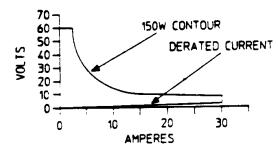
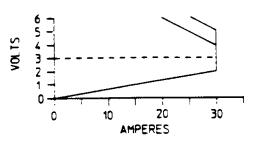


# Advanced Test Equipment Rentals - www.atecorp.com 800-404-ATEC (2832)

### Table 60501-1. Specification and Supplemental Characteristics


#### **SPECIFICATIONS**


## **DC Input Rating:**

Current: 0 to 30 A

**Voltage**: 3 to 60 V (minimum dc operation from 0 to 2 V for 0 to 30 A)

**Power:** 150 W at 40 °C (derated to 112 W at 55 °C)





### A. OPERATING CHARACTERISTICS

## **B. DERATED CURRENT DETAIL**

#### **Constant Current Mode:**

**Ranges:** 0 to 3 A; and 0 to 30 A

**Accuracy:** (after 30 second wait):  $\pm 0.1\% \pm 40$  mA (both ranges)

**Resolution:** 0.8 mA (3 A range); 8 mA (30 A range)

**Regulation:** 10 mA (both ranges)

**Temperature Coefficient:** 100 ppm/ $^{\circ}$ C  $\pm$  3 mA/ $^{\circ}$ C (both ranges)

## **Constant Resistance Mode:**

**Ranges:**  $0.067 \text{ to } 2 \Omega$ ;  $2 \Omega \text{ to } 2 \text{ k}\Omega$ ; and  $20 \Omega \text{ to } 10 \text{ k}\Omega$ **Accuracy:**  $\pm 0.8\% \pm 16 \text{ m}\Omega \text{ with } \geq 6 \text{ A at input } (2 \Omega \text{ range});$ 

 $\pm 0.3\% \pm 5$  mS with  $\geq 6$  V at input (2 k and 10 k $\Omega$  ranges)

Resolution: $0.54 \text{ m}\Omega$  (2 Ω range); 0.14 mS (2 kΩ range); 0.014 mS (10 kΩ range)Regulation:10 mV with remote sensing (2 Ω range); 10 mA (2 k and  $10 \text{ k}\Omega$  ranges)

**Temperature Coefficient:** 800 ppm/°C  $\pm$  0.8 m $\Omega$ /°C (2  $\Omega$  range);

300ppm/°C  $\pm 0.5$  mS/°C (2 k and 10 k $\Omega$  ranges)

# **Constant Voltage Mode:**

**Range:** 0 to 60 V

**Accuracy:**  $\pm 0.1\% \pm 50 \text{ mV}$ 

Resolution: 16 mV

**Regulation:** 5 mV (remote sense); 40 mV (local sense)

**Temperature Coefficient:**  $100 \text{ ppm/}^{\circ}\text{C} \pm 5 \text{ mV/}^{\circ}\text{C}$ 

#### Table 60501-1 Specifications and Supplemental Characteristics (continued)

## **Transient Operation:**

**Continuous Mode** 

Frequency Range: 0.25 Hz to 10 kHz

Frequency Resolution: 4% Frequency Accuracy: 3%

**Duty Cycle Range:** 3% to 97% (0.25 Hz to 1 kHz); 6% to 94% (1 kHz to 10 kHz)

**Duty Cycle Resolution:** 4%

**Duty Cycle Accuracy:** 6% of setting  $\pm 2\%$ 

**Pulsed Mode** 

**Pulse Width:** 50  $\mu$ s  $\pm$  3% minimum; 4 s  $\pm$  3% maximum

## **Transient Current Level** (0 to 3 A and 0 to 30 A ranges):

**Resolution:** 13 mA (3 A range); 130 mA (30 A range)

**Accuracy:**  $\pm 0.1\% \pm 40 \text{ mA (3 A range)}; \pm 0.1\% \pm 200 \text{ mA (30 A range)}$ 

**Temperature Coefficient:**  $100 \text{ ppm/}^{\circ}\text{C} \pm 5 \text{ mA/}^{\circ}\text{C}$ 

#### **Transient Resistance Level** (0.067 to 2 $\Omega$ , 2 $\Omega$ to 2 k $\Omega$ , and 20 $\Omega$ to 10 k $\Omega$ ranges):

