

Advanced Test Equipment Corp. www.atecorp.com 800-404-ATEC (2832)

DATA SHEET

N9038A MXE EMI Receiver

3 Hz to 3.6, 8.4, 26.5, and 44 $\rm GHz$

Table of Contents

Definitions and Conditions	3
Frequency and Time Specifications	4
Amplitude Accuracy and Range Specifications	7
Dynamic Range Specifications	11
PowerSuite Measurement Specifications	16
General Specifications	17
Input and Outputs	19
I/Q Analyzer	21
RTSA	23

Keep the test queue flowing

In EMC testing, success depends on tools that can help you do more in less time—today and tomorrow. That's why Keysight Technologies, Inc. created the MXE: it's a standards-compliant EMI receiver and diagnostic signal analyzer built on an upgradeable platform. In the lab and on the bench, it provides the accuracy, repeatability, and reliability you need to test with confidence. Equip your team with the MXE, and keep the test queue flowing.

Definitions and Conditions

Specifications describe the performance of parameters covered by the product warranty and apply to the full temperature range of 0 to 55 °C, unless otherwise noted.

95th percentile values indicate the breadth of the population (approx. 2 σ) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to 30 °C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is abserved.

instruments is observed.

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to 30 °C. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but are not covered by the product warranty.

The receiver will meet its specifications when:

- It is within its calibration cycle
- Under auto couple control, except when Auto Sweep Time Rules = Accy
- Signal frequencies < 10 MHz, with DC coupling applied
- The receiver has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on
- The receiver has been turned on at least 30 minutes with Auto Align set to normal, or, if Auto Align is set to off or partial, alignments must have been run recently enough to prevent an Alert message; if the Alert condition is changed from "Time and Temperature" to one of the disabled duration choices, the receiver may fail to meet specifications without informing the user

This data sheet is a summary of the specifications and conditions for the MXE EMI receiver. For the complete specifications guide, visit: www.keysight.com/find/mxe_specifications

Get more information

This data sheet is a summary of the specifications and conditions which are available in the MXE EMI Receiver Specification Guide (N9038-90010).

For ordering information, refer to the MXE EMI Receiver Configuration Guide (5990-7419EN).

Frequency and Time Specifications

Frequency range		DC coupled	AC coupled
Input 1			
 Option 5034 		3 Hz to 3.6 GHz	10 MHz to 3.6 GHz
– Option 508		3 Hz to 8.4 GHz	10 MHz to 8.4 GHz
– Option 526		3 Hz to 26.5 GHz	10 MHz to 26.5 GHz
– Option 544		3 Hz to 44 GHz	_
Input 2		3 Hz to 1 GHz	10 MHz to 1 GHz
Band	LO multiple (N)		
0	1	3 Hz to 3.6 GHz	
1	1	3.5 to 8.4 GHz	
2	2	8.3 to 13.6 GHz	
3	2	13.5 to 17.1 GHz	
4	4	17.0 to 26.5 GHz	
5	4	26.4 to 34.5 GHz	
6	8	34.4 to 44 GHz	
Frequency reference			
Accuracy	± [(time since last adjustmen	t x aging rate) + temperature stability -	+ calibration accuracy]
Total aging	± 1 x 10 ⁻⁷ / year		
	± 1.5 x 10 ⁻⁷ / 2 years		
Temperature stability			
 20 to 30 °C 	± 1.5 x 10 ⁻⁸		
 Full temperature range 	± 5 x 10 ⁻⁸		
Achievable initial calibration	± 4 x 10 ⁻⁸		
accuracy			
Residual FM	≤ (0.25 Hz x N) p-p in 20 ms	(nominal)	
Frequency readout accuracy (sta			
	reference accuracy + 0.25 % x spar	n + 5 % x RBW + 2 Hz + 0.5 x horizonta	l resolution ¹)
Marker frequency counter			
Accuracy		ency reference accuracy + 0.100 Hz)	
Delta counter accuracy	± (delta frequency x frequenc	cy reference accuracy + 0.141 Hz)	
Counter resolution	0.001 Hz		
Frequency span (FFT and swept			
Range		aximum frequency of instrument	
Resolution	2 Hz		
Accuracy			
 Stepped/Swept 	± (0.25 % x span + horizonta		
_ FFT	± (0.1% x span + horizontal re	esolution)	

