

Advanced Test Equipment Corp. www.atecorp.com 800-404-ATEC (2832)

Signal Analyzers

Mid-Performance Spectrum Analyzers, Portable

E4401B E4402B E4404B E4405B E4407B

176

ESA-E Series

Specifications

All specifications apply over 0°C to +55°C unless otherwise noted. The analyzer will meet its specifications after 2 hours of storage within the operating temperature range, 5 minutes after the analyzer is turned on, and after ALIGN NOW [RF] has been run.

Frequency Specifications

Frequency Range E4401B 9 kHz to 1.5 GHz 50Ω 75 Ω MHz to 1.5 GHz E4402B 9 kHz to 3.0 GHz Option UKB 100 Hz to 3.0 GHz E4404B Band 9 kHz to 3.0 GHz (dc coupled) Option UKB 100 Hz to 3.0 GHz 100 kHz to 3.0 GHz (ac coupled) 2.85 GHz to 6.7 GHz E4405B LO harmonic = N Band 9 kHz to 3.0 GHz (dc coupled) Option UKB 100 Hz to 3.0 GHz 100 kHz to 3.0 GHz (ac coupled) 0 2.85 GHz to 6.7 GHz 1-2-6.2 GHz to 13.2 GHz E4407B Band LO harmonic = N 9 kHz to 3.0 GHz Option UKB 100 Hz to 3.0 GHz 2.85 GHz to 6.7 GHz 2-6.2 GHz to 13.2 GHz 12.8 GHz to 19.2 GHz

18.7 GHz to 26.5 GHz External Mixing (Opt AYZ) 18 GHz to 325 GHz Frequency Reference (Opt.1D5)

±2 x 10⁻⁶/year ±1 x 10⁻⁷/year Aaina ±5 x 10⁻⁶ ±5 x 10⁻⁸ Temperature Stability ±5 x 10⁻⁷ Settability $\pm 1 \times 10^{-8}$

Frequency Readout Accuracy (Start, Stop, ±(frequency indication x frequency reference error¹ + 0.5% of span + 15% of RBW + 10 Hz + span ÷ sweep Center, Marker) points -1)

Marker Frequency Counter² Accuracy⁵

Counter Resolution Frequency Span Range

Accuracy (8192 sweep points)

±(marker frequency x frequency reference error¹ + counter resolution) Selectable from 1 Hz to 100 kHz

0 Hz (zero span), 100 Hz to the range of the spectrum analyzer

 $\pm 0.5\%$ of span +2 x span \div sweep

Frequency Sweep Time

Range 1 ms to 4000 s Span = 0 Hz $10 \mu s$ to 4000 s(Opt. AYX)

50 ns to 4000 s (RBW ≥1 kHz, 2pts.) (Opt. B7D) 25 ns to 4000 s (RBW ≥1 kHz, 2pts.) Accuracy .

Sweep Trigger Free run, Single, Line, Video, External, Offset, Delay, Gate (Opt.1D6), and TV (Opt. B7B)

Offset trigger range ±327 ms to ±12.3 µs Sweep (trace) point range Span > 0Hz 101 to 8192 Span = 0Hz 2 to 8192

Resolution Bandwidth (RBW)

1 kHz to 5 MHz (-3 dB) in 1-3-10

sequence. 9 kHz and 120 kHz (-6 dB) EMI bandwidths.

Adds 10, 30, 100, and 300 Hz (–3 dB) bandwidths and 200 Hz (–6 dB)

FMI bandwidth.

Adds 1, 3 Hz (-3 dB) bandwidths) (Opt. 1D5 + 1DR)

Accuracy 1 kHz to 3 MHz RBW

±15% 5 MHz ±30% 10 Hz to 300 Hz RBW

(Opt. 1DR)

(Opt. 1DR)

Selectivity (Characteristic) -60 dB/-3 dB 10 Hz to 300 Hz (Opt. 1DR)

1 kHz to 5 MHz

Video Bandwidth Range 30 Hz to 3 MHz6 in 1-3-10 sequence (Opt. 1DR) Adds 1, 3, 10 Hz for RBW < 1kHz

Stability Noise sidebands (1 kHz RBW, 30 Hz VBW and sample detector) ≤-90 dBc/Hz + (20 Log N⁴ for frequencies >6.7 GHz) ≤-100 dBc/Hz + (20 Log N⁴ for frequencies >6.7 GHz) ≥10 kHz offset from CW signal

≥20 kHz offset from CW signal

 \leq -104 dBc/Hz + (20 Log N⁴ for ≥30 kHz offset from CW signal

frequencies >6.7 GHz) ≤-113 dBc/Hz + (20 Log N⁴ for ≥100 kHz offset from CW signal frequencies >6.7 GHz)