**Resolution:** 8.6 m $\Omega$  (2  $\Omega$  range); 2.1 mS (2 k $\Omega$  range); 0.2 mS (10 k $\Omega$  range)

Accuracy:  $\pm 0.8\% + 16 \text{ m}\Omega \text{ with } \ge 3 \text{ A at input } (2 \Omega \text{ range})$   $\pm 0.3\% + 5 \text{ mS with } \ge 6 \text{ V at input } (2 \text{ k}\Omega \text{ range})$ 

 $\pm 0.3\% + 5$  mS with  $\geq 6$  V at input (10 k $\Omega$  range)

## Transient Voltage Level (0 to 60 V):

Resolution: 260 mV

Accuracy:  $\pm 0.1\% \pm 300 \text{ mV}$ Temperature Coefficient:  $150 \text{ ppm/}^{\circ}\text{C} \pm 5 \text{ mV/}^{\circ}\text{C}$ 

#### **Current Readback:**

**Resolution:** 9 mA (via GPIB); 10 mA (front panel) **Accuracy:** (after 30 minute wait):  $\pm$  0.06%  $\pm$  40 mA

**Temperature Coefficient:** 65 ppm/ $^{\circ}$ C  $\pm$  3 mA/ $^{\circ}$ C

## Voltage Readback:

**Resolution:** 17 mV (via GPIB); 20 mV (front panel)

#### **Power Readback:**

Accuracy:  $\pm 0.2\% \pm 2 \text{ W}$ 

#### Table 60501-1 Specifications and Supplemental Characteristics (continued)

# External Analog Programming 0 to 10 V (dc or ac):

**Bandwidth:** 10 kHz (3 db frequency)

**Accuracy:**  $\pm 4.5\% \pm 40 \text{ mA } (0 \text{ to } 3 \text{ A range})$ 

 $\pm 4.5\% \pm 130 \text{ mA } (0 \text{ to } 30 \text{ A range}) \\ \pm 0.8\% \pm 200 \text{ mV } (0 \text{ to } 60 \text{ V range})$ 

**Temperature Coefficient:**  $100 \text{ ppm/}^{\circ}\text{C} \pm 3 \text{ mA/}^{\circ}\text{C} \text{ (current ranges)}$ 

 $100 \text{ ppm/}^{\circ}\text{C} \pm 1 \text{ mV/}^{\circ}\text{C} \text{ (voltage range)}$ 

External Current Monitor (0 to 10 V):

**Accuracy:**  $\pm 4\% \pm 40$  mA (referenced to analog common)

**Temperature Coefficient:**  $60 \text{ ppm/}^{\circ}\text{C} \pm 3 \text{ mA/}^{\circ}\text{C}$ 

External Voltage Monitor (0 to 10 V):

**Accuracy:**  $\pm 0.25\% \pm 40 \text{ mV}$  (referenced to analog common)

**Temperature Coefficient:** 50 ppm/  $^{\circ}$ C  $\pm$  0.2 mV/  $^{\circ}$ C

**Remote Sensing:** 5 Vdc maximum between sense and input binding posts

**Maximum Input Levels:** 

**Current:** 30.6 A (programmable to lower limits)

Voltage: 75 V

Minimum Operating Voltage: 2 V (derated to 0 V at 0 A)

PARD (20 Hz to 10 MHz noise):

**Current:** 2 mA rms/20 mA p-p

**Voltage:** 5 mV rms

**DC Isolation Voltage:**  $\pm 240 \text{ Vdc}$  between + or - input binding post and chassis ground

**Digital Inputs:** 

VIo: 0.9 V maximum at IIo = -1 mA

**V**hi 3.15 V minimum (pull-up resistor on input)

**Digital Outputs:** 

VIo: 0.72 V maximum at IIo = 1 mA Vhi: 4.4 V minimum at IIo - 20  $\mu$ A

### SUPPLEMENTAL CHARACTERISTICS

**Programmable Slew Rate** (For any given input transition, the time required will be either the total slew time or a minimum transition time, whichever is longer. The minimum transition time increases when operating with input currents under 1 A. The following are typical values;  $\pm 25\%$  tolerance):

