

E4432A Digital RF Signal Generator, 250 kHz to 3000 MHz

Data Sheet

Frequency Specifications Frequency Range¹ Agilent ESG-D3000A: 250 kHz to 3000 bMHz Resolution: 0.01 Hz Switching Speed Modulation On: <45 ms, typical Modulation Off: <35 ms, typical Accuracy: Same as timebase ¹Analog only RF Signal Generators are also available. See ESG Series Analog RF Signal Generators. Sweep Modes Operating modes Step: frequency & power, and arbitrary list Dwell Time: 2 ms to 60 sec Number of Points: 2 to 401 Internal Reference Oscillator Stability Standard (typical) High Stability (Opt 1E5) Aging Rate <±2 ppm/yr <±0.1 ppm/yr or <± 0.0005 ppm/day after 45 days **Temperature** $<\pm 1$ ppm $<\pm 0.05$ ppm, typical (0° to 55° C) Line Voltage <±0.1 ppm <±0.002 ppm, typical (+5%, -10%) (+5%, -10%) Timebase Reference Output Frequency: 10 MHz Amplitude: >0.35 V_{rms} into 50 ohm load External Reference Input Frequency: 1, 2, 5, 10 MHz ± typ. 10 ppm Option 1E5: 1 ppm, typical Amplitude: >0.15 V_{rms} Input Impedance: 50 ohm Output Range 250 kHz to 1000 MHz: +13 to -136 dBm >1000 MHz to 3000 MHz: +10 to -136 dBm >3000 MHz to 4000 MHz: +7 to -136 dBm Resolution 0.02 dB Level Accuracy² (at 23 ±5°C) +7 to -127 dBm <-127 dBm 250 kHz to 2 GHz: ±0.5 dB ±1.5 dB 2 GHz to 4 GHz: ±0.9 dB ±2.5 dB Attenuator Hold Level Range: >17 dB Switching Speed: <25 ms typical With Power Search Mode: <210 ms typical Reverse Power Protection: 250 kHz to 2000 MHz: 50 Watts >2000 MHz to 4000 MHz: 25 Watts Max DC Voltage: 50 V SWR (typical) 250 kHz to 2000 MHz: <1.4:1 >2000 to 4000 MHz: <1.9:1 **Output Impedance:** 50 ohms ²Accuracy degrades by 0.02 dB/°C over full temperature range and by 0.3 dB above +7 dBm. Level Accuracy with Digital Modulation (With ALC on; relative to CW; with PRBS-modulated data; if using I/Q inputs, = [square root of $(I^2 + Q^2)$]=0.5 V_{rms} nominal)³ pi/4 DQPSK or QPSK Formats: ±0.15 dB (with raised cosine or root-raised cosine filter and alpha >=0.35; with 10 kHz <symbol rate <1 MHz; at RF Freq. >25 MHz; power <max. specified -3 dBm) Constant Amplitude Formats (FSK, GSMK, etc.): no degradation in power level accuracy Level Accuracy with ALC Off⁴: ±0.5 dB, typical (after power search is executed; relative to CW level accuracy with ALC on; with burst off if external I/Q is enabled: [square root of $(I^2 + Q^2)$] = 0.5 V_{rms}) ³Typical, level accuracy with ALC on will be maintained with drive levels between 0.25 and 1.0 V_{rms}. ⁴When applying external I/Q signals with ALC off, output level will vary directly with I/Q input level. Frequency Bands Band Frequency Range N# 1 250 kHz to <=249.999 MHz 1 2 >249.999 to <=500 MHz 0.5 3 >500 MHz to <=1 GHz 1 4 >1 to <=2 GHz 2 5 >2 to 4 GHz 4

