Advanced Test Equipment Rentals www.atecor|.com 800-404-HTEG [2032]

OPERATION MANUAL

MICROWAVE RADIO TEST SET
 ME645A

suppier: ANHITSU AMERICA,INC.

MANUFACTURER : AMAMGIM FAFMTRAR PA. ITM.

SECTION 1

GENERAL INFORMATION

CONTENTS PAGE

1. INTRODUCTION 1-1
A. Features 1-1
2. CONFIGURATION 1-1
A. Basic Configuration 1-1
B. Options 1-3
3. SPECIFICATIONS $1-5$

1. INTRODUCTION

1.01 This operation manual contains all the information necessary to operate the Microwave Radio Test Set (MRTS) ME645A. Calibration, adjustment, troubleshooting, repair and replaceable parts are covered in the separate Service Manual.

A. FEATURES

1.02 The MRTS is designed to meet the requirements of AT \& T Company. Principal measurement items are power, frequency, amplitude response, return loss, noise figure, IF spectra, carrier resupply, fade margin, and DC voltage.
1.03 The MRTS has the following special features:
1.04 Versatile Capabilities: Most measurements can be made at the repeater site of a microwave relay system.
1.05 Easy Operation: In most cases the measurement item can be switched by merely pushing a single function switch for the desired item.
The power meter uses autoranging.
The RF sweep generator center frequency is set by thumb wheel switch.
The IF and RF sweep generator sweep width is selected in one operation.
1.06 High Accuracy: The power meter has a 4 digits digital indicator. The sensor is calibrated by an internal reference oscillator. The PCD in the IF sweep generator and the PLL in the RF sweep generator assure accurate, stable output frequencies.
The $C W$ frequency and ΔF mode IF and $R F$ source frequency markers are controlled by crystal oscillators.

* PCD: Pulse Counted Discriminator
 PLL: Phase Lock Loop

1.07 Alarm Signs: When the controls, push button and adjusters are manipulated by an inproper procedure or misoperation an alarm signs (blinking of the LED Display or red lamp) tells that to the operator.
1.08 Simple Construction: The main units are the DISPLAYING UNIT and SENDING UNIT.
These units are connected by interface cable.
1.09 Portable: The compact size and light weight make the test set suitable for hand-carrying and transport by helicopter.
1.10 High Reliability and Ruggedness: ICs and LSIs are used extensively throughout to reduce the number of components to a minimum. The selection of parts having small failure rates increases reliability. A rugged mechanical designing is used throughout, considering the most severe transportation conditions.
1.11 Microprocessor: The internal microprocessor assures easy operation, high accuracy, and high reliability.

2. CONFIGURATION

A. Basic Configuration
2.01 MRTS ME645A for 4 and 6 GHz band is the basic equipment, the units of which are listed below:

Table A-Basic Configuration

Description	O'ty
Displaying Unit	1
Sending Unit	1
Furnished Ancillary Equipment	1 set

2.02 Furnished Ancillary Equipment List is as follows.

Table B-Furnished Ancillary Equipment List

Note: *WECo 440 or Equivalent

B. Options

2.03 In addition to the basic MRTS ME645A, the following options are available:
(1) Option 001: Conversion to add 11 GHz capability The addition of the 11 GHz band is possible both in the original order or on a retrofit basis.
Furnished Ancillary Equipment for option 001: Coaxial low pass filter, 11 GHz , Type $\mathrm{N}(\mathrm{M}-\mathrm{F})$, MA71A.
(2) Option 002: Direct RF counting

Direct RF counting can be included only in the original order.
(3) Option 003: Conversion to add 2 GHz capability The addition of the 2 GHz band is possible both in the original order or on a retrofit basis.
Furnished Ancillary Equipment for option 003:
a. Directional Detector (2 GHz)
b. Coaxial low pass filter, 2 GHz , Type $\mathrm{N}(\mathrm{M}-\mathrm{F})$, MA64A
(4) Available Ancillary Equipment: The available ancillary equipment list is shown in Table C.

Table C-Available Ancillary Equipment (Optional Accessories)

Note
A. To be provided with all orders tor the ME645A
B. To be provided with orders for stations with TH-1. TH-3 and AR-6.

