timing waveforms:

:SLIST:MMODE PATTERN - Sgts the marker mode to pattern in the state
ligting.

;TWAVEFORM:MMODE T - Sets the marker mode to time in the timing
waveforms.

SLIST and TWAVEFORM are subsystem selectors and determine which
marker mode is being modified.

Introduction to Programming an Instrument
I-5

Query Usage Command headers immediately followed by a question mark (?) are
queries. After recelving a query, the instrument interrogates the
requested function and places the response in its output queue. The
output message remains in the queue until it is read or another command
is issued. When read, the message is transmitted across the bus to the
designated listener (typicdly a controller). For example, the logic
analyzer query :MACHINE1L:TWAVEFORM:RANGE? places the
current seconds per division full scale range for machine 1 in the output
queue. In BASIC, the input statement

ENTER XXX; Range
passes the vaue across the bus to the controller and places it in the
variahle Range.

Query commands are used to find out how the instrument is currently
configured. They are also used to get results of measurements made by
the instrument. For example, the command

:MACHINEL:TWAVEFORM:XOTIME?

ingtructs the instrument to place the X to 0 time in the output queue.

@ The output queue must be read before the next program message is sent.

Note For example, when you send the query :TWAVEFORM:XOTIME? you
must follow that with an input statement. In BASIC, this is usually done
with an ENTER statement.

Sending another command before reading the result of the query will
cause the output buffer to be cleared and the current response to be lost.
This will also generate a “QUERY UNTERMINATED” error in the
error queue.

Introduction to Programming an Instrument HP 1652B/1653B
1-6 Programming Reference

Program Header Program headers can be sent using any combination of uppercase or
Options lowercase ASCII characters. Instrument responses, however, are aways
returned in uppercase.

Both program command and query headers may be sent in either
longform (complete spelling), shortform (abbreviated spelling), or any
combination of longform and shortform. Either of the following examples
turns on the headers and longform.

OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON" + longform
OUTPUT XXX;™ :SYST:HEAO ON;LONG ON" . shortform

Programs written in longform are easily read and are almost
self-documenting. The shortform syntax conserves the amount of
controller memory needed for program storage and reduces the amount
of 1/0 activity.

ﬁ The rules for shortform syntax are shown in chapter 4 “Programming and
Note Documentation Conventions.”

Parameter Syntax There are three main types of data which are used in parameters. They
Rules are numeric, string, and keyword. A fourth type, block data, is used only
for five ingtructions; the DATA and SETup ingtructions in the SYSTem
subsystem (see chapter 6); the CATalog, UPLoad, and DOWNIoad
ingtructions in the MMEMory subsystem (see chapter 7). These syntax
rules also show how data may be formatted when sent back from the
HP 1652B/53B as a response.

The parameter list always follows the instruction header and is separated
from it by white space. When more than one parameter is used, they are
separated by commas. You are alowed to include one or more spaces
around the commas, but it is not mandatory.

HP 1652B/1653B Introduction to Programming an Instrument
Programming Reference 1-7

Numeric data. For numeric data, you have the option of using
exponential notation or using suffixes to indicate which unit is being used.
Tables A-l and A-2 in appendix A list al available suffixes. Do not
combine an exponent with a unit. The following numbers are all equal:

28 = (28E2 = 280e-1 = 28000m = 0.028K.

The base of a number is shown with a prefix. The available bases are
binary (#B), octal (#Q), hexadecimal (#H) and decimal (default). For
example, #B11100 = #Q34 = #H1C = 28. You may not specify a
base in conjunction with either exponents or unit suffixes. Additionally,
negative numbers must be expressed in decimal.

When a syntax definition specifies that a number is an integer, that means
that the number should be whole. Any fractional part would be ignored,
truncating the number. Numeric parameters which accept fractional
values are called real numbers.

All numbers are expected to be strings of ASCII characters. Thus, when
sending the number 9, you would send a byte representing the ASCII code
for the character “9” (which is 57, or 00111001 in binary). A three-digit
number like 102 would take up three bytes (ASCII codes 49, 48 and 50).
Thisistaken care of automatically when you include the entire instruction
in astring.

String data. String data may be delimited with either single (‘) or double
(") quotes. String parameters representing labels are case-sensitive. For
instance, the labels “Bus A" and “bus a” are unique and should not be used
indiscriminately. Also pay attention to the presence of spaces, since they
act aslegal charactersjust like any other. So thelabels“In” and" In" are
also two separate labels.

Keyword data. In many cases a parameter must be a keyword. The
available keywords are always included with the instruction’s syntax
definition. When sending commands, either the longform or shortform (if
one exists) may be used. Upper-case and lower-case letters may be mixed
freely. When receiving responses, upper-case letters will be used
exclusively. The use of longform or shortform in a response depends on
the setting you last specified via the SY STem:LONGform command (see
chapter 6).

Introduction to Programming an Instrument HP 1652B/1653B
1-8 Progremming Reference

Instruction Terminator

i
Note %

Selecting Multiple
Subsystems

Note

HP 1652B/1653B
Programming Reference

An instruction is executed after the instruction terminator is received.
The terminator is the NL (New Line) character. The NL character is an
ASCII linefeed character (decima 10).

The NL (New Line) terminator has the same function as an EOS (End Of
String) and EOT (End Of Text) terminator.

Y ou can send multiple program commands and program queries for
different subsystems on the same line by separating each command with a
semicolon. The colon following the semicolon enables you to enter anew
subsystem. For example:

<instruction header > <data >;: c instruction header > <data > <terminator >

:MACHINE1:ASSIGN2;:SYSTEM:HEADERS ON

Multiple commands may be any combination of simple, compound and
common commands.

Introduction to Programming an Instrument
1-9

-
Programming
an Instrument

Initialization ~ To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. BASIC provides a
CLEAR command which clears the interface buffer. If you're using
HP-IB, CLEAR will aso reset the HP 1652B/53B’s parser. The parser is
the program which reads in the instructions which you send it.

After clearing the interface, load a predefmed configuration file from the
disk to preset the instrument to a known state. For example:

OUTPUT XXX;' :MMEMORY:LOAD:CONFIG "DEFAULT-""
This BASIC statement would load the configuration file “DEFAULT-"

(if it exists) into the HP 1652B/53B. Refer to the chapter "MMEMory
Subsystem” for more information on the LOAD command.

m' Refer to your controller manual and programming language reference
Not J manua for information on initidizing the interface.

Introduction to Programming an Instrument HP 1652B/1653B
[-10 Programming Reference

Example Program This program demonstrates the basic command structure used to program

the HP 1652B/53B.

10 CLEAR XXX !Initialize instrument interface
20 OUTPUT XXX;" :SYSTEM:HEADER ON" tTurn headers on
30 OUTPUT XXX; ":SYSTEM:LONGFORM ON" {Turn longfonn on
40 OUTPUT XXX;" :MMEM:LOAD:CONFIG “TEST-E*" ILoad configuration file
50 OUTPUT XXX;™:MENU FORMAT,1" tSelect Format menu for machine 1
60 OUTPUT XXX;':RMODE SINGLE" 1Select run mode
70 OUTPUT XXX ;™ :START" !Run the measurement

Program Overview Line 10 initidizes the instrument interface to a known state
Lines 20 and 30 turn the headers and longform on.
Line 40 loads the configuration file “TEST E" from the disc drive.
Line 50 displays the Format menu for machine 1.
Lines 60 and 70 tell the analyzer to run the measurement configured by
the file “TEST-E” one time.

Receiving Information After receiving a query (command header followed by a question mark),
from the Instrument the instrument interrogates the requested function and places the answer

in its output queue. The answer remains in the output queue wuntit it is
read or another command is issued. When read, the message is
transmitted across the bus to the designated listener (typicaly a
controller). The input statement for receiving a response message from
an instrument’s output queue typicaly has two parameters;the device
address and a format specification for handling the response message.
For example, to read the result of the query command
:SYSTEM:LONGFORM? you could execute the BASIC statement:

ENTER XXX Setting

where XXX represents the address of your device. This would enter the
current setting for the longform command in the numeric variable Setting.

HP 1652B/1653B Introduction to Programming an Instrument
Progmmming Reference 1-11

Note #

Response Header
Options

All results for queries sent in a program message must be read before
another program message is sent. For example, when you send the query
:MACHINE1:ASSIGN?, you must follow that query with an input
statement. In BASIC, this is usualy done with an ENTER statement.

The format specification for handling the response messages is dependent
on both the controller and the programming language.

The format of the returned ASCII string depends on the current settings
of the SYSTEM HEADER and LONGFORM commands. The general
format is:

< instruction header > <space > <data > < terminator >

The header identifies the data that follows (the parameters) and is
controlled by issuing a :SYSTEM:HEADER ON/OFF command. If the
state of the header command is OFF, only the data is returned by the

query.

The format of the header is controlled by the :SYSTEM:LONGFORM
ON/OFF command. If longform is OFF, the header will be in its
shortform and the header will vary in length depending on the particular

query. The separator between the header and the data always consists of
one space.

The following examples show some possible responses for a
:MACHINE1:SFORMAT:THRESHOLD2? query:

1 with HEADER OFF:

<data> <terminator>

1 with HEADER ON and LONGFORM QFF:
‘MACH1:SFOR:THR2 < space > <data > <terminator >

1 with HEADER ON and LONGFORM ON:
:MACHINE1:SFORMAT:THRESHOLD2 <«space> <data> <terminator>

Introduction to Programming an Instrument HP 1652B/1653B

1-12

Programming Reference

A command or query may be sent in either longform or shortform, or in

Note 3 any combination of longform and shortform. The HEADER and
LONGFORM commands only control the format of the returned data
and have no effect on the way commands are sent.

Refer to the chapter “System Commands’ for information on turning the
HEADER and LONGFORM commands on and off.

Response Data Both numbers and strings are returned as a series of ASCII characters, as
Formats described in the following sections. Keywords in the data are returned in
the same format as the header, as specified by the LONGform command.

Like the headers, the keywords will always be in upper-case.

The following are possible responses to the "MACHINEL: TFORMAT:
LAB? ‘ADDR’ " query.

MACHINE1: TFORMAT:LABEL "ADDR *,19,POSITIVE < terminator > (Header on;
Longform on)

MACH1:TFOR:LAB “ADDR *",19,POS <terminator > (Header on; Longform off)
“ADDR *,19,POSITIVE < terminator > (Header off; Longform on)

“ADDR *,19,POS < terminator > (Header off; Longform off)

@ Refer to the individual commands in this manual for information on the
Note format (alpha or numeric) of the data returned from each query.

HP 1852B/1653B Introduction to Programming an Instrument
Programming Reference 1-13

String Variables ~ Since there are so many ways to code numbers, the HP 1652B/53B
handles almost all dataas ASCII strings. Depending on your host
language, you may be able to use other types when reading in responses.

Sometimes it is helpful to use string variables in place of constants to send
instructions to the HP 1652B/53B. The example below combines variables
and constantsin order to make it easier to switch from MACHINE1 to
MACHINE2. In BASIC, the & operator is used for string concatenation.

10 LET Machine$ = ":MACHINE2" !Send all instructions to machine 2

20 OUTPUT XXX; Machine$ & ":TYPE STATE" {Make machine a state analyzer
30 ! Assign all labels to be positive

40 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL *CHAN 1°. POS"

50 OUTPUT XXX; Machine$ & *:SFORMAT:LABEL "CHAN 2. POS"

60 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL -ouT®, POS"

99 END

If you want to observe the headers for queries, you must bring the
returned data into a string variable. Reading queries into string variables
requires little attention to formatting. For example:

ENTER XXX;Result$

places the output of the query in the string variable Result%.

% In the language used for this book (HP BASIC 4.0), string variables are
Note case sensitive and must be expressed exactly the same each time they are
used.

The output of the instrument may be numeric or character data
depending on what is queried. Refer to the specific commands for the
formats and types of data returned from queries.