Spectral Purity SSB Phase Noise (typical, at 20 kHz offset) at 500 MHz: <-120 dBc/Hz at 1000 MHz: <-116 dBc/Hz at 2000 MHz: <-110 dBc/Hz at 3000 MHz: <-104dBc/Hz at 4000 MHz: <-104 dBc/Hz Residual FM (CWmode, 0.3-3 kHz BW,CCITT, rms): Phase Noise Mode 1: <N x 2 Hz Phase Noise Mode 2: <N x 4 Hz Harmonics <=+4 dBm output level: <-30 dBc Nonharmonics (>3 kHz offset, <+7 dBm output level) 250 kHz to 1000 MHz: <-65 dBc >1000 MHz to 2000 MHz: <-59 dBc >2000 MHz: <-53 dBc Subharmonics <=1000 MHz: None >1000 MHz: <-40 dBc IQ Modulation **I&O Inputs:** Input Impedance: 50 ohms Full Scale Input: [square root of $(I^2 + Q^2)$]=0.5 V_{rms} External Input RF Bandwidth (1 dB):20 MHz, typical Adjustments/Impairments (nominal) DC Offset (I + Q independently adjustable): ±100% I/Q Gain Ratio: ±4 dB **DC Vector Accuracy⁵**: (relative to full scale, at $\leq +7$ dBm) Frequency GHz: <0.6 0.6 to 2 2 to 3.7 <=4 Static EVM⁶ (rms): <0.75% <0.5% 0.75% <1% Magnitude Error⁶ (rms): <0.5% <0.35% <0.5% <0.75% Phase Error⁶ (rms): <0.35° <0.25° <0.35° <0.5° Origin Offset dBc: <-46 <-46 <-40 <-40 ⁵ Valid for 10 days after executing internal calibration routine, provided temperature is maintained within $\pm 5^{\circ}$ C of calibration temperature. ⁶Measured at full scale with origin offset removed. Frequency Modulation Maximum Deviation: N x 10 MHz **Resolution:** 0.1% of deviation or 1 Hz, whichever is greater Deviation Accuracy (1 kHz rate, dev. <N x 100 kHz): <±(3.5% of FM deviation + 20 Hz) Modulation Frequency Response (deviation = 100 kHz) Path Rates 1 dB Bandwidth 3 dB Bandwidth, typical FM1 dc/20 Hz to 100 kHz dc/5 Hz to 10 MHz FM2 dc/20 Hz to 100 kHz dc/5 Hz to 1 MHz Distortion (1 kHz rate, THD, dev. = N x 100 kHz): <1% Phase Modulation Maximum Deviation: N x 90 radians **Resolution:** 0.1% of set deviation **Deviation Accuracy (1 kHz rate):** $<\pm(5\% \text{ of deviation} + 0.01 \text{ radians})$ Modulation Frequency Response PM Mode Maximum Rates (3 dB BW) Deviation PM1 PM2 Normal BW N x 90 rad dc to 100 kHz dc to 100 kHz High BW N x 2pi rad dc to 1.5 MHz (typ) dc to 1 MHz (typ) N x pi/2 rad dc to 4 MHz (typ) dc to 0.9 MHz (typ) Distortion (1 kHz rate, THD, dev <N x 90 rad): <1% Amplitude Modulation fc>500 kHz Range (envelope peak<=max specified power): 0 to 100% Resolution: 0.1% Rates (3 dB Bandwidth): dc/10 Hz to 10 kHz Distortion (1 kHz rate, THD) 30% AM: <1.5% 90% AM: <4% Accuracy (1 kHz rate): $<\pm(5\%$ of setting +1%) Wide Band AM Rate (1 dB Bandwidth, typical) ALC On: 400 Hz to 10 MHz ALC Off: DC to 10 MHz Input: I Input **Impedance:** 50 ohms Sensitivity: 0.5 V=100% Pulse Modulation On/Off Ratio <=3 GHz: >80 dB >3 GHz: >60 dB Rise/Fall Times: 150 ns, typical Minimum Width ALC On: 2 µs, typical ALC Off: 0.4 µs, typical Pulse Repetition Frequency ALC On: 10 Hz to 250 kHz, typical ALC Off: DC to 1.0 MHz, typical **Level Accuracy** (relative to CW)⁷: ±0.5 dB, typical **External Input:** Ext 2 Input Voltage RF On: >+0.5 V, nominal RF Off: <+0.5 V, nominal Input Impedance: 50 ohms, nominal Internal Pulse Generator Squarewave Rate: 0.1 Hz to 50 kHz Pulse Period: 16 µs to 30 sec Pulse Width: 8 µs to 30 sec Pulse Resolution: 4 μ s ⁷Typical, level accuracy with ALC on will be maintained with drive levels between 0.25 and 1.0 V_{rms}. Burst Envelope On/Off Ratio V_{IN}: <=-1.05 V <=3 GHz: >75 dB >3 GHz: >65 dB Rise/Fall Time: <2 µs, typical Minimum Burst Repetition Frequency ALC On: 10 Hz, typical ALC Off: DC External Input: Ext 1 Input Impedance: 50 ohms