C: To be provided with orders for stations with 11 GHz equipment
D: To be provided with orders for TH-1 and AR-6

「: To be provided with orders tor TD-3. early vintage
$1 \because$ To be provided as requested
G. To be provided as requested. WECo $560.440,358,477$ or Equivalent

3. SPECIFICATIONS

Table D-Specifications

1. POWER METER

(1) Absolute Measurement Accuracy
(2) Accuracy of Power Meter Alone
(3) Harmonics
(4) Range
(5) Resolution
(6) Overload Rating of the Power Head
(7) Power Head Marking
(8) Readout
(9) Stability
(10) Drift Correction

Within $\pm 0.5 \mathrm{~dB}$, when using the 75Ω power head over the range 10 to 300 MHz or the 50Ω power head over the range 100 MHz to 11.7 GHz , including the effects of ancillary equipment.

Within $\pm 0.2 \mathrm{~dB}$

Capable of maintaining its accuracy when measuring power at +10 dBm in the presence of second harmonics down 12 dB from the measured signal.

RF band (50Ω) with low pass filter:
500 to 700 MHz
700 to 1000 MHz
2.11 to 2.18 GHz
3.65 to 4.25 GHz
5.8 to 6.5 GHz
10.6 to 11.7 GHz

IF band (75Ω) with low pass filter:
70 MHz and 74.1 MHz
+10 to -30 dBm without external pads or amplifiers.
0.01 dB

Capable of withstanding continuously +20 dBm without burnout or change in characteristics.

Marked as to the maximum average power the power head are capable of withstanding without burnout or change in characteristics.
Displaying unit: " +20 dBm MAX"
Power head: "CAUTION-MAX INPU Γ POWER +20 dBm "
Digital: A 4 digit LED display in dBm .
Analog: 12 dB full scale (calibrated in 0.5 dB increments) peaking meter.

Maximum drift of $\pm 0.1 \mathrm{~dB}$ for +10 to -25 dBm and $\pm 0.15 \mathrm{~dB}$ for -25 to -30 dBm , over a 2 hour period at $24^{\circ} \mathrm{C}$ room temperature.

Automatic with front panel pushbutton.

Table D (Cont)
(11) IF Power Head Return Loss (75Ω)

14 to 50 MHz
50 to 95 MHz
95 to 300 MHz
(12) RF Power Head Retum Loss (50)
0.1 to 11.7 GHz
$\left.\begin{array}{l}2.11 \text { to } 2.18 \mathrm{GHz} \\ 3.65 \text { to } 4.25 \mathrm{GHz} \\ 5.8 \text { to } 6.5 \mathrm{GHz}\end{array}\right]$

500 to 700 MHz
700 to 1000 MHz
2.11 to 2.18 GHz
3.65 to 4.25 GHz
5.8 to 6.5 GHz
10.6 to 11.7 GHz
(13) Response Time
(14) Spurious Signals
(15) Calibration Signal
(16) Swept Amplitude Response Range of Power Head (Oscilloscope display only)
(17) Detector Flatness (Power head acting as detector)

Frequency Band *

IF: 50 to 95 MHz [2.11 to 2.18 GHz
3.65 to 4.25 GHz
5.8 to 6.5 GHz
10.6 to 11.7 GHz
no less than 25 dB
no less than 30 dB
no less than 20 dB
no less than 20 dB without filter
no less than 23 dB without filter
no less than 15 dB with filter
no less than 13 dB with filter
Within 2 seconds after applying the input power to be measured.

The power meter and head do not introduce $A C$ or DC signals into the circuit being measured.

The IF calibration source is energized or de-energized independent of any meter calibration through front panel CAL and rear panel CAL power Switch, ON and OFF push-button switches.

IF band: $\quad+12$ to -12 dBm RF band: +10 to -10 dBm

Transmission Flatness for up to +10 dBm

$$
\begin{aligned}
& \pm .025 \mathrm{~dB} \\
& \pm .05 \mathrm{~dB}
\end{aligned}
$$

* Requirements to be met over any 40 MHz segment.