Table 60501-1 Specifications and Supplemental Characteristics (continued)

#### **Current Slew Rate:\***

| Rate # | 30 A Range Step              | 3 A Range Step               | <b>Transition Time</b> |
|--------|------------------------------|------------------------------|------------------------|
| 1      | 0.5 A/ms                     | 0.05  A/s                    | 8.0 ms                 |
| 2      | 1.2 A/ms                     | 0.12  A/s                    | 3.2 ms                 |
| 3      | 2.5 A/ms                     | 0.25 A/ms                    | 1.6 ms                 |
| 4      | 5 A/ms                       | 0.5 A/ms                     | 800 μs                 |
| 5      | 12 A/ms                      | 1.2 A/ms                     | 320 µs                 |
| 6      | 25 A/ms                      | 2.5 A/ms                     | 160 μs                 |
| 7      | $0.05 \text{ A/}\mu\text{s}$ | 5 A/ms                       | 80 μs                  |
| 8      | 0.12 A/μs                    | 12 A/ms                      | 32 µs                  |
| 9      | 0.25 A/μs                    | 25 A/ms                      | 16 μs                  |
| 10     | 0.5 A/μs                     | $0.05 \text{ A/}\mu\text{s}$ | 12 μs                  |
| 11     | 1.2 A/μs                     | $0.12 \text{ A/}\mu\text{s}$ | 12 μs                  |
| 12     | 2.5 A/μs                     | $0.25 \text{ A/}\mu\text{s}$ | 12 μs                  |
|        |                              |                              |                        |

<sup>\*</sup>AC performance specified from 3 to 60 V.

# **Voltage Slew Rate:**

| Rate # | Voltage Range Step          | Transition Time* |
|--------|-----------------------------|------------------|
| 1      | 1 V/ms                      | 8.0 ms           |
| 2      | 2.5 V/ms                    | 3.2 ms           |
| 3      | 5 V/ms                      | 1.6 ms           |
| 4      | 10 V/ms                     | 800 μs           |
| 5      | 25 V/ms                     | 320 µs           |
| 6      | 50 V/ms                     | 160 μs           |
| 7      | 0.1 V/µs                    | 85 μs            |
| 8      | 0.25 V/μs                   | 85 μS            |
| 9      | $0.5 \text{ V/}\mu\text{s}$ | 85 μS            |

<sup>\*</sup>Transition time based on low capacitance current source.

**Resistance Slew Rate** (2  $\Omega$  range): Uses the value programmed for voltage slew rate.

**Resistance Slew Rate** (2 k and 10 k $\Omega$  ranges): Uses the value programmed for current slew rate.

# Transient Current Overshoot (When programmed from 0A):

| Range | <b>Transient Current Level</b> | <b>Current Slew Rate</b>                                   | Overshoot* |
|-------|--------------------------------|------------------------------------------------------------|------------|
| 30 A  | 3-30 A                         | All slew rates                                             | 0          |
|       | 1.5 A                          | $0.5 \text{ A/}\mu\text{s}$ to $2.5 \text{ A/}\mu\text{s}$ | 6%         |
|       | 1.5 A                          | $0.5 \text{ A/ms}$ to $0.25 \text{ A/}\mu\text{s}$         | 0          |
| 3 A   | 3 A                            | All slew rates                                             | 0          |
|       | 1.5 A                          | 0.13 A/μs and 0.25 A/μs                                    | 3%         |
|       | 1.5 A                          | $0.05$ A/ms and $0.05$ A/ $\mu$ s                          | 0          |

<sup>\*</sup>Overshoot may be higher during first five seconds of programming if unit has been operating at full current. Overshoot values assume a total inductance of  $l\mu H$ , or less, in the load leads connected to the D.U.T.

# Table 60501-1 Specifications and Supplemental Characteristics (continued)

**Source Turn-On Current Overshoot:** Less than 10% of final value (in CC and CR modes when connected to power supplies with voltage rise times of greater than  $500\mu s$ ).