Input Voltage RF Off: -1.0 V RF On: 0 V Linear Control Range: 0 to -1.0 V Internal Modulation Source Provides FM, PM, and AM Modulation Signals and LF Out

Waveforms: sine, square, ramp, triangle, pulse, noise

Rate Range Sine: 0.1 Hz to 50 kHz Square, Ramp, Triangle Optional I/Q Baseband Generator (Option UN3 or UN4) **Supported Standards:** DECT, GSM, NADC, PDC, PHS, and TETRA

Data Structure Frames and timeslots may be configured as different types of traffic or control channels. The data field of a timeslot can accept a user file, PRBS (PN9 or PN15), or external data with the appropriate clock.

Internal Data: Pseudorandom Patterns (meets ITU-T standard): Continuous PN9 (PRBS 2⁹-1) or PN15⁷ (PRBS 2¹⁵-1) Repeating Sequence: any 4-bit sequence

Downloadable Data (User Files): Type: Serial Data Minimum Size: Must fill entire field for which it was selected Maximum Size: 1 Mbits (Opt UN3), 8 Mbits (Opt UN4)

External Data: Type: Serial Data Inputs: Data, Bit/Symbol Clocks Accepts data rates ±5% of specified data rate Reference Frequency Internal or External: 1, 2, 5, 10 MHz reference Data clock can be locked to the external 13 MHz reference (GSM)

Frame Trigger Delay Control Range: 0 to 65,000 bits Resolution: 1 bit

Internal Burst Shape Control Rise/Fall Time Range: up to 30 bits Rise/Fall Delay Range: 0 to 63.5 bits (varies with standard) ⁷PN15 is not continuous in bursted mode for TETRA applications. NADC (Option UN3 or UN4) **Modulation Format:** pi/4 DQPSK

Data Rate (default): 48.6 kbits/sec Adjustment Range: 40 to 75.5 kbits/sec

Filter: Root-Raised Cosine or Raised Cosine Default Value: alpha = 0.35 Range (alpha): 0.3, 0.35, 0.4, 0.5, 0.6 **Error Vector Magnitude** (%rms)⁸

[see table 1]

Channel Spacing: 30 kHz Adjacent Channel Power⁸ (ACP) (Low ACP Mode, dBc, typical) [see table 2] Supported Burst Types: Custom, Up/Down TCH

⁸Specifications apply for the frequency range, data rates and filter factors (alpha) specified at power levels >=+7 dBm.

⁹The "channel spacing" determines the offset size of the adjacent and alternate channels: Adjacent Channel Offset = 1 x channel spacing, 1st Alternate Channel = 2 x channel spacing, 2nd Alternate Channel = 3 x channel spacing, 3rd Alternate Channel = 4 x channel spacing.