Introduction to Programming an Instrument HP 1652B/1653B
I-14 Programming Reference

Numeric Base

Numeric Variables

HP 1652B/1653B
Programming Reference

The following example shows logic analyzer data beli returned to a
string variable with headers off:

10 OUTPUT XXX;™ :SYSTEM:HEAOER OFF"
20 DIM Rang$[30]

30 OUTPUT XXX;':MACHINEL: TWAVEFORM:RANGE?"
40 ENTER XXX;Rang$

50 PRINT Rang$

60 END

After running this program, the controller displays:
+ 1.00000E-05

Most numeric data will be returned in the same base as shown on screen.
When the prefix #B precedes the returned data, the value is in the bii
base. Likewise, #Q is the octa base and #H is the hexadecima base. If
no prefix precedes the returned numeric data, then the value is in the
decimal base.

If your host language can convert from ASCII to a numeric format, then
you can use numeric variables. Turning off the response headers will help
you avoid accidently trying to convert the header into a number.

The following example shows logic analyzer data being returned to a
numeric variable.

10 OUTPUT XXX;":SYSTEM:HEADER OFF"

20 OUTPUT XXX;": MACHINEL: TWAVEFORM: RANGE?"
30 ENTER XXX;Rang

40 PRINT Rang

50 END

This time the format of the number (such as whether or not exponentia
notation is used) is dependant upon your host language. In BASIC, the
output would look like:

1E-5

Introduction to Programming an Instrument
1-15

Definite-Length Block Definite-length block response data alows any type of device-dependent
Response Data data to be transmitted over the system interface as a series of 8-bit binary
data bytes. This is particularly useful for sending large quantities of data
or 8-bit extended ASCII codes. The syntax is a pound sign (#) followed
by a non-zero digit representing the number of digits in the decima
integer. After the non-zero digit is the decima integer that states the
number of 8-hit data bytes being sent. This is followed by the actual data

For example, for transmitting 80 bytes of data, the syntax would be:

NUMBER OF DIGITS
THAT FOLLOW

ACTUAL DATA

et e

#80000008BR<eighty bytes of data><terminator>
[Y

NUMBER OF BYTES
TO BE TRANSMITTED 16500/BL22

Figure 1-2. Definite-length Block Response Data

The "8" states the number of digits that follow, and "00000080" states the
number of bytes to be transmitted.

Not % Indefinite-length block data is not supported on the HP1652B/53B.
ote

Introduction to Progmmming an Instrument HP 1652B/1653B
1-16 Progmmming Reference

Multiple Queries Y ou can send multiple queries to the instrument within a single program
message, but you must also read them back within a single program
message. This can be accomplished by either reading them back into a
string variable or into multiple numeric variables. For example, you could
read the result of the query :SYSTEM:HEADER?,LONGFORM? into
the string variable Results$ with the command:

ENTER XXX: Results$

When you read the result of multiple queriesinto string variables, each
response is separated by a semicolon. For example, the response of the
query :SYSTEM:HEADER?LONGFORM? with HEADER and
LONGFORM on would be:

:SYSTEM:HEADER 1;:SYSTEM:LONGFORM 1

If you do not need to see the headers when the numeric values are
returned, then you could use following program message to read the query
:SYSTEM:HEADERS?,LONGFORM? into multiple numeric variables:

ENTER XXX; Resultl, Result2

g When you are receiving numeric datainto numeric variables, the headers
Note should be turned off. Otherwise the headers may cause misinterpretation
of returned data.

Instrument Status Status registers track the current status of the instrument. By checking the
instrument status, you can find out whether an operation has been
completed, whether the instrument is receiving triggers, and more.
Appendix B, “Status Reporting,” explains how to check the status of the
instrument.

HP 1652B/1653B Introduction to Programming an Instrument
Programming Reference 1-17

Programming

Over HP-IB 2

Introduction

Interface
Capabilities
|

Command and
Data Concepts

Addressing

HP 1652B/1653B
Programming Reference

This section describes the interface functions and some general concepts
of the HP-IB. In general, these functions are defined by |EEE 488.1
(HP-1B bus standard). They deal with general bus management issues, as
well as messages which can be sent over the bus as bus commands.

The interface capabilities of the HP 1652B/53B, as defined by IEEE 488.1
are SH1, AH1, T5, TEO, L3, LEO, SR1, RL1, PP1, DC1, DT1, CO, and E2.

The HP-1B has two modes of operation: command mode and data mode.
The busisin command mode when the ATN lineis true. The command
mode is used to send talk and listen addresses and various bus commands,
such as a group execute trigger (GET). The busisin the data mode when
the ATN lineisfalse. The datamodeis used to convey device-dependent
messages across the bus. These device-dependent messages include all of
the instrument commands and responses found in chapters 5 through 27
of this manual.

By using the front-panel I/Q and SELECT keys, the HP-IB interface can
be placed in either talk only mode “Printer connected to HP-I1B” or
addressed talk/listen mode “ Controller connected to HP-IB” (see "I/O
Port Configuration” in Chapter 5 of the HP 1652BIHP 1653B Front-Panel
Reference manual Talk only mode must be used when you want the
instrument to talk directly to a printer without the aid of a controller.
Addressed talk/listen mode is used when the instrument will operatein
conjunction with a controller. When the instrument is in the addressed
talk/listen mode, the following is true:

1 Each device on the HP-1B resides at a particular address ranging
from O to 30.

1 Theactive controller specifies which devices will talk, and which
will listen.

1 Aninstrument, therefore, may be talk addressed, listen addressed,
or unaddressed by the controller.

Programming Over HP-IB
2-1

If the controller addresses the instrument to talk, it will remain configured
to talk until it receives an interface clear message (IFC), another
instrument’s talk address (OTA), its own listen address (MIA), or a
universal untalk (UNT) command.

If the controller addresses the instrument to listen, it will remain

configured to listen until it receives an interface clear message (I1FC) its

own talk address (MTA), or a universa unlisten (UNL) command.
|

Communicatin 0 Since HP-IB can address multiple devices through the same interface
Over the HP-IB card, the device address passed with the program message must include

not only the correct instrument address, but also the correct interface
Bus (HP 9000 Lo,
Series 200/300 Interface Select Code (Selects Interface). Each interface card has its own
Controller) ()

interface select code. This code is used by the controller to direct

commands and communications to the proper interface. The default is
always "7" for HP-IB controllers.

Instrument Address (Selects Instrument). Each instrument on the
HP-1B port must have a unique instrument address between decimal 0
and 30. The device address passed with the program message must
include not only the correct instrument address, but also the correct
interface select code.

DEVICE ADDRESS = (Interface Select Code) X 100 + (Instrument Address)

For example, if the instrument address for the HP 1652B/53B is 4 and the
interface select code is 7, when the program message i s passed, the
routine performs its function on the instrument at device address 704.

I
Local, Remote, The local, remote, and remote with local lockout modes may be used for

and Local various degrees of front-panel control while a program is running. The
instrument will accept and execute bus commands while in local mode,

Lockout and the front panel will also be entirely active. If the HP1652B/53B isin
remote mode, the instrument will go from remote to local with any front
panel activity. In remote with local lockout mode, all controls (except the
power switch) are entirely locked out. Local control can only be restored
by the controller.

Programming Over HP-IB HP 1652B/1653B

2-2 Programming Reference

% Cycling the power will also restore local control, but thiswill also reset
Note certain HP-IB states.

The instrument is placed in remote mode by setting the REN (Remote
Enable) bus control line true, and then addressing the instrument to
listen. The instrument can be placed in local lockout mode by sending the
local lockout (LLO) command (see SY STem:LOCKout in chapter 6).
The instrument can be returned to local mode by either setting the REN
line false, or sending the instrument the go to local (GTL) command.
|

Bus Commands The following commands are IEEE 488.1 bus commands (ATN true).
|EEE 488.2 defmes many of the actions which are taken when these
commands are received by an instrument.

Device Clear The device clear (DCL) or selected device clear (SDC) commands clear
the input and output buffers, reset the parser, clear any pending
commands, and clear the Request-OPC flag.

Group Execute The group execute trigger command will cause the same action as the
Trigger (GET) START command for Group Run: the instrument will acquire data for
the active waveform and listing display(s),

Interface Clear (IFC) Thiscommand halts all bus activity. Thisincludes unaddressing all
listeners and the talker, disabling serial poll on all devices, and returning
control to the system controller.

HP 16528/1 6538 Programming Over HP-IB
Programming Reference 2-3

Programming

Over RS-232C 3

Introduction

Interface
Operation

HP 1652B/1653B
Programming Reference

This section describes the interface functions and some general concepts
of the RS-232C. The RS-232C interface on this instrument is
Hewlett-Packard’s implementation of EIA Recommended Standard
RS-232C, “Interface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Binary Data Interchange.”
With thisinterface, datais sent one bit at atime and characters are not
synchronized with preceding or subsequent data characters. Each
character is sent as a complete entity without relationship to other events.

The HP 1652B/53B can be programmed with a controller over RS-232C
using either aminimum three-wire or extended hardwire interface. The
operation and exact connections for these interfaces are described in
more detail in the following sections. When you are programming an

HP 1652B/53B over RS-232C with a controller, you are normally
operating directly between two DTE (Data Terminal Equipment) devices
as compared to operating between a DTE device and a DCE (Data
Communications Equipment) device.

When operating directly between two DTE devices, certain
considerations must be taken into account. For three-wire operation,
XON/XOFF must be used to handle protocol between the devices. For
extended hardwire operation, protocol may be handled either with
XON/XOFF or by manipulating the CTS and RTS lines of the RS-232C
link. For both three-wire and extended hardwire operation, the DCD and
DSR inputs to the HP 1652B/53B must remain high for proper operation.

With extended hardwire operation, a high on the CTS input allows the HP
1652B/53B to send data and alow on this line disables the HP 1652B/53B
data transmission. Likewise, ahigh on the RTS line allows the controller
to send data and alow on thisline signals arequest for the controller to
disable data transmission. Since three-wire operation has no control over
the CTS input, internal pull-up resistorsin the HP 1652B/53B assure that
this line remains high for proper three-wire operation.

Programming Over RS-232C
3-1

Cables Selecting a cable for the RS-232C interface is dependent on your specific
application. The following paragraphs describe which lines of the
HP 1652B/53B are used to control the operation of the RS-232C rdative
to the HP 1652B/53B. To locate the proper cable for your application,
refer to the reference manua for your controller. This manual should
address the exact method your controller uses to operate over the
RS-232C bus.
]
Minimum With a three-wire interface, the software (as compared to interface
Three-Wire hardware) controls the data flow between the HP 1652B/53B and the
. controller. This provides a much simpler connection between devices
Interface with since you can ignore hardware handshake requirements. The
Software HP 1652B/53B uses the following connections on its RS-232C interface for
Protocol three-wire - communication:

Note .ﬁ

1 Pin 7 SGND (Signd Ground)
1 Pin 2 TD (Transmit Data from HP 1652B/53B)
1 Pin 3 RD (Receive Data into HP 1652B/53B)

The TD (Transmit Datd) line from the HP 1652B/53B must connect to the
RD (Receive Data) line on the controller.’Likewise, the RD line from the
HP 1652B/53B must connect to the TD line on the controller. Interna
pull-up resistors in the HP 1652B/53B assure the DCD, DSR, and CTS
lines remain high when you are using a three-wire interface.

The three-wire interface provides no hardware means to control data flow
between the controller and the HP 1652B/53B. XON/OFF protocol is the
only means to control this data flow.

Programming Over RS-232C HP 1652B/1653B

3-2

Programming Reference

Extended With the extended interface, both the software and the hardware can
Interface with control the data flow between the HP 1652B/53B and the controller. This

alows you to have more control of data flow between devices. The
Hardware HP 1652B/53B uses the following connections on its RS-232C interface for
Handshake extended interface communication:

1 Pin 7 SGND (Signd Ground)
1 Pm 2 TD (Transmit Data from HP 1652B/53B)
1 Pin 3 RD (Receive Data into HP 1652B/53B)

The additiona lines you use depends on your controller’s implementation
of the extended hardwire interface.