Tgiical Performance © 1 GHz (Option 120 411

Residual FM 1 kHz RBW, 1 kHz VBW ≤ 150 x N⁴ Hz pk-pk in 100 ms (Opt. 1D5) ≤100 x N⁴ Hz pk-pk in 100 ms (Opt. 1DR, 1DE) ≤2 x N⁴ Hz pk-pk in 20 ms System-Related Sidebands (offset from CW signal) ≤-65 dBc + (20 Log N⁴ for frequencies

Amplitude Specifications

Amplitude Range Measurement Range

Displayed average noise level to maximum safe input level

Input Attenuator range 0 to 60 dB, in 5 dB steps E4402B/04B/05B/07B 0 to 65 dB, in 5 dB steps

E4402B E4404B E4405B E4407B

Mid-Performance Spectrum Analyzers, Portable (cont.)

Maximum Safe Input Level Average Continuous Power E4401B E4401B (75 Ω Opt. 1DP) E4402B/04B/05B/07B	(input attenuator \geq 15 dB) +30 dBm (1 W) +75 dBmV (0.4 W) (input attenuator \geq 5 dB) +30 dBm (1 W)
Peak Pulse Power E4401B E4401B (75 Ω Opt. 1DP) E4402B/04B/05B/07B	(input attenuator ≥15 dB) +30 dBm (1 W) +75 dBmV (0.4 W) (input attenuator ≥30 dB) +50 dBm (100 W)
dc E4401B (75 \(\Omega\) Opt. 1DP) E4401B, E4402B E4404B, E4405B E4407B 1 dB Gain Compression (total pov ≥50 MHz ≥6.7 GHz	0 dBm —3 dBm
≥13.2 GHz Displayed Average Noise Level (c	–5 dBm √Bm)
(Input terminated 0 dP attenuation	

(Input terminated, 0 dB attenuation, sample-detector, 30/1 Hz VBW)

	1 kHz RBW	10 Hz RBW (Opt. 1DR)	10 Hz RBW w/ preamp (Opt. 1DS) typical	1 Hz RBW (Opt. 1DR, 1D5) typical
E4401B 400 kHz to 10 MHz 10 MHz to 500 MHz 500 MHz to 1 GHz 1 GHz to 1.5 GHz	≤-115 ≤-119 ≤-117 ≤-114	≤-134 ≤-138 ≤-136 ≤-133	≤-155 ≤-156 ≤-156 ≤-155	≤-149 ≤-151 ≤-150 ≤-148
E4402B 100 Hz to 9 kHz (Opt. UKB) 9 kHz to 100 kHz 100 kHz to 1 MHz 1 MHz to 10 MHz 10 MHz to 1 GHz		≤-93 ≤-109 ≤-135 ≤-139 ≤-136 ≤-135		≤-103 ≤-119 ≤-145 ≤-149 ≤-150 ≤-150
2 GHz to 3 GHz	≤-114	≤-133	≤-154	≤-150
E4404/ 05/ 07B 100 Hz to 9 kHz (Opt. UKB)	_	≤-93	_	≤–103
9 kHz to 100 kHz 100 kHz to 1 MHz 1 MHz to 10 MHz	 ≤-120	≤-109 ≤-135 ≤-139	 ≤-155	≤-119 ≤-145 ≤-149
10 MHz to 1 GHz 1 GHz to 2 GHz 2 GHz to 3 GHz 3 GHz to 6 GHz	≤-116 ≤-116 ≤-112 ≤-112	≤-135 ≤-135 ≤-131 ≤-131	≤-157 ≤-155 ≤-152 ≤-138	≤-149 ≤-150 ≤-148 ≤-148
6 GHz to 12 GHz 12 GHz to 22 GHz 22 GHz to 26.5 GHz	≤-111 ≤-107 z -106	≤–130 ≤–126 –125	≤-137 ≤-134 -132	≤-147 ≤-107 -142

Display Range Log scale	0.1, 0.2, 0.5 dB/division and 1 to 20 dB				
-	division in 1dB steps; ten divisions				
	displayed				
RBW 300 Hz (Opt. 1DR)	0 to –120 dB from reference level is				
RBW 1 kHz	calibrated 0 to –85 dB from reference level is				
RBW 1 kHz	calibrated				
Linear scale	10 divisions				
Scale units	dBm, dBmV, dBuV, Volts, Watts, and Hz				
Marker Readout Resolution					
Log scale	0.04 dB				
Linear scale	0.01% of reference level				
Fast sweep times for zero span (Opt. AYX)					
Log scale					
0 to -85 dB from ref. level	0.3 dB				
Linear scale	0.3% of reference level				
Frequency Response	(10 dB input attenuation)				
	Absolute Relative Flatness				
20°C to 30°C					
(30 Hz) 100 Hz to 3.0 GHz	$\pm 0.5 dB$ $\pm 0.5 dB$				
(Opt. UKB)					