1. Horizontal resolution is span/(sweep points – 1).

Sweep time and triggering			
Range	Span = 0 Hz	1 μs to 6000 s	
	Span ≥ 10 Hz	1 ms to 4000 s	
Accuracy	Span ≥ 10 Hz, swept	± 0.01 % (nominal)	
	Span ≥ 10 Hz, FFT	± 40 % (nominal)	
	Span = 0 Hz	± 0.01 % (nominal)	
Trigger	Free run, line, video, external 1, exter	rnal 2, RF burst, periodic timer	
Trigger delay	Span = 0 Hz or FFT	–150 to +500 ms	
	Span ≥ 10 Hz, swept	0 µs to 500 ms	
	Resolution	0.1 µs	
Time gating			
Gate methods	Gated LO; gated video; gated FFT		
Gate length range	100.0 ns to 5.0 s		
(except method = FFT)			
Gate delay range	0 to 100.0 s		
Gate delay jitter	33.3 ns p-p (nominal)		
Sweep (trace) point range			
All spans	1 to 100,001		
Resolution bandwidth (RBW)			
EMI bandwidths (CISPR compliant)	200 Hz, 9 KHz, 120 kHz, 1 MHz		
EMI bandwidths (Mil STD 461	10 Hz, 100 Hz, 1 kHz, 10 kHz, 100 kH	Iz, 1 MHz	
compliant)			
Other bandwidths (–6 dB)	30 Hz, 300 Hz, 3 kHz, 30 kHz, 300 kH		
Range (-3.01 dB bandwidth)	1 Hz to 3 MHz (10 % steps, E24 serie	•	
Bandwidth accuracy (power)	1 Hz to 750 kHz	± 1.0 % (± 0.044 dB)	
	820 kHz to 1.2 MHz (< 3.6 GHz CF)	± 2.0 % (± 0.088 dB)	
	1.3 to 2 MHz (< 3.6 GHz CF)	± 0.07 dB (nominal)	
	2.2 to 3 MHz (< 3.6 GHz CF)	± 0.15 dB (nominal)	
Depdwidth assures (2.01 dD)	4 to 8 MHz (< 3.6 GHz CF)	± 0.25 dB (nominal)	
Bandwidth accuracy (–3.01 dB)	1 Hz to 1.3 MHz 4.1:1 (nominal)	±2% (nominal)	
Selectivity (-60 dB/-3 dB)		Filter turne	
RF preselector filters	Filter band 20 Hz to 150 kHz	Filter type Fixed lowpass	6 dB BW (nominal) 310 kHz
	150 kHz to 1 MHz	Fixed bandpass	1.7 MHz
	1 to 2 MHz	Fixed bandpass	2.4 MHz
	2 to 5 MHz	Fixed bandpass	7.5 MHz
	5 to 8 MHz	Fixed bandpass	10 MHz
	8 to 11 MHz	Fixed bandpass	9.5 MHz
	11 to 14 MHz	Fixed bandpass	9.5 MHz
	14 to 17 MHz	Fixed bandpass	10 MHz
	17 to 20 MHz	Fixed bandpass	9.5 MHz
	20 to 24 MHz	Fixed bandpass	9.5 MHz
	24 to 30 MHz	Fixed bandpass	9.0 MHz
	30 to 70 MHz	Tracking bandpass	10 MHz
	70 to 150 MHz	Tracking bandpass	24 MHz
	150 to 300 MHz	Tracking bandpass	28 MHz
	300 to 600 MHz	Tracking bandpass	50 MHz
	600 MHz to 1 GHz	Tracking bandpass	60 MHz
	1 to 2 GHz	Tracking bandpass	180 MHz
	2 to 3.6 GHz	Fixed highpass	1.89 GHz
			(-3 dB corner frequency)

Analysis bandwidth ¹		
Maximum bandwidth	Option B25	25 MHz
	Standard	10 MHz
Video bandwidth (VBW)		
Range	1 Hz to 3 MHz (10 % steps,	E24 series 24 per decade), 4, 5, 6, 8 MHz, and wide open (labeled 50 MHz)
Accuracy	±6% (nominal)	
Measurement speed ²	Standard	
Local measurement and display update rate	4 ms (250/s) (nominal)	
Remote measurement and LAN transfer rate	5 ms (200/s) (nominal)	
Marker peak search	1.5 ms (nominal)	
Center frequency tune and transfer (RF)	20 ms (nominal)	
Center frequency tune and transfer (μW)	47 ms (nominal)	
Measurement/mode switching	39 ms (nominal)	
Time domain sweep times		
CISPR band B, 150 kHz to 30 MHz, RBW = 9 kHz,	12.1 s (nominal)	
measurement time = 100 ms, peak detector		
CISPR band B, 150 kHz to 30 MHz, RBW = 9 kHz,	181.7 s (nominal)	
measurement time = 1 s, quasi-peak detector		
CISPR band C/D, 30 MHz to 1 GHz, RBW =	3.1 s (nominal)	
120 kHz, measurement time = 10 ms, peak		
detector		
CISPR band C/D, 30 MHz to 1 GHz, RBW = 9 kHz,	18.1 s (nominal)	
measurement time = 10 ms, peak detector		
CISPR band C/D, 30 MHz to 1 GHz, RBW =	211.5 s (nominal)	
120 kHz, measurement time = 1 s, quasi-peak		
detector		

Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.
 Sweep points = 101.

Amplitude Accuracy and Range Specifications

Amplitude range					
Measurement range	Displayed average nois	se level (DANL) to maximu	m safe input level		
Input attenuator range	0 to 70 dB in 2 dB step	IS			
Maximum safe input					
level (with and without	RF Input 1	RF Input 2			
preamp)	F.	F.			
Average total power	+30 dBm (1 W)	+30 dBm (1 W)			
Peak pulse power	+45 dBm (31.6 W)	+50 dBm (100 W)		< 10 µs pulse width, < 1	1 % duty cycle and input
				attenuation ≥ 30 dB	
Surge power		+2k W		(10 µs pulse width)	
DC volts					
 DC coupled 	± 0.2 Vdc	± 0.2 Vdc			
 AC coupled 	± 100 Vdc	± 100 Vdc			
Display range					
Log scale	0.1 to 1 dB/division in	0.1 dB steps			
	1 to 20 dB/division in 1	l dB steps (10 display divis	sions)		
Linear scale	10 divisions				
Scale units	dBm, dBmV, dBµV, dBr	mA, dBμA, V, W, A			
	dBuV/m, dBuA/m, dBp				
Frequency response		Specification		95th percentile ($\approx 2\sigma$)	
		Option 503, 508, or 526 (RF/µW)	Option 544 (mmW)	Option 503, 508, or 526 (RF/μW)	Option 544 (mmW)
(10 dB input attenuation.	20 to 30 °C, preselector	centering applied, $\sigma = no$	minal standard deviation)		()
RF preselector off,	3 Hz to 20 Hz		,	± 0.25 dB (nominal)	± 0.25 dB (nominal)
preamp off	20 Hz to 10 MHz ¹	± 0.6 dB	± 0.6 dB	± 0.22 dB	± 0.25 dB
	10 to 50 MHz	± 0.65 dB	± 0.65 dB	± 0.22 dB	± 0.21 dB
	50 MHz to 3.6 GHz	± 0.65 dB	± 0.65 dB	± 0.22 dB	± 0.15 dB
	3.5 to 5.2 GHz	± 1.5 dB	± 1.6 dB	± 0.47 dB	± 0.6 dB
	5.2 to 8.4 GHz	± 1.5 dB	± 1.5 dB	± 0.47 dB	± 0.57 dB
	8.3 to 13.6 GHz	± 1.5 dB	± 1.5 dB	± 0.46 dB	± 0.54 dB
	13.5 to 17.1 GHz	± 1.5 dB	± 1.5 dB	± 0.53 dB	± 0.64 dB
	17 to 18 GHz	± 1.5 dB	± 1.7 dB	± 0.57 dB	± 0.72 dB
	18 to 22 GHz	± 1.7 dB	± 1.7 dB	± 0.64 dB	± 0.72 dB
	22 to 26.5 GHz	± 1.7 dB	± 1.7 dB ± 2.5 dB	± 0.61 dB	± 0.71 dB ± 0.93 dB
	26.4 to 34.5 GHz 34.4 to 44 GHz		± 3.2 dB		± 1.24 dB
RF preselector off,	100 kHz to 3.6 GHz ¹	± 0.75 dB	± 0.2 0D	± 0.29 dB	± 1.24 0D
preamp on (0 dB	100 kHz to 10 MHz	± 0.75 UD	± 0.75 dB	± 0.23 uD	± 0.43 dB
attenuation)	10 to 50 MHz		± 0.75 dB		± 0.29 dB
	50 MHz to 3.6 GHz		± 0.75 dB		± 0.31 dB
	3.5 to 8.4 GHz	± 1.85 dB		± 0.63 dB	
	3.5 to 5.2 GHz		± 2.2 dB		± 0.9 dB
	5.2 to 8.4 GHz		± 1.85 dB		± 0.7 dB
	8.3 to 13.6 GHz	± 1.95 dB	± 1.95 dB	± 0.64 dB	± 0.79 dB
	13.5 to 17.1 GHz	± 1.8 dB	± 1.8 dB	± 0.81 dB	± 0.88 dB
	17 to 18 GHz	± 2.0 dB		± 0.95 dB	
	18 to 22 GHz	± 2.85 dB		± 1.23 dB	
	17 to 22 GHz	1 2 G dP	± 2.85 dB	1 07 dD	± 1.07 dB ± 1.03 dB
	22 to 26.5 GHz 26.4 to 34.5 GHz	± 2.6 dB	± 2.6 dB ± 3.0 dB	± 1.37 dB	± 1.03 dB ± 1.35 dB
	34.4 to 44 GHz		± 4.1 dB		± 1.69 dB
	J4.4 LU 44 UNZ		± 4.1 UD		± 1.05 UD