1 Pin 4 RTS (Request To Send) is an output from the
HP 1652B/53B which can be used to control incoming data flow.

1 Pin5CTS (Clear To Send) is an input to the HP 1652B/53B
which controls data flow from the HP 1652B/43B.

1 Pm 6 DSR (Data Set Ready) is an input to the HP 1652B/53B
which controls data flow from the HP 1652B/53B within two bytes.

1 Pin 8 DCD (Data Carrier Detect) is an input to the HP
1652B/53B which controls data flow from the HP 1652B/53B within
two bytes.

1 Pin 20 DTR (Data Termina Ready) is an output from the
HP 1652B/53B which is enabled as long as the HP 1652B/53B is
turned on.

The TD (Transmit Data) line from the HP 1652B/53B must connect to the
RD (Receive Datd) line on the controller. Likewise, the RD line from the
HP 1652B/53B must connect to the TD line on the controller.

HP 1652B/1653B Programming Over RS-232C
Programming Reference 3-3

]
Cable Example

The RTS (Request To Send), is an output from the HP 1652B/53B which
can be used to control incoming dataflow. A true on the RTS line alows
the controller to send data and afalse on thisline signals arequest for the
controller to disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data
Carrier Detect) lines are inputs to the HP 1652B/53B which control data
flow from the HP 1652B/53B (Pin 2). internal pull-up resistors in the

HP 1652B/53B assure the DCD and DSR lines remain high when they are
not connected. If DCD or DSR are connected to the controller, the
controller must keep these lines and the CTS line high to enable the

HP 1652B/53B to send data to the controller. A low on any one of these
lines will disable the HP 1652B/53B data transmission. Dropping the CTS
line low during data transmission will stop HP 1652B/53B data
transmission immediately. Dropping either the DSR or DCD line low
during data transmission will stop HP 1652B/53B data transmission, but as
many as two additional bytes may be transmitted from the HP 1652B/53B.

Fiie 3- is an example of how to connect the HP 1652B/53B to the
HP 98628A Interface card of an HP 9000 series 200/300 controller. For
more information on cabling, refer to the reference manual for your
specific controller.

Since this example does not have the correct connections for hardware
handshake, XON/XOFF protocol must be used when connecting the
HP 1652B/53B as shown in figure 3-|

HP 1652B/53B
REAR PANEL

HP 9862BA
INTERFACE CARD

p—

il

13242N 5061—4216
(MALE-TO-MALE) DCE OPT . @082
(FEMALE-TO-FEMALE)

01852809

Figure 3-1. Cable Example

Programming Over RS-232C HP 1652B/1653B

3-4

Programming Reference

Configuring the
Instrument
Interface

Interface
Capabilities

Protocol

HP 1652B/16853B
Programming Reference

The front-panel I/O menu key alows you access to the RS-232C
Configuration menu where the RS-232C interface is configured.

If you are not familiar with how to configure the RS-232C interface, refer
to the HP 1652B/53B Front-panel Reference manual.

The baud rate, stop hits, parity, protocol, and data bits must be configured
exactly the same for both the controller and the HP 1652B/53B to
properly communicate over the RS-232C bus. The HP 1652B/53B
RS-232C interface capabilities are listed below:

1 Baud Rate: 110, 300, 600, 1200, 2400, 4800, 9600, or 19.2 k
1 Stop Bits: 1, 1.5, or 2

1 Parity: None, Odd, or Even

1 Protocol: None or XON/XOFF

1 Data Bits: 8

NONE. With a three-wire interface, selecting NONE for the protocol
does not alow the sending or receiving device to control data flow. No
control over the data flow increases the possibility of missing data or
transferring incomplete data.

With an extended hardwire interface, selecting NONE allows a hardware
handshake to occur. With hardware handshake, hardware signas control
data flow.

XON/XOFF. XON/XOFF stands for Transmit On/Transmit Off. With
this mode the receiver (controller or HP 1652B/53B) controls data flow
and can request that the sender (HP 1652B/53B or controller) stop data
flow. By sending XOFF (ASCII 19) over its tranamit data line, the
receiver requests that the sender disables data transmission. A
subsequent XON (ASCII 17) alows the sending device to resume data
transmission.

Programming Over RS-232C
3-5

Data Bits Data hits are the number of bits sent and received per character that
represent the binary code of that character. Characters consist of either 7
or 8 hits, depending on the application. The HP 1652B/53B supports 8 hit
only.

8 Bit Mode. Information is usualy stored in bytes (8 hits a a time). With
8-bit mode, you can send and receive data just as it is stored, without the
need to convert the data

ﬁ The controller and the HP 1652B/53B must be in the same bit mode to

Note properly communicate over the RS-232C. This means that both the
controller and the HP 1652B/53B must have the capability to send and
receive 8 hit data.

For more information on the RS-232C interface, refer to the

HP 1652B/HP 1653B Front-Panel Reference Manua. For information on
RS-232C voltage levels and connector pinouts, refer to the HP 2652B/538
Service Manual.

Communicating Each RS-232C interface card has its own interface select code. This code

Over the. is used by the controller to direct commands and communications to the

RS-232C BuUS r;j%per interface by specifying the correct interface code for the device

ress.
(HP 9000 Generally, the interface select cod b decimal value bet 0
: enerally, the interface select code can be any decimal value between

Series 200/300 and 31, except for those interface codes which are reserved by the

Controller) controller for internal peripherals and other internal interfaces. This
value can be selected through switches on the interface card. For more
information, refer to the reference manua for your interface card or

controller.

For example, if your RS-232C interface select code is 9, the device
address required to communicate over the RS-232C bus is 9.

Programming Over RS-232C HP 1652B/1653B
3-6 Programming Reference

Lockout To lockout the front panel controls use the SYSTem command LOCKout.

Command When this function is on, al controls (except the power switch) are
entirely locked out. Local control can only be restored by sending the
command :LOCKout OFF. For more information on this command see

the chapter “System Commands’ in this manual.

!! Cycling the power will also restore local control, but this will aso reset
Note : certain RS-232C dtates.

HP 1652B/1653B Programming Over AS-232C
Programming Reference 3-7

Programming and _ 4
Documentation Conventions

Introduction

|
Truncation Rule

Note 'g

HP 1652B/1653B
Programming Reference

This section covers the progr amming conventions used in programming
the instrument, as well as the documentations conventions used in this
manual. This chapter also contains a detailed description of the command
tree and command tree traversal.

The truncation rule for the keywords used in headers and parameters is:

If the longform has four or fewer characters, there is no change in the
shortform. When the longform has morethan four charactersthe
shortform is just the first four characters, unless the fourth character is
avowel. In that case only thefirst three charactersare used.

There are some commands that do not conform to the truncation rule by
design. These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various commands
are shown in table 4-1.

Longform Shortform
OFF OFF
DATA DATA
START STAR
LONGFORM LONG
DELAY DEL
ACCUMULATE ACC

Table 4-1, Keyword Truncation

Programming and Documentation Conventions
41

Infinity
Representation

Sequential and

The representation of infinity is 9,9E + 37 for real numbers and 32767 for
integers. This is also the vaue returned when a measurement cannot be
made.

IEEE 488.2 makes the distinction between sequential and overlapped

Overlapped commands. Sequential commands finish their task before the execution of
the next command starts. Overlapped commands run concurrently, and

Commands therefore the command following an overlapped command may be started
before the overlapped command is completed. The overlapped commands
for the HP 1652B/53B are STARt, STOP, and AUToscale.

|

Response IEEE 488.2 defines two times at which query responses may be buffered.

Generation The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read
the response. The HP 1652B/53B will buffer responses to a query when it
is parsed.

|

Syntax Diagrams At the beginning of each of the following chapters are syntax diagrams

showing the proper syntax for each command. All characters contained in
acircle or oblong are literals, and must be entered exactly as shown.
Words and phrases contained in rectangles are names of items used with
the command and are described in the accompanying text of each
command. Each line can only be entered from one direction as indicated
by the arrow on the entry line. Any combination of commands and
arguments that can be generated by following the lines in the proper
direction is syntacticaly correct. An argument is optiona if there is a
path around it. When there is a rectangle which contains the word
“space,” a white space character must be entered. White space is optional
in many other places.

Programming and Documentation Conventions HP 1652B/1653B

4-2

Programming Reference

Notation The following conventions are used in this manual when describing
Conventions and Programming rules and examples:

Definitions < >

[]
{}

Angular brackets enclose words or characters that are used
to symbolize a program code parameter or a bus command.

“is defined as.” For example, A :: = B indicates that A
can be replaced by B in any statement containing A .

“or”: indicates a choice of one element from alist. For
example, A B indicates A or B, but not both.

An ellipsis (trailing dots) is used to indicate that the
preceding element may be repeated one or more times.

Square brackets indicate that the enclosed items are optional .

When several items are enclosed by braces and separated
by s, one, and only one of these elements must be sel ected.

Three Xs after an ENTER or OUTPUT statement
represent the device address required by your controller.

In addition, the following definition is used:

<NL>

HP 1652B8/1653B
Programming Reference

:: = Linefeed (ASCII decimd 10).

Programming and Documentation Conventions
4-3

The Command
Tree

Command Types

Tree Traversal Rules

The command tree (figure 4-1) shows al commands in the HP 1652B/53B
logic analyzers and the relationship of the commands to each other.
Parameters are not shown in this figure. The command tree allows you to
see what the HP 1652B/53B’s parser expects to receive. All legal headers
can be created by traversing down the tree, adding keywords until the end
of a branch has been reached.

As shown in chapter I's “Header Types’ section, there are three types of
headers. Each header has a corresponding command type. This section

shows how they relate to the command tree.

System Commands. The system commands reside at the top level of the
command tree. These commands are always parsable if they occur a the
beginning of a program message, or are preceded by a colon. START and
STOP are examples of system commands.

Subsystem Commands. Subsystem commands are grouped together
under a common node of the tree, such as the MMEMORY commands.

Common Commands. Common commands are independent of the tree,
and do not affect the position of the parser within the tree. *CLS and
*RST are examples of common commands.

Command headers are created by traversing down the command tree. For
each group of keywords not separated by a branch, one keyword must be
selected. As shown on the tree, branches are always preceded by colons.
Do not add spaces around the colons. The following two rules apply to
traversing the tree:

A leading colon (the first character of a header) or a < terminator >
places the parser at the root of the command tree.

Executing a subsystem command places you in that subsystem (until a
leading colon or a < terminator > is found). The parser will stay at the
colon above the keyword where the last header terminated. Any
command below that point can be sent within the current program
message without sending the keywords(s) which appear above them.

Programming and Documentation Conventions HP 1652B/1653B

4-4

Programming Reference

Examples

Example 1

Example 2

Example 3

HP 1652B/1653B
Programming Reference

The following examples are written using HP BASIC 4.0 ona HP9000
Series 200/300 Controller. The quoted string is placed on the bus,
followed by a carriage return and linefeed (CRLF).

The three Xs (XXX) shown in this manual after an ENTER or OUTPU
statement represents the device address required by your controller.

OUTPUT XXX;*:SYSTEM:HEADER ON;LONGFORM ON"

In example 1, the colon between SYSTEM and HEADER is necessary
since SYSTEM:HEADER is a compound command. The semicolon

T

between the HEADER command and the LONGFORM command is the

required < program message unit separator > . The LONGFORM
command does not need SY STEM preceding it, since the
SYSTEM:HEADER command sets the parser to the SYSTEM node in
thetree.