PDC (Option UN3 or UN4) Modulation Format: pi/4 DQPSK Data Rate (default): 42 kbits/sec Adjustment Range: 40 to 75.5 kbits/sec Filter: Root-Raised Cosine or Raised Cosine Default Value: alpha =0.5 Range (alpha): 0.3, 0.35, 0.4, 0.5, 0.6 Error Vector Magnitude (% rms)¹⁰ [see table 3] Channel Spacing: 25 kHz

Adjacent Channel Power¹⁰ (ACP)
(Low ACP Mode, dBc, typical)
[see table 4]
Supported Burst Types: Custom, Up/Down TCH, Up Vox

¹⁰Specifications apply for the frequency range, data rates and filter factors (alpha) specifiedat power levels >=+7 dBm.

¹¹The "channel spacing" determines the offset size of the adjacent and alternate channels: 1st Alternate Channel = $2 \times channel$ spacing, 3rd Alternate Channel = $4 \times channel$ spacing.

PHS (Option UN3 or UN4) Modulation Format: pi/4 DQPSK Data Rate (default): 384 kbits/sec Adjustment Range: 320 to 605 kbits/sec Filter: Root-Raised Cosine or Raised Cosine Default Value: alpha = 0.5 Range (alpha): 0.3, 0.35, 0.4, 0.5, 0.6 Error Vector Magnitude (% rms)¹² [see table 5] Channel Spacing: 300 kHz Adjacent Channel Power¹² (ACP) (Low ACP Mode, dBc, typical) [see table 6] Supported Burst Types: Custom, TCH, Sync Scramble Capabilities: yes

 $^{12}{\rm Specifications}$ apply for the frequency range, data rates and filter factors (alpha) specified at power levels >=+7 dBm.

 13 The "channel spacing" determines the offset size of the adjacent and alternate channels: 1st Alternate Channel = 2 x channel spacing, 2nd Alternate Channel = 3 x channel spacing.

TETRA (Option UN3 or UN4) Modulation Format: pi/4 DQPSK Data Rate (default): 36 kbits/sec Adjustment Range: 31 to 37.8 kbits/sec Filter: Root-Raised Cosine or Raised Cosine Default Value: alpha = 0.35 Range (alpha): 0.3, 0.35, 0.4, 0.5, 0.6 Error Vector Magnitude (% rms)¹⁴ [see table 7] Channel Spacing: 25 kHz Adjacent Channel Power¹⁴ (ACP) (Low ACP Mode, dBc, typical) [see table 8] Supported Burst Types: Custom, Up Control 1 & 2, Up Normal, Down Normal, Down Sync Scramble Capabilities: Yes

 $^{14}{\rm Specifications}$ apply for the frequency range, data rates and filter factors (alpha) specified at power levels >=+4 dBm.

¹⁵The "channel spacing" determines the offset size of the adjacent and alternate channels: Adjacent Channel Offset = 1 x channel spacing, 1st Alternate Channel = 2 x channel spacing, 2nd Alternate Channel = 3 x channel spacing, 3rd Alternate Channel = 4 x channel spacing.

 $^{16}\mbox{ACP}$ for TETRA is measured over a 25 kHz bandwidth, with an 18 kHz root-raised cosine filter applied.