Table D (Cont)

(18) Detector (Power head) Harmonic Distortion

(1) Ranges
(2) Accuracy
3. RETURN LOSS CIRCUITRY

The return loss is measured combination with IF and RF Return Loss Bridges.
(1) Ranges (oscilloscope display only)

IF (75Ω)	0 to 20 dB
	10 to 30 dB
20 to 40 dB	
RF (50Ω)	0 to 20 dB
	10 to 30 dB

(2) Test Signal Power

IF (75Ω)
RF (50 Ω)
(3) Accuracy

The IF detector flatness is less than $\pm 0.03 \mathrm{~dB} / \pm 20 \mathrm{MHz}$ with second harmonic distortion 25 dB below the measured signal (with low pass filtering for RF).
± 0.1 to $\pm 100 \mathrm{VDC}$ and ± 100 to $\pm 999 \mathrm{VDC}$
$\pm 0.3 \mathrm{~V}$ on 100 V range and $\pm 3 \mathrm{~V}$ on 999 V range.
-10 dBm nominal
-5 dBm nominal

IF R.L. measurement accuracy is (for test terminal of WECo 560 -without adapter):
within 1 dB for 10 to 30 dB R.L.
within 2 dB for 0 to 10 dB R.L. and 30 to 40 dB R.L.

Return loss of adapter WECo 358 to WECo 560 (MP533A) is more than or equal to 40 dB .

RF R.L. measurement accuracy is within 3 dB for up to 25 dB and visible on the display for up to 30 dB .
4. SPECTRUM ANALYZER
(1) General Requirement
(2) Scan Width Selection IF Bands ($\mathrm{fo}=70 \mathrm{MHz} \& 74.1 \mathrm{MH}$. fo is centered on display)

Provides a visual indication of the spectra of the total IF bands of fo $\pm 32 \mathrm{MHz}$ with a dynamic range of over 70 dB .
$\pm 1 \mathrm{MHz}$
$\pm 5 \mathrm{MHz}$
$\pm 15 \mathrm{MHz}$
$\pm 32 \mathrm{MHz}$

Table D (Cont)
(3) Dynamic Range
(4) Spurious
(5) Reference Selection
(6) XY Plotter Output
(7) Input Buffer Amplifier
(8) Sweep Speed
5. DISPLAY CIRCUITRY
(1) Vertical External Input
(2) Common Mode Rejection
(3) Vertical Sensitivity (a to d)
(Type of Signal Input)
a. IF (Detected)
b. RF (Detected)
c. RF \& IF Return Loss
d. External DC (Detected)
(4) Vertical Bandwidth
(5) Input Network (both Vertical and Horizontal)
(6) Horizontal External Input
(7) Horizontal Sensitivity (including external input)
(8) Blanking
(9) Z-Axis

$$
\begin{aligned}
& 70 \mathrm{~dB}(\pm 1 \mathrm{MHz}) \\
& 60 \mathrm{~dB} \text { (all other scan widths) } \\
& 10 \mathrm{~dB} \text { sensitivity/cm of deflection }
\end{aligned}
$$

-60 dBm (all scan widths except $\pm 32 \mathrm{MHz}$; Spurious at $\pm 32 \mathrm{MHz}$ is -50 dBm)

0 dBm only
Compatible with existing Baseband Analyzer (S/A)
Limits L.O. Leakage out at Input Port
$10 \mathrm{~ms} / \mathrm{cm}$

BNC Connector

At least 50 dB on vertical external input
dB sensitivity per cm of deflection
$0.05,0.1,0.5$ and 1.0 dB
$0.1,0.5$ and 1.0 dB
2.5 dB
$50 \mathrm{mV} / \mathrm{cm}$ of deflection
Fixed at DC to 10 kHz and no less than 310 kHz for the external input.
$1 \mathrm{M} \Omega(\pm 10 \%)$ shunted by not more than 50 pF .

BNC connector; single ended DC Coupled such that a positive going voltage causes beam deflection to the right.

Adjustable over the range from 0.5 V to 2.0 V per cm .

Blank on an external +3 V pulse, regardless of intensity (TTL compatible)

BNC Connector accessible from the rear panel.

Table D (Cont)

(10) Out of Range Indication

(11) Horizontal Axis

(12) Vertical Axis
(13) Faceplate
(14) Bezel

6. RF SWEEP GENERATOR

(1) CW Mode
(2) Frequency Setting Accuracy
(3) \triangle F Sweep Mode
(4) Leveled Power Output
(5) Cable (RF Oscillator to Directional Detector)
(6) Power Output Continuity

(7) Power Output Stability

Bright line display on CRT and LED (Vertical Sensitivity) lamp blink on and off when the power head input level is from -13 to $-39.99 \mathrm{dBm} \pm 0.2 \mathrm{~dB}$

Divided into 10 equally spaced 1 cm divisions.
Divided into 8 equally spaced 1 cm divisions.
Shatterproof safety-shield.
Accommodates camera adapters from major scope camera suppliers such as HP Models CO1-10369A, 10369A and 197A and Polaroid CU-5.