OUTPUT XXX;*:MMEMORY:INITIALIZE;STORE 'FILE_','FILE DESCRIPTION™

or

OUTPUT XXX;":MMEMORY:INITIALIZE"
OUTPUT XXX;":MMEMORY:STORE 'FILE__''FILE DESCRIPTION"

In the first line of example 2, the “ subsystem selector” isimplied for the
STORE command in the compound command. The STORE command
must be in the same program message as the INITIALIZE command,
since the < program message terminator > will place the parser back at
the root of the command tree.

A second way to send these commands is by placing “MMEMORY:"
before the STORE command as shown in the fourth line of example 2.

OUTPUT XXX;*:MMEM:CATALOG?;:SYSTEM:PRINT ALL
In example 3, the leading colon before SY STEM tells the parser to go

back to theroot of the command tree. The parser can then see the
SYSTEM:PRINT command.

Programming and Documentation Conventions

4-5

SR

[[
PPOWer RMODe STARt STOP MMEM: MACH

I
SYSTem:

T T
]he{1|2): DLllfStt WILISt: |
| COLumn XSTat e ARMBnc
f LINE 0STate DATA
AUTg | oad LO‘AD: ST(!)Re: OT IMe DSP
fg;‘? 99 conFig CONF i g XTIMe ERRor
ASSemb er HEADe r
DOWN 1 oad KEY
INITialize LER
PACK ARM
PURG e ASS i gn LOCKou t
RENc;rr;e AUTosca e LONGform
‘ NAME MENU
UPLoad TYPE MESE
MESR
PRINt
SETup
T T |
SFORma t STRace: SLISt: TFORMat : TTRace: TWAVeform:
| !
CLOCKk BRANch COL umn LABel AMODe ACCumu i ate
CPER i od FIND DATA REMove DURat ion DELay
LABe PREStore LINE THReshold EDGE INSert
MASTer RANGe MMODe GLITch MMODe
REMove RESTar t QPATtern PATTern OCONdition
SL AVe SEQuence QOSEarch OPATtern
THReshold STORe OSTate OSEarch
TAG OTAG OTIMe
TERM RUNT i | RANGe
TAVerage REMove
TMAX i mum RUNT i |
TMIN imum SPERI od
01650852 VRUNSs TAVerage
)(OTog TvMAX i mum
Common XPATtern TMINimum
Commands XSEarch VRUNS
WCLS XSTate XCONdition
«E£G55 XTAG XOT i me
SR XPATtern
=IDN COMPIO re.; SCHIgr t: SWAVelfo rm: SYMBOL : XStorch
0P) | | XTIMe
WRST CMASKk ACCumulate ACCumulate BASE
*SRE COPY HAX i g DELQy PATTern
*STB DATA VAXi s INSer t RANGe
WTST FIND RANGe REMove
TWAT RANGe REMove WIDTh
— RUNT,
Figure 4-i. HP 1852B/53B Command Tree
Programming and Documentation Conventions HP 1652B/1653B

4-6

Programming Reference

-
SCOPe:

AUToscale

SMODe
T T T T 1
CHANne | : TRI?ger ACO?ire: TIMebase: WAVﬁform: MEA?ure
COUPI ng LEVel COUN t DELay COUNt ALL
OFFSet MODE TYPE MODE DATA FALLt Ime
PROBe SLOPe RANGe FORMa t FREQuency
RANGe SOURce POINts NWID th
PREamble OVERshoo t
RECord PERiod
SOURce PREShoo t
TYPE PWIDth
VAL i d RISet ime
XINCrement SOURce
XORigin VAMP | i tude
XREFerence VBASe
YINCrement VMAX
YORigin VMIN
01650851 YREFerence VPP
VTOP

Figure 41. HP 1652B/53B Command Tree (continued)

HP 1652B/1653B Progmmming and Documentation Conventions

Programming Reference

4-7

Table 4-2. Alphabetic Command Cross-Reference

Command Where used Command Where used

ACCumulate SCHart, SWAVeform, GLITch TTRace
TWAVeform HAXis SCHart

ALL MEASure HEADer System

AMODe TTRace INITialize MMEMory

ARM MACHine INSert SWAVeform, TWAVeforn

ARMBnc System KEY System

ASSign MACHine LABe! SFORma, TFORmat

AUToload MMEMory LER System

AUToscale MACHine, SCOPe LEVel TRIGger

BASE SYMBol LINE DLISt, SLIS

BRANch STRace LOAD MMEMory

CATalog MMEMory LOCKout System

CLOCk SFORmat LONGform System

CMASk COMPare MASTer SFORmat

COLumn DLISt, SLIS MENU System

COPY COMPare, MMEMory MESE System

COUNt ACQuire, WAVeform MESR System

COUPling CHANRel MMODe SLISt

CPERiod SFORmat MODE TIMebase, TRIGger

DATA COMPere, SLISt, System, NAME MACHine
WAVEform NWIDth MEASure

DELay SWAVeform, TIMebase, OCONdition = TWAVeform
TWAVeform OFFSet CHANRel

DOWNIoad MMEMory OPATtem SLISt

DSP System MMODe TWAVeform

DURation TTRace OPATtem TWAVeform

EDGE TTRace OSEarch SLISt, TWAVeform

ERRor System OSTate SLISt, WLISt

FALLtime MEASure OTAG SLISt

FIND COMPare, STRace OTIMe TWAVeform, WLISt

FORMat WAVeform OVERshoot MEASure

FREQuency MEASure PACK MMEMory

Programming and Documentation Conventions

4-8

HP 1652B/1653B
Programming Reference

Table 42. Alphabetic Command Cross-Reference (continued)

Command Where used Command Where used
PATTern SYMBol, TRace STORe MMEMory, STRace
PERiod MEASure TAG STRace
POINts WAVeform TAVerage SLISt, TWAVeform
PPOWer System TERM STRace
PREamble WAVeform THReshold SFORmat, TFORmat
PREShoot MEASure TMAXmmum SLISt, TWAVeform
PREStore STRace TMINimum SLISt, TWAVeform
PRINt System TYPE ACQuire, MACHine,
PROBe CHANRel WAVeform
PURGe MMEMory UPLoad MMEMory
PWIDth MEASure VALid WAVeform
RANGe CHANRel, COMPare, VAMPlitude = MEASure
STRace, SWAVeform, VAXis SCHart
SYMBol, TIMebase, VBASe MEASure
TWAVeform VMAX MEASure
RECord WAVeform VMIN MEASure
REMove SFORmat, SWAVeform, VPP MEASure
Symbol, TFORmat, VRUNs SLISt, TWAVeform
TWAVeform VTOP MEASure
REName MMEMory WIDTh SYMBol
RESTart STRace XCONdition TWAVeform
RISetime MEASure XINCrement WAVeform
RMODe System XORigin WAVeform
RUNTI COMPare, SLIS, XOTag SLISt
WAVeform XOTime TWAVeform
SEQuence STRace XPATtern SLISt, TWAVeform
SETup System XREFerence WAVeform
SLAVe SFORmat XSEarch SLISt, TWAVeform
SLOPe TRIGger XSTate SLISt, WLISt
SMODe SCOPe XTAG SLISt
SOURce MEASure, TRIGger, XTIMe TWAVeform, WLISt
WAVeform YINCrement WAVeform
SPERiod TWAVeform YORigin WAVeform
STARt System YREFerence WAVeform
STOP System
HP 1652B/1653B Programming and Documentation Conventions

Programming Reference

4-9

Command Set
Organization

Subsystems

The command set for the HP 1652B/53B logic analyzer is divided into 24
separate groups: common commands, system commands and 22 sets of
subsystem commands. Each of the 24 groups of commands is described in
the following chapters. Each of the chapters contain a brief description of
the subsystem, a set of syntax diagrams for those commands, and finally,
the commands for that subsystem in alphabetical order. The commands
are shown in the longform and shortform using upper and lowercase
letters. As an example AUToload indicates that the longform of the
command is AUTOLOAD and the shortform of the command is AUT.
Each of the commands contain a description of the command and its
arguments, the command syntax, and a programming example.

There are 19 subsystems in this instrument. In the command tree (figure
4-1) they are shown as branches, with the node above showing the name of
the subsystem. Only one subsystem may be selected at a time. At power
on, the command parser is set to the root of the command tree, and
therefore no subsystem is selected. The 22 subsystems in the

HP 1652B/53B are:

1 SYSTem - controls some basic functions of the instrument.

1 MMEMory - provides access to the internal disk drive.

1 DLISt - allows access to the dual listing function of two state

analyzers.

WLISH - allows access to the mixed (timing/state) functions.

MACHine - provides access to analyzer functions and subsystems.

SFORmat - allows access to the state format functions.

STRace - allows access to the state trace functions.

SLISt = allows access to the state listing functions.

SWAVeform - allows access to the state waveforms functions.

SCHart .« allows access to the state chart functions.

COMPare - allows access to the compare functions.

TFORmat - allows access to the timing format functions.

TTRace - allows access to the timing trace functions.

TWAVeform - allows access to the timing waveforms functions.

SYMBol - allows access to the symbol specification functions.

SCOPe - provides access to oscilloscope functions and subsystems.

CHANGRel - provides access to the vertical axis of the oscilloscope

TRIGger - allows control of the trigger conditions

1 ACQuire - allows changes to the settings for the DIGitize
command.

Programming and Documentation Conventions HP 1652B/1653B

4-10

Programming Reference

1 TIMebase - alows control of the timebase (horizontal axis) of the
oscilloscope.

1 WAVeform - allows access to data transfer commands.

1 MEASure - dlows you to control automated measurements.

]
Program The program examples given for each command in the following chapters
Examples and appendices were written on an HP 9000 Series 200/300 controller

using the HP BASIC 4.0 language. The programs always assume a generic
address for the HP 1652/53B of XXX.

In the following examples, specia atention should be paid to the ways in
which the command and/or query can be sent. Keywords can be sent
using either the longform or shortform (if one exists for that word). With
the exception of some string parameters, the parser is not case-sensitive.
Upper-case (capital) and lower-case (small) letters may be mixed freely.
System commands like HEADer and LONGform dlow you to dictate
what forms the responses take, but have no affect on how you must
structure your commands and queries.

The following commands dl set Timing Waveform Delay to 100 ms.

1 keywords in longform, numbers using the decima format.

OUTPUT XXX:":MACHINEL: TWAVEFORM:DELAY .1"

1 keywords in shortform, numbers using an exponential format.

OUTPUT XXX;":MACH1:TWAV:DEL 1E-1"

1 keywords in shortform using lower-case letters, numbers using a
suffix.

OUTPUT XXX;":machl:twav:del 1{0Qms"

.# In these examples, the colon shown as the first character of the command
Note is optional on the HP 1652B/53B.

The space between DELay and the argument is required.

HP 1652B/1653B Programming and Documentation Conventions
Programming Reference 4-11

Common Commands 5

Introduction The common commands are defined by the IEEE 488.2 standard. These
commands will be common to dl instruments that comply with this
standard.

The common commands control some of the basic instrument functions,
such as instrument identification and reset, how status is read and cleared,
and how commands and queries are received and processed by the
instrument.

Common commands can be received and processed by the HP 1652B/53B
whether they are sent over the bus by themselves or as part of a
multiple-command string. If an instrument subsystem has been selected
and a common command is received by the instrument, the instrument will
remain in the selected subsystem. For example, if the instruction

*:*MMEMORY:INITIALIZE;*CLS; STORE 'FILE_','DESCRIPTION"

is received by the instrument, the instrument will initiaize the disk and
store the file; and clear the status information. This would not be the case
if some other type of command were received within the program
message. For example, the program message

*:MMEMORY:INITIALIZE;:SYSTEM:HEADERS ON:MMEMORY
:STORE 'FILE_', DESCRIPTION"

would initidize the disk, turn headers on, then store the file. In this
example :MMEMORY must be sent again in order to reenter the
mmemory subsystem and store the file.