DECT (Option UN3 or UN4) Modulation Format: GFSK Data Rate (default): 1,152 kbits/sec Adjustment Range: 922 to 1209.6 kbits/sec Filter: Gaussian Default Value: BT = 0.5 Range (BT in 0.5 steps): 0.2 to 0.7 **Deviation Accuracy:**¹⁷ 6 (1.5, typical) Channel Spacing: 1.728 MHz Supported Burst Types: Custom, Dummy B 1 & 2, Traffic B, Low Capacity ¹⁷Specifications apply for the frequency range, data rates and filter factors (BT) specified at power levels >=+7 dBm. GSM (DCS1800/PCS1900) (Option UN3 or UN4) Modulation Format: GMSK Data Rate (default): 270.83 kbits/sec Adjustment Range: 163 to 300 kbits/sec Filter: Gaussian Default Value: Bbt = 0.3 Range (BT in 0.5 steps): .02 to 0.7 Global Phase Error:¹⁸ (rms/pk) 1°/4° 0.5°/1.75° (typical) Channel Spacing: 200 kHz Adjacent Channel Power¹⁸ (ACP) (Low ACP Mode, dBc, typical) [see table 9] Supported Burst Types: Custom, Normal, FCorr, Sync, Dummy, Access ¹⁸Specifications apply for the frequency range, data rates and filter factors (alpha) specified at power levels >=+7 dBm. ¹⁹The "channel spacing" determines the offset size of the adjacent and alternate channels: Adjacent Channel Offset= 1 x channel spacing, 1st Alternate Channel = 2 x channel spacing, 2nd Alternate Channel = 3 x channel spacing, 3rd Alternate Channel = $4 \times \text{channel spacing}$. Coherent Carrier Out²⁰ Range: 250 MHz to maximum carrier frequency Level: 0 dBm ±5 dB, typical Impedance: 50 ohms 20 Coherent carrier is modulated by FM or phase modulation when enabled. Internal Modulation Source Provides FM, PM, and AM Modulation Signals and LF Out Waveforms: sine, square, ramp, triangle, pulse, noise Rate Range Sine: 0.1 Hz to 50 kHz Square, Ramp, Triangle: 0.1 Hz to 10 kHz **Resolution:** 0.1 Hz Frequency Accuracy: 0.005%

External Modulation Inputs

Modulation Types

Extl: FM, PM, AM, and Burst Envelope Ext2: FM, PM, AM, and Pulse

IMAGE 1/2

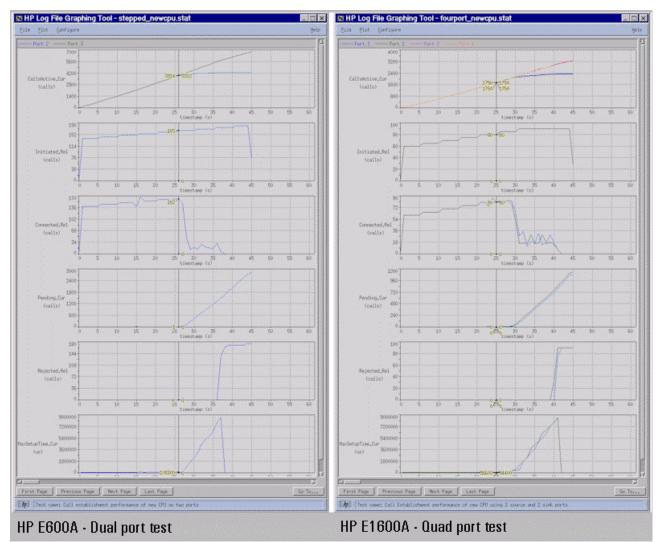


TABLE 1

	Continuous	Burst
Low EVM Mode	1.25	1.75
Low EVM Mode (typical)	0.8	1.25
Low ACP Mode (typical)	1.5	1.75

TABLE 2

	Continuous	Burst		
At Adjacent Channel ⁹	-35	-34		
At 1st Alternate Channel ⁹	-75	-73		
At 2nd Alternate Channel ⁹	-78	-77		
At 3rd Alternate Channel ⁹	-78	-78		

TABLE 3

	C	Continuous	Burst
Low EVM Mode	1		1.75
Low EVM Mode (typical) 0	.8	1.25
Low ACP Mode (typical) 1	.25	1.25

TABLE 4

				Continuous	Burst
at	1st	Alternate	$Channel^{11}$	-71	-69
at	3rd	Alternate	$Channel^{11}$	-78	-78

TABLE 5

	Continuous	Burst
Low EVM Mode	1.5	1.75
Low EVM Mode (typical)	0.9	0.9
Low ACP Mode (typical)	1.25	1.25

TABLE 6

				Continuous	Burst
At	1st	Alternate	Channel ¹³	-76	-75
At	2nd	Alternate	Channel ¹³	-78	-77

TABLE 7

	Continuous	Burst			
Low EVM Mode	1.25	2.0			
Low EVM Mode (typical)	0.8	1.25			
Low ACP Mode (typical)	3.25	3.25			