2 GHz band: 2.11 to 2.18 GHz (option 003)
4 GHz band: 3.65 to 4.25 GHz
6 GHz band: 5.8 to 6.5 GHz
11 GHz band: 10.6 to 11.7 GHz (option 001)
(50Ω output impedance)
Within $\pm 1 \times 10^{-5}$

Fixed sweep width
sweep width: $\pm 2, \pm 10, \pm 15, \pm 20 \mathrm{MHz}$

Continuously adjustable over the following ranges:
0 dBm to $+10 \mathrm{dBm}(2,4,6 \mathrm{GHz}$ bands $)$
0 dBm to +5 dBm (11GHz band)

Cable assembly is encased in a common sheath.

The Power Output does not vary more than 0.2 dB when switching from a swept mode to the CW mode.
in 2 and 4 GHz bands, $\Delta \mathrm{F}= \pm 10 \mathrm{MHz}$
in 6 GHz band, $\Delta \mathrm{F}= \pm 15 \mathrm{MHz}$
in 11 GHz band, $\Delta \mathrm{F}= \pm 20 \mathrm{MHz}$

Within $\pm 0.05 \mathrm{~dB}$ over any 15 minute interval and within $\pm 0.1 \mathrm{~dB}$ over any continuous 24 hour period.

Table D (Cont)
(8) Power Output Flatness
(9) Sweep Frequency
(10) Sweep Linearity
(11) RF Frequency Markers
(12) RF Frequency Markers Accuracy
(13) RF Generator Frequency Stability (a to d)
a. With temperature

2 and 4GHz bands
 6 GHz band 11 GHz band

b. With line voltage
c. With output Power

2,4 and 6GHz bands 11 GHz band
d. With time
(14) Aging
(15) Spurious Radiation
(16) Harmonics
(17) Spurious Signal (non harmonically related)

Frequency	Output Power	Output Flatness
2 and 4 GHz bands	0 to +10 dBm	$\pm 0.025 \mathrm{~dB} / \pm 10 \mathrm{MHz}$
6 GHz band	0 to +10 dBm	$\pm 0.025 \mathrm{~dB} / \pm 20 \mathrm{MHz}$
11 GHz band	0 to +5 dBm	$\pm 0.05 \mathrm{~dB} / \pm 20 \mathrm{MHz}$
46 Hz nominal		

Within $\pm 2.5 \%$ of the sweep width
One pair of markers for each of the sweep modes, switch selectable in increments of 1 MHz from 0 to 20 MHz .

Within $\pm 0.005 \%$

Maximum change in frequency is:
$\pm 160 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
$\pm 200 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
$\pm 1.2 \mathrm{MHz} /{ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
$\pm 1 \mathrm{MHz}$ max. for AC 103 to 127 V variation

$$
\begin{aligned}
& \pm 1 \mathrm{MHz} \text { max. for } 0 \mathrm{dBm} \text { to }+10 \mathrm{dBm} \text { change } \\
& \pm 1 \mathrm{MHz} \text { max. for } 0 \mathrm{dBm} \text { to }+5 \mathrm{dBm} \text { change }
\end{aligned}
$$

$\pm 0.012 \%$ max. over a 15 -minute interval and $\pm 0.03 \%$ over any continuous 24 hour period.
$\pm 0.03 \%$ for at least 10 years.
Less than -50 dBm when output is delivering +10 dBm (+5 dBm for 11 GHz band) into a resistive termination at any frequency. The harmonic radiation up to 11.7 GHz is no greater in magnitude than the fundamental radiation. The unit is measured radially for radiation 12 -inches from the cabinet using WR-430 waveguide for 2 GHz band, WR229 for 4 GHz band, WR-159 for 6 GHz band and WR-90 waveguide for 11 GHz band.

At least 40 dB down.
At least 64 dB below the selected output power when terminated into 50Ω.