HP 1652B/1653B Common Commands
Progmmming Reference 5-1

Each status register has an associated status enable (mask) register. By
setting the bits in the mask value you can select the status information you
wish to use. Any status hits that have not been masked (enabled in the
enable register) will not be used to report status summary information to
hits in other status registers.

Refer to appendix B, “Status Reporting,” for a complete discussion of how
to read the status registers and how to use the status information available
from this instrument.

Refer to figure 5-1 for the common commands syntax diagram.

—

-

*CLS

«ESE space l—b{ mask]—>

»ESE? -

*«ESR?

\i

«IDN?

~0PC

*0PC?

*RST

*SRE space ‘—P{ mask ‘——’

«SRE?

*STB?

*WAT

OIS

01650501

mask = An integer, O through 255. This number is the sum of all the bitsin
the mask corresponding to conditions that are enabled. Refer to the
*ESE and *SRE commands f or bit definitions in the enable registers.

Figure 8-1. Common Commands Syntax Diagram

Common Commands HP 1652B/1653B
52 Programming Reference

*CLS

*CLS (Clear Status) command

The *CLS common command clears the status data structures, including
the device defined error queue. If the I CLS command immediately
follows a <terminator > , the output queue and the MAV (Message
Available) bit will be cleared.

Command Syntax: -cLs

Example: outPuT Xxxx;"*cLS"

%‘ Refer to appendix B, “Status Reporting,” for a complete discussion of
Note Status.

HP 1652B/1653B Common Commands
Programming Reference §-3

*ESE

*ESE

Note ﬂ

Command Syntax:

where:

< mask >

Example:

Common Commands
5-4

(Event Status Enable) command/query

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a mask value for the
bits to be enabled in the Standard Event Status Register. A one in the
Standard Event Status Enable Register will enable the corresponding bit
in the Standard Event Status Register. A zero will disable the bit. Refer
to table 4 for information about the Standard Event Status Enable
Register hits, bit weights, and what each bit masks.

The *ESE query returns the current contents of the enable register.

Refer to appendix B, “Status Reporting,” for a complete discussion of
status.

*ESE <mask >

:» = integer from 0 to 255

OUTPUT XXX;"*ESE 32"

In this example, the *ESE 32 command will enable CME (Command
Error), bit § of the Standard Event Status Enable Register. Therefore,
when a command error occurs, the event summary bit (ESB) in the Status
Byte Register will also be set.

HP 1652B/1653B
Programming Reference

*ESE

Query Syntax: *Esg?
Returned Format: <mask> <NL>

Example: 10 piv Event$[100]

20 OUTPUT XXX;"*ESE?"

30 ENTER XXX:Event$

40 PRINT Event$
50 END

Table 51. Standard Event Status Enable Register

Bit Weight Enables

7 128 PON . Power On

6 64 URQ - User Request

5 32 CME - Command Error

4 16 EXE - Execution Error

3 8 DDE . Device Dependent Error
2 4 QYE - Query Error

1 2 RQC « Request Control

0 1 OPC « Operation Complete

High - enables the ESR bit

HP 1652B/1653B
Programming Reference

Common Commands

5-5

*ESR

*ESR

Note '1

Query Syntax:
Returned Format:

where:

<status >

Example:

Common Commands
5-6

(Event Status Register) query

The *ESR query returns the contents of the Standard Event Status
Register. Reading the register clears the Standard Event Status Register.

The bits in this register must be set by sending the *ESE command before
sending the *ESR query (see "™ESE command/query" on page 5-4).

*ESR?

<status > <n. >

. s integer from 0 to 255

10 DIMEsr_event$[100]
20 OUTPUT XXX;"“*ESR?"

30 ENTER XXX;Esr_event$
40 PRINT Esr_event$

50 END

With the example, if a command error has occurred the variable
"Esr_event" Will have hit 5 (the CME bit) set.

Table 4-2 shows the Standard Event Status Register. The table shows
each bit in the Standard Event Status Register, and the bit weight. When
you read Standard Event Status Register, the value returned is the total bit
weights of all hits that are high at the time you read the byte.

HP 1652B/1653B
Programming Reference

*ESR

Table 52. The Standard Event Status Register.

BIT BIT BIT CONDITION
__ WEIGHT NAME
7 128 PON 0 = Register read - not in power up mode
1 = Power up
6 64 URQ 0 = user request - not used « always zero
5 2 CME | 0 = no command errors
1 = a command error has been detected
4 16 EXE 0 = no execution errors
1 = an execution error has been detected
3 8 DDE | 0 = no device dependent errors
1 = a device dependent error has been detected
2 4 QYE 0 = no query errors
1 = a query error has been detected
1 2 RQC 0 = request control « NOT used - always 0
0 1 OPC 0 = operation is not complete
1 = operation is complete
= False = Low
1 = True = High

HP 1652B/1653B
Programming Reference

Common Commands

57

*IDN

*IDN

Query Syntax:
Returned Format:

where:

<revision code >

Example:

Common Commands
58

(Identification Number) query

The *IDN? query alows the instrument to identify itself. It returns the
gring:

"HEWLETT-PACKARD, 16528, 0,REV <revision code>"
An *IDN? query must be the last query in a message. Any queries after
the *IDN? in the program message will be ignored.

I v

HEWLETT-PACKARD,1652B,0,REV <revision code>

.. = four-digit code representing ROM revision

10 DIM Id$[100]

20 OUTPUT XXX;"*IDN?"
30 ENTER XXX;Id$

40 PRINT [d$

50 END

HP 1652B/1653B
Programming Reference

*OPC

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B

Programming Reference

*OPC

(Operation Complete) command/query

The *OPC command will cause the instrument to set the operation
complete bit in the Standard Event Status Register when al pending
device operations have finished. The commands which affect this bit are
the Overlapped Commands. An Overlapped Command is a command
that alows execution of subsequent commands while the device
operations initiated by the Overlapped Command are till in progress.
The overlapped commands for the HP 1652B/53B are:

STARt
STOP
AUToscale

The * OPC query places an ASCII “1" in the output queue when all
pending device operations have been completed.

I orc

OUTPUT XXX;"*OPC"
1 opc7

1< NL>

10 DIM Status$ [100]
20 OUTPUT XXX;'*OPC?"
30 ENTER XXX;Status$
40 PRINT Status$

50 END

Common Commands
59

*RST
E—

*RST (Reset) command

The *RST command (488.2) sets the HP 1652B/53B to the power-up
default settings as if no autoload file was present.

Command Syntax: *RST

Example: OUTPUT XXX;"*RST"

Common Commands HP 1652B/1653B
5-10 Programming Reference

*SRE

*SRE (Service Request Enable) command/query

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding hit in the Status Byte Register. A
zero will disable the hit. Refer to table 5-3 for the bits in the Service
Request Enable Register and what they mask.

The *SRE query returns the current value.

IIC' Refer to appendix B, “Status Reporting,” for a complete discussion of
Note J status.

Command Syntax: *SRE < mask >

where:

< mask > = integer from 0 to 255

Example: OUTPUT XXX; "*SRE 16”

This example forces the MAV bhit high (see table 5-3).

HP 1652B/1653B Common Commands
Programming Reference 511

*SRE

Query Syntax:
Returned Format:

where:

< mask >

Example:

I sw

c mask > < NL>

. = sum of all bits that are set -« 0 through 255

10 DIM Sre_value$[100]
20 OUTPUT XXX;"*SRE?"

30 ENTER XXX;Sre_value$
40 PRINT Sre_value$

50 END

Table 6-3. HP 1852B/53B Service Request Enable Register

Bit Weight Enables
15-8 not used
7 128 not used
6 64 MSS - Master Summary Status
5 32 ESB - Event Status
4 16 MAYV » Message Available
3 8 LCL - Local
2 4 not used
1 2 not used
0 1 MSB . Module Summary

Common Commands
512

HP 1652B/1653B
Programming Reference

*STB

. m
*STB (Status Byte) query

The *STB query returns the current value of the instrument’s status byte.
The MSS (Master Summary Status) bit and not RQS (Request Service)
hit is reported on bit 6. The MSS indicates whether or not the device has
at least one reason for requesting service. Refer to table 5-4 for the
meaning of the bits in the status byte.

g;' Refer to gppendix B, “Status Reporting,” for a complete discussion of
Note status.

Query Syntax: *STB?
Returned Format: <vaiue > cNL>

where:

<value> ::= integer from Oto 255

Example: 10 pIv Stb_value$[100]
20 OUTPUT XXX;"*STB?"
30 ENTER XXX;Stb_value$
40 PRINT Stb_value$
50 END

HP 1652B/1653B Common Commands
Programming Reference 5-13

*STB

Table 5-4. The Status Byte Register

BIT BIT BIT CONDITION
WEIGHT NAME

7 128 0 = not used

6 64 MSS 0 = instrument has no reason for service
1 = instrument is requesting service

5 32 ESB 0 = no event status conditions have occurred
1 = an enabled event status condition has occured

4 16 MAV 0 = no output messages are ready
1 = an output message is ready

3 8 LCL 0 = a remote-to-loca transition has not occurred
1 = a remote-to-loca transition has occurred

2 4 - not used

1 2 not used

1 MSB 0 = HP 1652B/1653B has activity to report

1 = no activity to report

O0=Fdse = Low

1 = True = High

Common Commands HP 1652B/1653B

514 Programming Reference

*WAI

Command Syntax:

Example:

HP 1652B/1653B
Programming Reference

*WAI

(Wait) command

The *WAI command causes the device to wait until the completion of all
overlapped commands before executing any further commands or queries.
An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the
overlapped command are till in progress. The overlapped commands for
the HP 1652B/53B are:

STARt
STOP
AUToscale

*WAI

OUTPUT XXX;"*WAI"

Common Commands
5-15

System Commands

6

Introduction

HP 1652B/1653B8
Programming Reference

System commands control the basic operation of the instrument including
formatting query responses and enabling reading and writing to the
advisory line of the instrument’'s display. They can be called at anytime.
The HP 1652B/53B System commands are:

ARMBnc
DATA

DSP (display)
ERRor
HEADer
KEY

LER (Loca Event Register)
LOCKout
LONGform
MEND
MESE

MESR

PRINt
SETup

In addition to the system commands, there is are three run control
commands and a preprocessor power supply condition query. These
commands are:

¢ PPOWer
1 RMODe
1 STARt

1 STOP

The run control commands can be called at anytime and also control the
basic operation of the logic analyzer. These commands are at the same
level in the command tree as SYSTem; therefore they are not preceded by
the :SYSTem header.

System Commands
61

(r Y

»-{ SYSTemJ—D—‘L—QARMBHC)——D! space

mach_num]

ARMBnC? >
N —

—@—P‘ space H block data in # formo(yr
il

DATA?}
*@——‘ space H message_string H

s HEADe)| space hﬂOFF{Q)

——(HEADer?
s ——

@H space H key-code I
KEY? }
—><LER?\/

——<LOCKou LH space OFF |9>
ON| 1)—}

e LOCKout?

01650808 A

Figure 6-1. System Commands Syntax Diagram

System Commands HP 1652B/16538
6-2 Programming Reference

——CLONGfornD—D{ space OFFI@\

LONGform?

N D W ey By Wy
(o) -
——<Mt:at j_“’{ space s enable_mask ';

D

PRINt space SCReen)
. ALL
—DCSETup}—DI space H block data in # format }
~a={ SETup? }

= PPOWer?

-a{ RMODE SINGle
={ REPetitive

—{ :STAR?)

\,

L»(i STOP }

018630511

value =integer from O to 255.

menu = integer. Refer to the individualprogramming manuals for each module and the system for
specific menu number definitions.

enable-value = jnteger from 0 to 255.

index = integerfrom 0 to 5.

block-data = data in IEEE 4882 format.

string = dring of up to 60 alphanumeric characters.