**Programmable Short Circuit:**  $0.066 \Omega (0.04 \Omega \text{ typical})$ 

**Programmable Open Circuit:**  $20 \text{ k}\Omega \text{ (typical)}$ 

**Drift Stability** (over an 8 hour interval):

 $\begin{tabular}{lll} \textbf{Current:} & & \pm 0.03\% \pm 5 \ mA \\ \textbf{Voltage:} & & \pm 0.01\% \pm 10 \ mV \\ \end{tabular}$ 

**Reverse Current Capacity:** 50 A when unit is on; 20 A when unit is off

**Weight:** 3.2 kg (7 lbs.)

Table 60501-2. Programming Ranges

| Function             | Front Panel  | Front Panel | HPSL Command      | Range of Values                                    |
|----------------------|--------------|-------------|-------------------|----------------------------------------------------|
|                      | Key          | Display     | (Short Form)      |                                                    |
| Constant Current     |              |             |                   |                                                    |
| Set Range            | Range        | C:RNG value | "CURR:RANG value" |                                                    |
| Low Range            |              |             |                   | $\geq 0$ and $\leq 3$ A                            |
| High Range           |              |             |                   | $>$ 3 A and $\leq$ 30 A                            |
| Set Main Level       | CURR         | CURR value  | "CURR value"      |                                                    |
| Low Range            |              |             |                   | 0 to 3 A                                           |
| High Range           |              |             |                   | 0 to 30 A                                          |
| Set Slew Rate        | (shift) Slew | C:SLW value | "CURR:SLEW value" |                                                    |
| Low Range            |              |             |                   | 0.00005 to 0.25 (A/µs)                             |
| High Range           |              |             |                   | 0.0005 to 2.5 (A/μs)                               |
| Set Transient Level  | Tran Level   | C:TLV value | "CURR:TLEV value" | same as main level                                 |
| *Set Triggered Level |              |             | "CURR:TRIG value" | same as main level                                 |
| Constant Resistance  |              |             |                   |                                                    |
| Set Range            | Range        | R:RNG value | "RES:RANG value"  |                                                    |
| Low Range            |              |             |                   | $\geq 0$ and $\leq 2 \Omega$                       |
| Middle Range         |              |             |                   | $> 2 \Omega$ and $\le 2 k\Omega$                   |
| High Range           |              |             |                   | $>2 \text{ k}\Omega$ and $\leq 10 \text{ k}\Omega$ |
| Set Main Level       | RES          | RES value   | "RES value"       |                                                    |
| Low Range            |              |             |                   | 0 to 2 Ω                                           |
| Middle Range         |              |             |                   | $2 \Omega$ to $2 k\Omega$                          |
| High Range           |              |             |                   | $20~\Omega$ to $10~\mathrm{k}\Omega$               |
| Set Slew Rate        | (shift) Slew |             |                   |                                                    |
| Low Range            |              | V:SLW value | "VOLT:SLEW value" | same as voltage slew                               |
| Middle/High Range    |              | C:SLW value | "CURR:SLEW value" | same as current slew                               |
| Set Transient Level  | Tran Level   | R:TLV value | "RES:TLEV value"  | same as main level                                 |
| *Set Triggered Level |              |             | "RES:TRIG value"  | same as main level                                 |
| Constant Voltage     |              |             |                   |                                                    |
| Set Main Level       | VOLT         | VOLT value  | "VOLT value"      | 0 to 60 V                                          |
| Set Slew Rate        | (shift) Slew | V:SLW value | "VOLT:SLEW value" | 0.001 to 0.5 (V/µs)                                |
| Set Transient Level  | Tran Level   | V:TLV value | "VOLT:TLEV value" | same as main level                                 |
| *Set Triggered Level |              |             | "VOLT:TRIG value" | same as main level                                 |

Table 60501-2. Programming Ranges (continued)

| Transient Operation       |                |              |                       |                       |  |
|---------------------------|----------------|--------------|-----------------------|-----------------------|--|
| Set Frequency             | FREQ           | FREQ value   | "TRAN:FREQ value"     | 0.25 Hz to 10 kHz     |  |
| Set Duty Cycle            | (shift) Dcycle | DCYCLE value | "TRAN:DCYC value"     | 3-97% (0.25 Hz-1 kHz) |  |
|                           |                |              |                       | 6-94% (1 kHz-10 kHz)  |  |
| *Set Pulse Width          |                |              | "TRAN:TWID value"     | 0.00005 to 4 s        |  |
| Trigger Operation         |                |              |                       |                       |  |
| *Set Trigger Period       |                |              | "TRIG:TIM value"      | 0.000008 to 4 s       |  |
| <b>Current Protection</b> |                |              |                       |                       |  |
| *Set Current Level        |                |              | "CURR:PROT value"     | 0 to 30.6 A           |  |
| *Set Delay Time           |                |              | "CURR:PROT:DEL value" | 0 to 60 s             |  |
| *C 1.1 1 1.1 CDID         |                |              |                       |                       |  |