Table D (Cont)
(18) Residual Amplitude Modulation
(19) Residual Frequency Modulation

2,4 and 6GHz bands 11 GHz band
7. IF SWEEP GENERATOR
(1) CW Mode
(2) Frequency Setting Accuracy
(3) $\triangle F$ Sweep Mode
(4) Leveled Power Output
(5) Continuously Variable
(6) Step Variable
(7) Power Output Stability
(8) Power Output Flatness
(9) Sweep Frequency
(10) Sweep Linearity
(11) IF Frequency Markers
(12) IF Frequency Markers Accuracy
(13) IF Generator Frequency Stability (a to d)
a. With tempeature
b. With line voltage
c. With output power
d. With time

At least 40 dB below the output signal.

30 kHz peak
50 kHz peak

70 MHz and 74.1 MHz

Within $\pm 2 \times 10^{-5}$

Fixed sweep width $\pm 2, \pm 10, \pm 15, \pm 20 \mathrm{MHz}$
Variable from -70 dBm to +10 dBm at a 75Ω output impedance.

10 dB range (+10 dBm max.)

70 dB range, 1 dB steps
Within $\pm 0.05 \mathrm{~dB} / 15$ minute interval and within $\pm 0.1 \mathrm{~dB} / 24$ hour period.

Within $\pm 0.025 \mathrm{~dB}$ at $\Delta \mathrm{F}$ sweep modes between 0 and +10 dBm
46 Hz nominal
Within $\pm 2.5 \%$ of sweep width
One pair of markers for each of the sweep modes switch selectable in increments of 1 MHz between 0 and 20 MHz .
$\pm 0.005 \%$
$\pm 30 \mathrm{kHz} \max . /^{\circ} \mathrm{C}$ at $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
$\pm 10 \mathrm{kHz}$ max. for AC 103 to 127 V variation
$\pm 10 \mathrm{kHz}$ max. for 0 to +10 dBm change
$\pm 50 \mathrm{kHz}$ max. over a 15 minute interval $\pm 100 \mathrm{kHz}$ max. $/ 24$ hour period

Table D (Cont)

(14) Spurious Radiation
(15) Harmonics
(16) Spurious Signal (non harmonically related)
(17) Residual Frequency Modulation
(18) Slope Adjusting Range
(19) Frequency Shift
8. FREQUENCY COUNTER
(1) Frequency Range
(2) Input Network
(3) Input Level
(4) Accuracy

The radiation from the fundamental frequency from the IF oscillator is no greater than -100 dBm when the output is delivering +10 dBm into a resistive termination at any frequency. The harmonic radiation up to 300 MHz shall be no greater in magnitude than the fundamental radiation. The unit is measured radially for radiation with a suitable field intensity meter, excited by a simple resonant dipole placed no more than 12 feet and no less than 8 feet from the finished chassis, with no additional shielding.

The magnitude of the second and third harmonic of $50(54.1), 60(64.1)$, and $70(74.1) \mathrm{MHz}$ present in the generator output is measured by means of a suitable selective analyzer. In addition, the second harmonic of $80(84.1)$ and $90(94.1) \mathrm{MHz}$ is measured and their magnitudes relative to the fundamental, is no greater than the following:

Fundamental, f, MHz

$50(54.1)$	-40 dB	-40 dB
$60(64.1)$	-40 dB	-40 dB
$70(74.1)$	-40 dB	-40 dB
$80(84.1)$	-40 dB	-
$90(94.1)$	-40 dB	-

At least 70 dB below selected output power when terminated in 75Ω

No greater than 1.5 kHz peak
No less than $\pm 0.1 \mathrm{~dB}$ slope over 50 to 90 and 54.1 to 94.1 MHz range, front panel adjustment.

The 70 and 74.1 MHz CW frequencies are shifted by +300 kHz and -300 kHz for C / I measurements.

14 to 300 MHz directly and without prescaling.
At least $1 \mathrm{M} \Omega$ shunted by less than 20 pF (14 to 135 MHz) and 50Ω (14 to 300 MHz) switchable.

15 mV to 5 Vrms without need for level adjustment.
± 1 count \pm Time Base oscillator stability .