Figure 81. System Commands Syntax Diagram (continued)

HP 1652B/1653B System Commands

Programming Reference

6-3

ARMBnNc
]
ARMBnNc command/query

The ARMBnNc command sel ects the source that will generate the arm out
signal that will appear on the rear panel BNC labelled External Trigger
out.

The ARMBNC query returns the source currently selected.

Command Syntax: :SYSTem:ARMBnc { MACHine{ 1|2} SCOPe | NONE}

Example: OUTPUT XXX;™:SYSTEM:ARMBNC MACHINEL"
Query Syntax: :SYSTem:ARMBnc?
Returned Format: [:SYSTem:ARMBnc] { MACHine{ 1|2} SCOPe NONE} <NL>

Example: 10 DIM Mode$[100]
20 OUTPUT XXX;":ARMBNC?"
30 ENTER XXX;Mode$
40 PRINT Mode$
50 END

System Commands HP 1652B/1653B
6 4 Programming Reference

DATA

i
Note %

1
Note '&

HP 1652B/1653B
Programming Reference

DATA

command/query

The DATA command allows you to send and receive acquired data to and
from a controller in block form. This helps saving block data for:

1 Re-loading to the logic analyzer
1 Processing data later
1 Processing data in the controller.

The format and length of block data depends on the instruction being
used and the configuration of the instrument. This section describes each
part of the block data as it will appear when used by the DATA
instruction. The beginning byte number, the length in bytes, and a short
description is given for each part of the block data. Thisisintended to be
used primarily for processing of datain the controller.

Do not change the block datain the controller if you intend to send the
block data back into the logic analyzer for later processing. Changes
made to the block datain the controller could have unpredictable results
when sent back to the logic analyer.

The SYSTem:DATA query returns the block data.

The data sent by the SY STem:DATA query reflects the configuration of
the machines when the last run was performed. Any changes made since
then through either front-panel operations or programming commands do
not affect the stored configuration.

System Commands
65

DATA

System Commands
6-6

For the DATA instruction, block data consists of either 14506 bytes
containing logic analyzer only information or 26794 bytes containing both
logic analyzer and oscilloscope information. This information is captured
by the acquisition systems. Theinformation for the logic analyzer will be
in one of four formats depending on the type of data captured. The logic
analyzer format is described in the “ Acquisition Data Description” section
in "Logic Analyzer Block Data.” The oscilloscope format is described in
the “Acquisition Data Description” section in “Oscilloscope Block Data.”
Since no parameter checking is performed, out-of-range values could
cause instrument lockup; therefore, care should be taken when
transferring the data string into the HP 1652B/53B.

The < block data > parameter can be broken down into a
< block length specifier > and a variable number of < section> s.

The <block length specifier > always takes the form #8DDDDDDDD.
Each D represents a digit (ASCII characters "0" through "9"). The value of
the eight digits represents the total length of the block (all sections). For
example, if the total length of the block is 14522 bytes, the block length
specifier would be "#800014522".

Each < section > consists of a <section header > and < section data > .
The < section data> format varies for each section and may be any
length. For thisinstruction, the < section data> section is composed of a
data preambl e section and an acquisition data section.

HP 1652B/1653B
Programming Reference

DATA

Command Syntax: :SYSTem:DATA c block data >
Example: OUTPUT XXX;*: SYSTEM: DATA” <block data >

where:

< block data »

<block length specifier » < section » . . .

< block length specifier > ::= #8 <length >
¢ length > ;. & the total length of all sections in byte format (must be represented with 8 digits)
<section » i = <section header » < section data »
< section header > :» & 16 bytes, described in the following ‘Section Header” sections
<section data > :» = format depends on the type of data

m' Thetotal length of asection is 16 (for the section header) plus the length
Note of the section data. So when calculating the value for <length> , don’t
forget to include the length of the section headers.

QuerySyntax: :SYSTem:DATA?

Returned Format: [:SYSTem:DATA] <block data> < NL>

HP-IB Example: 10 DIM Num$[2].8lock$[32000)] | allocate enough memory for block data
20 OUTPUT XXX;”: SYSTEM: HEAD OFF”
30 OUTPUT XXX;":SYSTEM:DATA?" | send data query

40 ENTER XXX USING "#,2A":Num$§ 'readin X8

50 ENTER XXX USING "#,8D";Block length! read in block length
60 ENTER XXX USING "-K";Block$ | read in data
70 END

HP 1652B/1653B System Commands
Programming Reference 6-7

DATA

Log Ic An alyzer Thelogic analyzer block datais described in the following sections. The

Block Data oscilloscope block datais appended at the end of the logic analyzer block
datawhen the oscilloscope is on and has acquired and stored waveform
data. The oscilloscope block datais described in “Oscill oscope Block
Data” later in this section.

Section Header The section header uses bytes 1 through 16 (this manual begins counting
Description at 1; thereisno byte 0). The 16 bytes of the section header are as follows:

1 10 bytes . section name such as "DATA " (six trailing spaces)
11 1 byte - reserved
12 1bytes - module 1D (31 for HP1652B/53B)

13 4 bytes- length (14506 for the logic analyzer only and 26794 for both the
logic analyzer and oscilloscope).

Section Data For the SYSTem:DATA command, the < section data > parameter
consists of two parts: the data preamble and the acquisition data. These
are described in the following two sections.

Data Preamble Theblock datais organized as 160 bytes of preamble information,
Description followed by 1024 14-byte groups of information, followed by 10 reserved
bytes. The preamble gives information for each analyzer describing the
amount and type of data captured, where the trace point occurred in the
data, which pods are assigned to which analyzer, and other information.

Each 14-byte group is made up of two bytes (16 bits) of status for

Analyzer 1, two bytes of status for Analyzer 2, then five sets of two bytes of
information for each of the five 16-bit pods of the HP 1652B. In the

HP 1653B, the status and format for the sets of bytes are the same, but the
data in not valid on pods 3,4, and 5.

System Commands HP 1652B/1653B
68 Programming Reference

DATA

Note %

17

19

Note %

21

HP 1652B/1653B
Programming Reference

One analyzer’sinformation is independent of the other analyzer’'s
information. In other words, on any given line, one analyzer may contain
data information for a timing machine, while the other analyzer may
contain count information for a state machine with time tags enabled. The
status bytes for each analyzer describe what the information for that line
contains. Therefore, when describing the different formats that data may
contain below, keep in mind that this format pertains only to those pods
that are assigned to the analyzer of the specified type. The other analyzer’s
datais TOTALLY independent and conforms to its own format.

The preamble (bytes 17 through 176) consists of the following 160 bytes:

2 bytes - Instrument ID (always 1652 for HP 1652B and HP 1653B)

2 bytes - Revision Code

The values stored in the preamble represent the captured data currently
stored in this structure and not what the current configuration of the
analyzer is. For example, the mode of the data (bytes 21 and 99) may be
STATE with tagging, while the current setup of the analyzer is TIMING.

The next 78 bytes arefor Analyzer 1 Data Information.

1 byte« Machine data mode, one of the following values:
0 = off
1 = state data (with either time or state tags)
2 = state data (without tags)
3 = glitch timing data
4 = transitional timing data

1 byte- List of podsin thisanalyzer, where a1 indicates that the
corresponding pod is assigned to this analyzer.

hit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1
unused unused Pod!1 Pod 2 Pod 3 Pod 4 Pod5 unused

System Commands
6-9

DATA

System Commands
810

23

24

25

35

36

37

47

51

52

53

1 byte - Master chip in this analyzer - When several chips are grouped
together in asingle analyzer, one chip is designated as a master chip. This
byte identifies the master chip. A value of 4 represents POD 1, 3 for POD
2,2 for POD 3,1 for POD 4, and 0 for POD 5.

1 byte - Reserved

10 bytes - Number of rows of valid datafor this analyzer - Indicates the
number of rows of valid data for each of the five pods. Two bytes are used
to store each pod value, with the first 2 bytes used to hold POD 5 value,
the next 2 for POD 4 value, and so on.

1 byte « Trace point seen in this analyzer - Was a trace point seen (value
= 1) or forced (value = Q)

1 byte- Reserved

10 bytes - Trace point location for this analyzer « Indicates the row
number in which the trace point was found for each of the five pods. Two

bytes are used to store each pod value, with the first 2 bytes used to hold
POD 5 value, the next 2 for POD 4 value, and so on.

4 bytes« Time from arm to trigger for this analyzer » The number of 40 ns
ticks that have taken place from the arm of this machine to the trigger of
thismachine. A value of -1 (all 32 bits set to 1) indicates counter overflow.

1 byte « Armer of this analyzer » Indicates what armed this analyzer (1 =
RUN, 2 = BNC, 3 = other anayzer)

1 byte = Devices armed by this analyzer = Bitmap of devices armed by this
machine

bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1

unused unused unused unused SCOPE BNC out Mach. 2 Mach.

A linagiven bit position implies that this analyzer arms that device,
while a0 meansthe device is not armed by this analyzer.

4 bytes « Sample period for this analyzer (timing only) - Sample period at
which data was acquired. Value represents the number of nanoseconds
between samples.

HP 1652B/1653B
Programming Reference

DATA

57

61

62

63

68

69

Acquisition Data
Description

HP 1652B/16538
Programming Reference

4bytes - Delay for thisanayzer (timing only) . Delay at which datawas
acquired. Value represents the amount of delay in nanoseconds.

1 byte - Time tags on (state with tagging only) - In state tagging mode, was
the data captured with time tags (value = 1) or state tags (value = 0).

1 byte - Reserved

5 bytes « Demultiplexing (state only) - For each of the five pods (first byte

is POD 5, fifth byte is POD 1) in a state machine, describes multiplexing
of each of the five pods. (0 = NO DEMUX, 1 = TRUE DEMUX, 2 =
MIXED CLOCKS).

1 byte = Reserved

20 bytes « Trace point adjustment for pods = Each pod uses 4 bytes to
show the number of nanoseconds that are to be subtracted from the trace
point described above to get the actual trace point value. Thefirst 4 bytes
arefor Pod 5, the next four are for Pod 4, and so on.

10 bytes « Reserved

The next 78 bytes arefor Analyzer 2 Data Information. They are
organized in the same manner as Analyzer 1 above, but they occupy bytes
99 through 176

The acquisition data section consists of 14336 bytes (1024 14-byte groups),
appearing in bytes 177 through 14512. The last ten bytes (14513 through
14522) are reserved. The data contained in the data section will appear in
one of four forms depending on the mode in which it was acquired (as
indicated in byte 21 for machine 1 and byte 99 for machine 2). The four
modes are:

State Data (without tags)

State Data (with either time or state tags)
Glitch Tiig Data

Transitional Timing Data

The following four sections describe the four data modes that may be
encountered. Each section describes the Status bytes (shown under the

Machine 1 and Machine 2 headings), and the Information bytes (shown
under the Pod 5 through Pod 1 headings).

System Commands
611

DATA

State Data Status Bytes. In normal state mode, only the least significant bit (bit 1) is
(without tags) used. When bit 1 is set, this means that there has been a sequence level
transition.

Information Bytes. In state acquisition with no tags, data is obtained from
the target system with each clock and checked with the trace specification.
If the state matches this specification, the datais stored, and is placed into

the memory.
Machine 1 Machine 2 Pod 5 Pod4 Pod 3 Pod 2 Pod 1*
177 Status Status Data Data Data Data Data
191 Status Status Data Data Data Data Data
205 Status Status Data Data Data Data Data
14499 Status Status Data Data Data Data Data

*The headings are not a part of the returned data.

State Data (with either — Status Bytes. In state tagging mode, the tegs indicate whether a given row
time or state tagg) of thedataisadataline, acount (tag) line, or aprestoreline.

Bit 2 isthe Datavs. Count bit. Bit 3 isthe Prestore vs. Tag bit. The two
bits together show what the corresponding Information bytes represent.