DC coupling required to meet specifications below 50 MHz. With AC coupling, specifications apply at frequencies of 50 MHz and higher. Statistical
observations at 10 MHz with AC coupling show that most instruments meet the DC-coupled specifications, however, a small percentage of instruments are
expected to have errors exceeding 0.5 dB at 10 MHz at the temperature extreme. The effect at 20 to 50 MHz is negligible but not warranted.

Frequency response	(Continued)	Specification		95th percentile (\approx 2 σ)	
		Option 503, 508, or 526 (RF/µW)	Option 544 (mmW)	Option 503, 508, or 526 (RF/µW)	Option 544 (mmW)
RF preselector on,	3 Hz to 20 Hz			± 0.3 dB (nominal)	± 0.3 dB (nominal)
preamp off	20 Hz to 300 MHz $^{\rm 1}$	± 0.65 dB	± 0.65 dB	± 0.30 dB	± 0.3 dB
	300 MHz to 1 GHz	± 0.65 dB	± 0.65 dB	± 0.28 dB	± 0.28 dB
	1 to 3.6 GHz	± 0.85 dB	± 0.85 dB	± 0.36 dB	± 0.36 dB
	3.5 to 8.4 GHz	± 1.5 dB		± 0.47 dB	
	3.5 to 5.2 GHz		± 1.6 dB		± 0.6 dB
	5.2 to 8.4 GHz		± 1.5 dB		± 0.57 dB
	8.3 to 13.6 GHz	± 1.5 dB	± 1.5 dB	± 0.46 dB	± 0.54 dB
	13.5 to 17.1 GHz	± 1.5 dB	± 1.5 dB	± 0.53 dB	± 0.64 dB
	17 to 18 GHz	± 1.5 dB	± 1.7 dB	± 0.57 dB	± 0.72 dB
	18 to 22 GHz	± 1.7 dB	± 1.7 dB	± 0.64 dB	± 0.72 dB
	22 to 26.5 GHz	± 1.7 dB	± 1.7 dB	± 0.61 dB	± 0.71 dB
	26.4 to 34.5 GHz		± 2.5 dB		± 0.93 dB
	34.4 to 44 GHz		± 3.2 dB		± 1.24 dB
RF preselector on,	1 kHz to 30 MHz ¹	± 0.8 dB	± 0.8 dB	± 0.36 dB	± 0.36 dB
preamp on (0 dB	30 to 300 MHz ¹	± 0.7 dB	± 0.70 dB	± 0.29 dB	± 0.29 dB
attenuation)	300 MHz to 1 GHz	± 0.65 dB	± 0.65 dB	± 0.30 dB	± 0.30 dB
	1 to 2.75 GHz	± 0.95 dB	± 0.95 dB	± 0.45 dB	± 0.45 dB
	2.75 to 3.6 GHz	± 1.15 dB	± 1.15 dB	± 0.55 dB	± 0.55 dB
	3.5 to 8.4 GHz	± 1.85 dB		± 0.63 dB	
	3.5 to 5.2 GHz		± 2.2 dB		± 0.9 dB
	5.2 to 8.4 GHz		± 1.85 dB		± 0.7 dB
	8.3 to 13.6 GHz	± 1.95 dB	± 1.95 dB	± 0.64 dB	± 0.79 dB
	13.5 to 17.1 GHz	± 1.8 dB	± 1.8 dB	± 0.81 dB	± 0.88 dB
	17 to 18 GHz	± 2.0 dB	± 2.85 dB	± 0.95 dB	± 1.07 dB
	18 to 22 GHz	± 2.85 dB	± 2.85 dB	± 1.23 dB	± 1.07 dB
	22 to 26.5 GHz	± 2.6 dB	± 2.6 dB	± 1.37 dB	± 1.03 dB
	26.4 to 34.5 GHz		± 3.0 dB		± 1.35 dB
	34.4 to 44 GHz		± 4.1 dB		± 1.69 dB