Table D (Cont)

(5) Time Base Stability (a to c)
a. Short term
b. Aging
c. With line voltage
(6) Time Base Frequency
(7) Time Base Output
(8) Time Base Adjustment
(9) Oven
(10) Sample Rate
(11) Gate Time
(12) Resolution

RF Measurements (Option 002) (13) to (17)
(13) RF Frequency Range
(14) Input Network
(15) Input Connector
(16) Input Level
(17) Resolution

9. ENVIRONMENTAL

(1) Specification Compliant Ranges (a to \mathbf{c})
a. Temperature
b. Altitude
c. Relative humidity
a) At least 5×10^{-8} (after 15 minutes warm up) for a minimum of 2 hours and
b) At least 5×10^{-9} per day after 24 hours continuous operation.
$\pm 1 \times 10^{-7}$ per year
1×10^{-9} for AC 103 to 127 V
10 MHz
IV peak-to-peak minimum across 50Ω (TTL compatible)
A minimum of $\pm 5 \times 10^{-8}$
Crystal oven remains on when the front panel power switch is turned off.

Minimum 0.08 seconds. Variable by steps of $0.08,0.8,2$ seconds and hold.

10,1 and 0.1 seconds
$0.1,1$ and 10 Hz

2 GHz band: 2.11 to 2.18 GHz (option 003)
4 GHz band: 3.65 to 4.25 GHz
6 GHz band: 5.8 to 6.5 GHz
11 GHz band: 10.6 to 11.7 GHz (option 001)
directly without manual or external prescaling or tuning.
Over the specified frequency range the input impedance is a nominal 50Ω.

Type "N" connector.
-20 dBm to +7 dBm
1 kHz
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
0 to 10000 feet above sea level
10% to 95%

Table D (Cont)

(2) Storage Range
(3) Warm up Time
(4) Burn-in
(5) AC Input
(6) Shock and Vibration
a. Shock
b. Vibration
10. MECHANICAL \& MISCELLANEOUS
(1) Weight (including each carrying case)

Displaying Unit

 Sending Unit Ancillary Equipment(2) Dimensions (each unit)
(3) AC Power Cord
(4) Line Fuses
(5) Ground Loop
(6) N Type Connectors
$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
a) 15 minutes from turn-on from an ambient of $24^{\circ} \mathrm{C}$ and b) 60 minutes from turn-on in an ambient of $24^{\circ} \mathrm{C}$ after being brought in from an environment of $-18^{\circ} \mathrm{C}$.

96 hour operational burn-in at $+50^{\circ} \mathrm{C}$
Single phase $115 \pm 12 \mathrm{~V}, 60 \mathrm{~Hz}, \leqq 250 \mathrm{VA}$ power source.
MIL-STD-810B, Method 514.7 Procedure X, Sinusoidal Cycling only.

At room ambient conditions per MIL-STD-810B 20g, 10 milliseconds, sawtooth ascending pulse, two repetitions in each direction of three mutually perpendicular axis (12 drops).
0.25 inches displacement, D.A., 5 to 9 Hz and 1.0 g from 9 to 100 Hz .
A sweep rate of two minutes per octave ascending and descending in each of three mutually perpendicular axis.
less than $40 \mathrm{lbs} .(<19 \mathrm{~kg})$
less than 40 lbs. ($<19 \mathrm{~kg}$)
less than $40 \mathrm{lbs} .(<19 \mathrm{~kg})$
$16.8 \mathrm{in} .(426 \mathrm{~mm}) \mathrm{W} \times 17.8 \mathrm{in} .(450 \mathrm{~mm}) \mathrm{D} \times 5.7 \mathrm{in} .(145 \mathrm{~mm}) \mathrm{H}$ (except for controls, handles, etc.)

The 7'6" detachable power cord is yellow and equipped with a NEMA 5-15P ground plug.
are accessible from the rear panel.
The MRTS does not exhibit any ground loop problems when in a back-to-back configuration. (RF \& IF flatness requirements are met).

Internal dimensions and tolerances of mating surfaces meet MIL-C-39012.
N connector shells and the nut on male connectors are stainless steel.

Table D (Cont)
(7) Repeater Bay Interfaces
(8) Portable Test Rack

The MRTS interfaces repeater bays with N-type connectors for 50Ω test points, and WECo 560 A , or approved equivalent, jacks for 75Ω test points.

A collapsible mobile rack is available to support the MRTS. It does not restrict a view of the MRTS while in a kneeling position making adjustments on a repeater bay near floor level.