Bit 3 B|t 2 [nformation_byte represents:
0 Acquisition Data
0 l Count
1 0 Prestore Data
1 1 Invalid

If Bit 2 is clear, the information contains either actual acquisition data as
obtained from the target system (if Bit 3 is clear), or prestore data (if Bit 3
issat). If Bit 2is set and Bit 3isclear, thisrow’ s bytesfor the pods
assigned to this machine contain tags. If Bit 2 and Bit 3 are set, the
corresponding Information bytes are invalid and should be ignored. Bit 1
is used only when Bit 2 is clear. Whenever there has been a sequence level
transition Bit 1 will be set, and otherwise will be clear.

System Commands HP 1652B/1653B
6-12 Programming Reference

DATA

HP 1652B/1653B
Programming Reference

Information Bytes. In the State acquisition mode with tags, datais
obtained from the target system with each clock and checked with the
trace specification. If the state does not match the trace specification, it is
checked against the prestore qualifier. If it matches the prestore qualifier,
then it is placed in the prestore buffer. If the state does not match either
the sequencer qualifier or the prestore qualifier, it is discarded.

The type of information in the bytes labeled Data depends on the Prestore
vs. Tags bit. When the Data bytes are used for prestore information, the
following Count bytes (in the same column) should be ignored. When the
Data bytes are used for tags, the Count bytes are formatted as
floating-point numbers in the following fashion:

bits
EEEEE MMMMMMMMMMM

The live most-significant bits (EEEEE) store the exponent, and the eleven
|east-significant bits (MMMMMMMMMMM) store the mantissa. The
actual value for Count is given by the equation:

Count = (2048 + mantissa) X Jexponent _ anq

Since the counts are relative counts from one state to the one previous, the
count for thefirst state in the data structureisinvalid.

If time tagging is on, the count value represents the number of 4()
nanosecond ticks that have elapsed between the two stored states. In the
case of state tagging, the count represents the number of qualified states
that were encountered between the stored states.

If astate matches the sequencer qualifiers, the prestore buffer is checked.
If there are any states in the prestore buffer at this time, these prestore
states are first placed in memory, along with a dummy count row. After
this check, the qualified state is placed in memory, followed by the count
row which specified how many states (or 40 ns ticks) have elapsed since
the last stored state. If thisisthe first stored statein memory, then the
count information that is stored should be discarded.

System Commands
6-13

DATA

177
191

219

14485
14499

Glitch Timing Data

System Commands
6-14

Machi . I I BL

Status Status Data Data Data Data Data
Status Status ® ® ® ® ®

Status Status Data Data Data Data Data
Status Status count count Count count count
Status Status Data Data Data Data Data
Status Status count count count Count count

*The headings are not a part of the returned data.
® = Invalid data

Status Bytes. In glitch timing mode, the status bytes indicate whether a
given row in the data contains actual acquisition datainformation or glitch
information.

Bit 1isthe Datavs. Glitch bit. If Bit 1 is set, this row of information
contains glitch information. If Bit 1 is clear, then this row contains actual
acquisition data as obtained from the target system.

Information Bytes. In the Glitch timing mode, the target system is
sampled at every sample period. The dataisthen stored in memory and
the glitch detectors are checked. If a glitch has been detected between the
previous sample and the current sample, the corresponding glitch bits are
set. The glitch information is then stored. If thisisthefirst stored sample
in memory, then the glitch information stored should be discarded.

HP 1652B/1653B
Programming Reference

DATA

177
191
205
219

14405
14499

Transitional Timing Data

HP 1652B/1653B

Programming Reference

Machine 1 Machine 2 Pod 5 Pod4 Pod 3 Pod 2 Pod 1*

Status Status Data Data Data Data Data
Status Status ® ® ® ® ®
Status Status Data Data Data Data Data
Status Status Glitch Glitch Glitch Glitch Glitch
Status Status Data Data Data Data Data
Status Status Glitch Glitch Glitch Glitch Glitch

*The headings are not a part of the returned data.
® = Invalid data

Status Bytes. In transitional timing mode, the status bytes indicate
whether a given row in the data contains acquisition information or
transition count information.

bits 10-9 bits 8-7 bits 6-5 bits4-3 bits 2-
Pod 5 Pod4 Pod3 Pod 2 Pod 1

Each pod uses two bits to show what is being represented in the
corresponding Information bytes. Bits10, 8, 6, 4 and 2 are set when the
appropiate pod’s Information bytes represent acquisition data. When that
bit is clear, the next bit showsif the Information bytes represent the first
word of a count. Together there are three possible combinations:

10 - This pods Information bytes contain acquisition data as obtained from
the target system.

01 = This pod’'s Information bytes contain the first word of a count.

00- This pod’ s Information bytes contain part of a count other than the
first word.

System Commands
615

DATA

Information Bytes. In the Transitional timing mode the logic analyzer
performs the following steps to obtain the information bytes:

1. Four samples of data are taken at 10 nanosecond intervals. The dataiis
stored and the value of the last sampleis retained.

2. Four more samples of data are taken. If any of these four samples differ
from the last sample of the step 1, then these four samples are stored
and the last value is once again retained.

3. If al four samples of step 2 are the same as the last sample taken in step
1, then no datais stored. Instead, a counter isincremented. This
process will continue until a group of four samples is found which
differs from the retained sample. At thistime, the count will be stored
in the memory, the counters reset, the current data stored, and the last
sample of the four once again retained for comparison.

m‘ The stored count indicates the number of 40 ns intervals that have elapsed
Note wf between the old data and the new data.

The rows of the acquisition data may, therefore, be either four rows of
data followed by four more rows of data, or four rows of data followed by
four rows of count. Rows of count will always be followed by four rows of
data except for the last row, which may be either data or count.

@ This process is performed on a pod-by-pod basis. The individual status
Note bits will indicate what each pod is doing.

System Commands HP 1652B/1653B
6-16 Programming Reference

DATA

Example;
177
191
205
219
233
247
261
275
289
303
317
331
345
359
373
387

14457
14471
14485
14499

HP 1652B/1653B
Programming Reference

The following table is just an example. The meaning of the Information
bytes (Data or Count) depends upon the corresponding Status bytes.

Machi Machine? PodS Pod4 Pod3 Pod2 Pod

Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status

Status
Status
Status
Status

Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status

Status
Status
Status
Status

Data
Data
Data
Data
Data
Data
Data
Data
count
Count
count
count
Data
Data
Data
Data

Data
Data
Data
Data

Data
Data
Data
Data
count
count
count
Count
Data
Data
Data
Data
Data
Data
Data
Data

Data
Data
Data
Data

Data
Data
Data
Data
Count
Count
Count
count
Data
Data
Data
Data
count
count
count
count

Data
Data
Data
Data

*The headings are not a part of the returned data.

Data
Data
Data
Data
Data
Data
Data
Data
Count
Count
count
count
Data
Data
Data
Data

Data
Data
Data
Data

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

Data
Data
Data
Data

%

System Commands

6-17

DATA

|
Oscilloscope

Block

Oscilloscope
Data Section

Data

Section Header
Description

Section

14523
14533
14534
14535

Data

System Commands

6-18

The oscilloscope block data is described in the following sections. This
datais appended to the logic analyzer block data and is present only when
the oscilloscope is on and waveform data has been acquired and stored.

The oscilloscope data contains both a section header and section data
similar to the logic analyzer for both of its sections. The oscilloscope block
data sections are Oscilloscope Data and Oscilloscope Display Data.

1 Oscilloscope Data - the raw data captured on the last acquisition.

1 Oscilloscope Display Data - the segment of data displayed after
each acquisition.

The oscilloscope data and oscilloscope display data sections are sent only
when the oscilloscope is on and there is waveform data stored in the
oscilloscope memory.

The Oscilloscope Data section contains the raw data the oscilloscope
acquired on the last acquisition.

The oscilloscope data < section header > used bytes 14523 through 14539.
The 16 bytes of the section header are as follows:

10 bytes « Section name, "scorepat " (two trailing spaces)
1 byte - Reserved (dways 0)

1 byte - Unused

4 bytes - Length of oscilloscope data

The oscilloscope raw data < section data> contains theinitially acquired
data. Each data unit is contained in a byte. The lower six bits contain the
data, while the upper two bits are not used and as aresult, each data unit
can represent avalue from 0 to 63. The total number of bytesisthis
section is 4096 with the first 2048 bytes for channel 1 and the remaining
2048 bytes for channel 2.

HP 1652B/1653B
Programming Reference

DATA

14539

16587

Oscilloscope
Display Data
Section

1
Note “#

18635

22731

HP 1652B/1653B
Programming Reference

2048 bytes - raw oscilloscope data for channel 1.

2048 bytes - raw oscilloscope data for channel 1.

The display data section < section data > contains the initiad data
displayed after an acquisition. Each data unit is represented by a 16 bit
value which is generated by taking the raw oscilloscope data and shifting it
the the left by 8 hits.

Changing the seconds-per-division after the oscilloscope has stopped will
change the data displayed on the screen but it will not change the display
data in this section.

4096 bytes - Displayed oscilloscope data for channel 1
4096 bhytes » Displayed oscilloscope data for channel 2

System Commands
6-19

DSP
)

DSP (Display) command

The DSP command writes the specified quoted stringto a device
dependent portion of the instrument display.

Command Syntax: :SYSTem:DSP <string >

where:

<string > :: = string of up 1O 60 alphanumeric characters

Examples: OUTPUT XXX;":SYSTEM:DSP ‘The message goes here™

System Commands HP 1652B/1653B
6-20 Programming Reference

ERRor

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

ERRor

query

The ERRor query returns the oldest error number from the error queue.
A complete list of error numbers for the HP1652B/53B is shown in
appendix C, “Error Messages.” If no errors are present in the error queue,
azero is returned.

:8YSTem:ERRor?
[:SYSTem:ERRor] <error number> <NL>

10 OUTPUT XXX;":SYSTEM:ERROR?"

20 ENTER XXX;Err_num
30 PRINT Err-num

40 END

System Commands
621

HEADer

HEADer

Command Syntax:
Example:
Query Command:
Returned Format:

Example:

|
Note %

System Commands
822

command/query

The HEADER command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, query
responses will include the command header.

The HEADer query returns the current state of the HEADer command.

:SYSTem:HEADer {{ON|1}|{OFF|0}}
OUTPUT XXX;":SYSTEM:HEADER ON"

:8YSTem:HEADer?
[:SYSTem:HEADer]} { 1 |0} < NL>

10 DIM Mode$[100]
20 OUTPUT XXX;":SYSTEM:HEADER?"
30 ENTER XXX;Mode$

40 PRINT Mode$
50 END

Headers should be turned off when returning values to numeric variables.

HP 1652B/1653B
Programming Reference

KEY

]
Note %

Command Syntax:

where:

< key-code >

Example:

HP 1652B/1653B
Programming Reference

KEY

command/query

The KEY command allows you to simulate pressing a specified

front-panel key. Key commands may be sent over the bus in any order

that islegal from the front panel. Be sure the instrument isin adesired
setup before executing the KEY command. Key codes range from 0 to 36
with 99 representing no key (returned at power-up). See table 6-1 for key
codes.

The external KEY buffer is only two keys deep; therefore, attempting to
send KEY commands too rapidly will cause a KEY buffer overflow error
to be displayed on the HP 1652B/53B screen.

The KEY query returns the key code for the last front- panel key pressed
or the last simulated key press over the bus.