\*Can only be programmed remotely via the GPIB.

Table 60501-3. Factory Default Settings

| Function                  | Settings             | Function                           | Setting       |
|---------------------------|----------------------|------------------------------------|---------------|
| CURR level                | 0 A                  | Mode (CC, CR, CV)                  | CC            |
| CURR transient level      | 0 A                  | Input (on/off)                     | on            |
| *CURR slew rate           | 0.5 A/μs             | Short (on/off)                     | off           |
| CURR range                | 30 A                 |                                    |               |
| _                         |                      | Transient operation (on/off)       | off           |
| *CURR protection (on/off) | off                  | ***TRAN mode                       | continuous    |
| **CURR protection level   | 30.6 A               | (continuous, pulse, toggle)        |               |
| **CURR protection delay   | 15 s                 | TRAN frequency                     | 1 kHz         |
|                           |                      | TRAN duty cycle                    | 50%           |
| RES level                 | $2 \text{ k}\Omega$  | **TRAN pulse width                 | 0.5 ms        |
| RES transient level       | $2 \text{ k}\Omega$  |                                    |               |
| RES range                 | $2~\mathrm{k}\Omega$ | **TRIG source                      | hold          |
|                           |                      | (bus, external, hold, timer, line) |               |
| VOLT level                | 60 V                 | **TRIG period                      | 0.001 s       |
| VOLT transient level      | 60 V                 | **PORT0 output (on/off)            | off (logic 0) |
| VOLT slew rate            | 5 V/μs               | **CAL mode (on/off)                | off           |

The \*RST command resets the CURR slew rate to 2.5 A/ $\mu$ , not to the factory default.

<sup>\*\*</sup>Can only be programmed remotely via the GPIB.

\*\*\*Continuous transient mode is the only mode available at the front panel. Pulsed, toggled, and continuous modes can all be programmed remotely via the GPIB.

Table 60501-4. Calibration Information

| Ranges and Calibration Points | Variables      | Variables<br>Value | Power Supply Settings | Current<br>Shunt |
|-------------------------------|----------------|--------------------|-----------------------|------------------|
| High Current Range            | Hi_curr_rng    | 30                 | 5 V/31 A              | 100 A            |
| High Current Offset           | Hi_curr_offset | 0.013              |                       |                  |
| Low Current Range             | Lo_curr_rng    | 3                  | 5 V/10 A              | 15 A             |
| Low Current Offset            | Lo_curr_offset | 0.013              |                       |                  |
| Voltage Range                 | N/A            | N/A                | 61 V/2 A              | N/A              |
| Voltage Hi point              | Volt_hipt      | 60                 |                       |                  |
| Voltage Lo point              | Volt_lopt      | 2.7                |                       |                  |
| Low Resistance Range          | Lo_res_rng     | 2                  | 15 V/5.5 A            | 15 A             |
| Low Resistance Hi point       | Lo_res_hipt    | 1.9                |                       |                  |
| Low Resistance Lo point       | Lo_res_lopt    | 0.067              |                       |                  |
| Middle Resistance Range       | Mid_res_rng    | 20                 | 10.9 V/8 A            | 15 A             |
| Middle Resistance Hi point    | Mid_res_hipt   | 60                 |                       |                  |
| Middle Resistance Lo point    | Mid_res_lopt   | 2.1                |                       |                  |
| High Resistance Range         | Hi_res_rng     | 2002               | 60 V/5 A              | 15 A             |
| High Resistance Hi point      | Hi_res_hipt    | 200                |                       |                  |
| High Resistance Lo point      | Hi_res_lopt    | 24                 |                       |                  |