	9 kHz to 3.0 GHz	±0.46 dB	±0.5 dB			
	3.0 GHz to 6.7 GHz	$(\pm 0.14 \text{ db typical})$ $\pm 1.5 \text{ dB}$	±1.3 dB			
	6.7 GHz to 26.5 GHz 0°C to 55°C	±2.0 dB	±1.8 dB			
	(30 Hz) 100 Hz to 3.0 GHz (Opt UKB)	±1.0 dB	±1.0 dB			
	9 kHz to 3.0 GHz	±0.76 dB	±1.0 dB			
	3.0 GHz to 6.7 GHz 6.7 GHz to 26.5 GHz	±2.5 dB ±3.0 dB	±1.5 dB ±2.0 dB			
	Input Attenuation Switching Ur					
	Attenuation setting					
	0 dB to 5 dB 10 dB	±0.3 dB Reference				
	15 dB	±0.3 dB				
	20 to 60 dB (E4401B)	$\pm (0.1 dB + 0.01 x d)$	attenuator setting)			
	20 to 65 dB Overall Amplitude Accuracy	$\pm (0.1 \text{ dB} + 0.01 \text{ x at} \\ \pm (0.54 \text{ dB} + \text{Absolution})$				
	Overall Amplitude Accuracy	Response)	ite rrequency			
	At Reference Settings	±0.34 dB				
	RF Input VSWR (at tuned frequent 100 kHz to 6.7 GHz	ncy) 10 dB atten. 1.4:16				
	Resolution Bandwidth Switchin					
	(Referenced to 1 kHz RBW, at re	ference level)				
	10 Hz to 3 MHz RBW	±0.3 dB				
	5 MHz Reference Level	±0.6 dB				
	Range	-149.9 dBm to maxi	imum mixer level			
	5 1	+ attenuator settin				
	Resolution $\pm 0.1 dB$ for log scale, $\pm 0.12\%$ of reference level for linear scale					
	Accuracy (reference level atten		inical scale			
-	-10 dBm to -60 dBm	±0.3 dB				
	-60 dBm to -85 dBm -85 dBm to -90 dBm	±0.5 dB ±0.7 dB				
	Display Scale Fidelity	±0.7 db				
	Log maximum cumulative					
	0 dB to -85 dB	$\pm (0.3 dB + 0.01 \times dB + 0.$				
	0 dB to -98 dB (Opt 1DR) \pm (0.3 dB + 0.01 x dB from ref. level) 98 dB to -120 dB (Opt 1DR) \pm (2 dB + 0.01 x dB from ref. level) Log incremental accuracy					
-	0 dB to -80 dB	±0.4 dB/4 dB form				
	Linear Accuracy	±2% of reference level ±0.15 dB at reference level				
	Linear to Log Switching Uncertainty	±0.15 dB at referen	ice ievei			
	Log Scale Switching	No error				
	Spurious Responses					
	Second Harmonic Distortion E4401B					
	2 MHz to 750 MHz	<-75 dBc for -40	dBm tone at input			
	E4402/04/05/07B	mixer. (+35 dBm S	HI)			
	E4402/04/05/07B 10 MHz to 500 MHz	<-65 dBc for -30	dBm tone at input			
	10 111 12 10 300 111 12	mixer. (+35 dBm S				
	500 MHz to 1.5 GHz		dBm tone at input			
3/	1.5 GHz to 2.0 GHz	mixer. (+45 dBm S	HI) dBm tone at input			
	1.5 GI IZ to 2.0 GI IZ	mixer. (+75 dBm S				
	>2.0 GHz	<-100 dBc for -10 mixer (or below di	dBm tone at input			

noise level). (+90 dBm SHI) Third Order Intermodulation Distortion E4401B 10 MHz to 1.5 GHz < -80 dBc for two -30 dBm tones at input mixerand >50 kHz separation. (+13.5 dBm TOI, +19 dBm typica) E4402B/04B/05B/07B 100 MHz to 6.7 GHz <-84 dBc for two -30 dBm tones at input mixerand >50 kHz separation. (+11 dBm TOI, +18 dBm typica) >6.7 GHz <-75 dBc for two -30 dBm tones at input mixerand >50 kHz separation. (+7.5 dBm TOI, +11 dBm typica)

Other Input Related Spurious (in band)

>offset 30 kHz <-65 dBc, for -20 dBm tones at input

mixer.

Residual Responses (input terminated and 0 dB attenuation)

150 kHz to 6.7 GHz <-90 dBm