:SYSTem:KEY <key-code >

:: = integer from 0to 36

OUTPUT XXX;":SYSTEM:KEY 24~

System Commands
6-23

KEY

Query Syntax: :SysTem:KEY?
Returned Format: [:SYSTem:KEY] <key-code> <NL>

Example: 10 DIM Key$[100]
20 OUTPUT XXX;":SYSTEM:KEY?"
30 ENTER XXX; KEY$
40 PRINT KEY$

50 END
Table 6-1. Key codes
Key Value HP 1652B/53B Key Value HP1652B/53B
Key Key
0 RUN 19 D
1 STOP 20 E
2 unused 21 F
3 SELECT 22 unused
4 CHS 23 unused
5 Don't Care 24 Knob left
6 0 25 Knob right
7 1 26 L/R Roll
8 2 27 U/D Roll
9 3 28 unused
10 4 29 unused
1 5 30 unused
12 6 31 nH
13 7 32 Clear Entry
14 8 3 FORMAT/CHAN
15 9 A TRACE/MTRIG
16 A 35 DISPLAY
17 B 36 /O
18 C 99 Power Up
.
System Commands HP 1652B/1653B

624 Programming Reference

LER

LER

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

(LCL Event Register) query

The LER query alows the LCL (local) Event Register to be read. After
the LCL Event Register is read, it is cleared. A one indicates a
remote-to-loca transition has taken place. A zero indicates a
remote-to-local transition has not taken place.

:SYSTem:LER?
[:8YSTem:LER] {0|1}<NL>

10 DIM Event$[100]

20 OUTPUT XXX;":SYSTEM:LER?"
30 ENTER XXX;Event$

40 PRINT Event$

50 END

System Commands
6-25

LOCKout
|
LOCKout command/query

The LOCKout command locks out or restores front-panel operation.
When this function ison, al controls (except the power switch) are

entirely locked out.

The LOCKout query returns the current status of the LOCKout command.

Command Syntax: :SYSTem:LOCKout {{ON|1}|{OFF|0}}
Example: OUTPUT XXX;™:SYSTEM:LOCKOUT ON"
Query Syntax: :SYSTem:LOCKout?
Returned Format: [:SYSTem:LOCKout] {0]|1}<NL>

Example: 10 DIM Status$[100]
20 OUTPUT XXX;":SYSTEM:LOCKOUT?"
30 ENTER XXX;Status$
40 PRINT Status$
50 END

System Commands HP 1652B/1653B
6-26 Programming Reference

LONGform

——
LONGform command/query

The LONGform command sets the longform variable which tells the
instrument how to format query responses. If the LONGform command
is set to OFF, command headers and al pha arguments are sent from the
instrument in the abbreviated form. If the LONGform command is set to
ON, the whole word will be sent to the controller.

This command has no affect on the input data messages to the instrument.
Headers and arguments may be input in either the longform or shortform
regardless of how the LONGform command is set.

The query returns the status of the LONGform command.

Command Syntax: :SYSTem:LONGform {{ON|1}|{OFF|0}}
Example: OUTPUT XXX;":SYSTEM:LONGFORM ON"
Query Syntax: :SYSTem:LONGform?
Returned Format: {:SYSTem:LONGform] {1(0} <NL>

Example: 10 DIM Mode$ {100]
20 OUTPUT XXX;'":SYSTEM:LONGFORM?"
30 ENTER XXX;Mode$
40 PRINT Mode$
50 END

HP 1652B/1 653B System Commands
Programming Reference 6-27

MENU

MENU command/query

The MENU command puts a menu on the display.
The MENU query returns the current menu selection.

Command Syntax: :8YSTem:MENU c menu-type >, <mach_num >

where:
< menu-type> i = {SCONfig|FORMat CHANnel TRACe TRIGger| DISPlay WAVeform SWAVeform
COMPare SCHart SLISt}
<mach num > n= {0 1 2 3
0 :=mixed mode
! = analyzer 1
2 o= analyzer 2
3 = oscilloscope

Example: OUTPUT XXX;"SYSTEM:MENU FORMAT.I"
Query Syntax: :sySTem:MENU?
Returned Format: [:SYSTem:MENU] <menu-type >, < mach_num >

Example: 10 DIM Response$[100]
20 OUTPUT XXX;":SYSTEM:MENU?"
30 ENTER XXX;Response$
40 PRINT Response$
50 END

System Commands HP 1652B/1653B
6-28 Programming Reference

MESE

Command Syntax:

where:

< enable mask >

Example:

HP 1652B/1653B
Programming Reference

MESE

command/query

The MESE command sets the Module Event Status Enable Register hits.
The MESE register contains a mask value for the bits enabled in the
MESR register. A one in the MESE will enable the corresponding hit in
the MESR, a zero will disable the bit.

The MESE query returns the current setting.

Refer to table 6-2 for information about the Module Event Status Enable
register hits, bit weights, and what each bit masks for the logic analyzer.

:SYSTem:MESE <enable-mask>

:» = integer from 0 to 255

OUTPUT XXX;” :SYSTEM:MESE 1"

System Commands
629

MESE

Query Syntax: :8YSTem:MESE?

Returned Format: [:SYSTem:MESE] <enable-mask> <NL>

Example: 10 OUTPUT XXX;":SYSTEM:MESE?"
20 ENTER XXX; Mes

30 PRINT Mes

40 END

Table 62. Module Event Status Enable Register

Module Event Status Enable Register
(A “1" enables the MESR bit)

Bit Weight| Enables

7 128 Not used

6 64 Not used

5 32 Not used

4 16 Not used

3 8 Not used

2 4 Not used

1 2 RNT - Run until satisified
0 1 MC « Measurement complete

System Commands
630

HP 1652B/1653B
Programming Reference

MESR

MESR query

The MESR query returns the contents of the Module Event Status
register.

@ Reading the register clears the Module Event Status Register.
Note

Table 6-3 shows each bit in Module Event Status Register and their bit
weights for the logic analyzer. When you read the MESR, the value
returned isthe total bit weights of all bitsthat are set at the time the
register isread.

Query Syntax: :SYSTem:MESR?
Returned Format: [:SYSTem:MESR] <« status > < NL>

where:

< status > 2 = integer from 0 to 255

Example: 10 OUTPUT XXX;":SYSTem:MESR?"
20 ENTER XXX; Mer
30 PRINT Mer
40 END

HP 1652B/1653B System Commands
Programming Reference 631

MESR

System Commands
6-32

Table 83. Module Event Status Register

Module Event Status Register

Bit

Weight

Condition

_ WAoo

[EEN
N
(o]

s o5 8R

Not used

Not used

Not used

Not used

Not used

Not used

1 = Run until satisified

0 = Run until not satisified

1 = Measurement complete
0 = Measurement not complet

HP 1652B/1653B
Programming Reference

PPOWer

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B
Programming Reference

PPOWer

query

The PPOWer (preprocessor power) query returns the current status of
the HP 1652B/53B’s high-current limit circuit. If it is functioning properly,
Oisreturned. If the current draw istoo high, 1 isreturned until the
problem is corrected and the circuit automatically resets.

:PPOWer?

[:PPOWer] {o 1}

10 DIM Response$[10]

20 OUTPUT XXX;":PPOWER?"
30 ENTER XXX; Response$
40 PRINT Response$

50 END

System Commands
633

PRINt

PRINt command

The PRINt command initiates a print of the screen or print al over the
RS-232C bus. The PRINt parameters SCReen or ALL specify how the
screen data is sent to the controller. PRINt SCReen transfers the data to
the controller in a printer specific graphics format. PRINt ALL transfers
the datain araster format for the following menus:

I State and Timing Format menus
1 Disk menu

1 Stateand Timing Symbol menus
e State Listing menu

1 State Trace

e State Compare

Command Syntax: :8YSTem:PRINt {SCReen |ALL}

Example: OUTPUT XXX;':SYSTEM:PRINT SCREEN”

System Commands HP 1652B/1653B
6-34 Programming Reference

RMODe

RMODe command/query

The RMODe command is arun control command that specifiestherun
mode for logic analyzer and oscilloscope. It is at the same level in the
command tree as S$YSTem; therefore, it is not preceded by :SYSTem.

The query returns the current setting.

0 :' After specifying the run mode, use the STARt command to start the
Note J acquisition,

Command Syntax: :RMODe {SINGle REPetitive}
Example: ~ OUTPUT XXX;":RMODE SINGLE”
Query Syntax: :RMODe?
Retuned Format: [:RMODe] {SINGle |REPetitive} c NL>

Example: 10 DIM Mode$ [100)
20 OUTPUT XXX;":RMODE?"
30 ENTER XXX;Mode$
40 PRINT Mode$
50 END

HP 1652B/1653B System Commands
Programming Reference 6-35

SETup

SETup command/query

The SY Stem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller.

The SY Stem:SETup query returns a block of datathat contains the
current configuration to the controller.

There are three data sections which are always returned and a fourth
header when the oscilloscope is on and has acquired and stored waveform
data. These are the strings which would be included in the section header:

® "CONFIG "
® 1650 RS232"
® 1650 DISP *
® 1650 DISP2"
® ""SCOPECNF "

Additionally, the following sections may also be included, depending on
what's loaded:

"SYMBOLS A "
"SYMBOLS B "
"SPA DATA A"
"SPA DATA 8"
"INVASH A "
"INVASM g
"COMPARE "

System Commands HP 1652B/1653B
6-36 Programming Reference

SETup

Command syntax: :SYStem:SETup <blockdata>

where:
< block data > ;2= <block length specifier > <section > . . .
< block length specifier > = #8<length>
< length > :: = the total length of all sections in byte format (must be represented with 8 digits)
<section > ;i = ¢ section header > <section data>
<section header » 1 = 16 bytes in the following format:
10 bytes for the section name
1 byte reserved
1 byte for the module ID code (31 for the logic analyzer)
4 bytes for the length of the section data in bytes
<section data > :» = format depends on the type of data
12

Note 'J The total length of asection is 16 (for the section header) plus the length
of the section data. So when calculating the value for < length>, don’t
forget to include the length of the section headers.

Example: ouTPUT XXX USING "#,K";":SYSTEM:SETUP " <block data >
Query Syntax: :SYStem:SETup?
Retuned Format: [:SYStem:SETup] c block data> ¢ NL>

HP-IB Example: 10 DIM Block$[32000] tallocate enough mcmory for block data
20 DIM Specif ier$ [2]
30 OUTPUT XXX; *:SYSTEM:HEAD OFF”
40 OUTPUT XXX;":SYSTEM:SETUP?" I send setup query
50 ENTER XXX USING "#,2A";Specifier§!read in #8
60 ENTER XXX USING "#,80";Blocklength! read in block length
70 ENTER XXX USING "-K";Block$ | read in data
80 END

HP 1652B/1653B System Commands
Programming Reference 6-37

STARt

STARt command

The STARt command is a run control command that starts the logic
analyzer running in the specified run modc (see RMODe). The STARt
command is on the same level in the command tree as SYSTem; therefore,
itisnot preceded by :SYSTem.

The STARt command is an Overlapped Command. An Overlapped

Note Command is acommand that allows execution of subsequent commands
while the device operations initiated by the Overlapped Command are still

in progress.

Command Syntax: :STARt

Example: ouTPUT XXX:":START"

System Commands HP 1652B/1653B
6-38 Programming Reference

STOP

STOP command

The STOP command is a run control command that stops the logic
analyzer. The STOP command is on the same level in the command tree
as SYSTem; therefore, it is not preceded by :SYSTem.

||;' The STOP command is an Overlapped Command. An Overlapped
Note J Command is acommand that allows execution of subsequent commands
while the device operations initiated by the Overlapped Command are still
in progress.

Command Syntax: :STOP

Example: OUTPUT XXX;*:STOP

HP 1652B/16538 System Commands
Programming Reference 6-39

MMEMory Subsystem 7

Introduction

Note '#

HP 1652B/1653B
Programming Reference

MMEMory subsystem commands provide access to the disk drive. The
MMEMory subsystem commands are:

AUToload
CATalog
COPY
DOWNIoad
INITialize
LOAD
PACK
PURGe
REName
STORe
UPLoad

If you are not going to Store information to the configuration disk, or if the
disk you are using contains information you need, it is advisable to write
protect your disk. This will protect the contents of the disk from
accidental damage due to incorrect commands, etc.

MMEMory Subsystem
7-

MMEMory 1652B/1653B
7-2 Programming Reference