DC coupling required to meet specifications below 50 MHz. With AC coupling, specifications apply at frequencies of 50 MHz and higher. Statistical
observations at 10 MHz with AC coupling show that most instruments meet the DC-coupled specifications, however, a small percentage of instruments are
expected to have errors exceeding 0.5 dB at 10 MHz at the temperature extreme. The effect at 20 to 50 MHz is negligible but not warranted.

Input attenuation switching uncert	ainty	Specifications				
Attenuation > 2 dB , preamp off	50 MHz (reference frequency)	± 0.20 dB	± 0.08 dB (typical)			
Relative to 10 dB (reference setting)						
Absolute amplitude accuracy		Specifications	95th percentile (≈ 2σ)			
(10 dB attenuation, 20 to 30 °C, 1 Hz	(10 dB attenuation, 20 to 30 °C, 1 Hz \leq RBW \leq 1 MHz, input signal –10 to –50 dBm, all settings auto-coupled except Auto Swp Time = Accy, any reference					
level, any scale, σ = nominal standar	rd deviation)					
RF preselector off and on, preamp o	ff and on					
RF input 1 to 44 GHz	At 50 MHz	± 0.33 dB	± 0.25 dB			
	At all frequencies	± (0.33 dB + frequency re	esponse)			
RF input 2 to 1 GHz	At 50 MHz	± 0.36 dB	± 0.27 dB			
	At all frequencies	± (0.36 dB + frequency re	esponse)			

Input voltage standing wave ratio (VSWR)		Input attenuation 0 dB	Input attenuation ≥ 10 dB
RF preselector off, preamp on and off			
DC coupled	1 to 18 GHz	3.0:1	2.0:1
	18 to 26.5 GHz	3.0:1	2.0:1
	26.5 to 40 GHz	3.0:1	2.5:1
	40 to 44 GHz		_
AC coupled	1 to 18 GHz	3.0:1	2.0:1
	18 to 26.5 GHz	3.0:1	2.4:1
RF preselector on,preamp on and off			
DC coupled	9 kHz to 1 GHz	2.0:1	1.2:1
	1 to 26.5 GHz	3.0:1	2.0:1
	26.5 to 40 GHz	3.0:1	2.5:1
	40 to 44 GHz		_
AC coupled	50 MHz to 1 GHz	2.0:1	1.2:1
	1 to 18 GHz	3.0:1	2.0:1
	18 to 26.5 GHz	3.0:1	2.4:1
Resolution bandwidth switching uncertainty			
1 Hz to 1.5 MHz RBW	± 0.05 dB		
1.6 to 3 MHz RBW	± 0.10 dB		
4, 5, 6, 8 MHz RBW	± 1.0 dB		
Reference level			
Range			
– Log scale	–170 to +30 dBm in 0.01 dB s	· · · · · · · · · · · · · · · · · · ·	
– Linear scale	Same as log (707 pV to 7.07 V	/)	
Accuracy	0 dB		
Display scale switching uncertainty			
Switching between linear and log	0 dB		
Log scale/div switching	0 dB		
Display scale fidelity			
Between –10 dBm and –80 dBm input mixer	± 0.10 dB total		
evel			
Fotal measurement uncertainty ¹		95th percentile (≈ 2σ)	
Signal level 0 to 90 dB below reference point	, RF attenuation 0 to 40 dB, RB\	$N \leq 3$ MHz, 20° to 30° C: AC coupled	d 10 MHz to 26.5 GHz
DC coupled 9 kHz to 40 GHz			
		Option 503, 508, or 526 (RF/µW)	Option 544 (mmW)
RF preselector off, preamp off	1 kHz to 2 GHz	± 0.50 dB	± 0.50 dB
	2 to 3.6 GHz	± 0.60 dB	± 0.60 dB
	3.6 to 8 GHz	± 0.80 dB	± 1.70 dB
	8 to 18 GHz	± 1.10 dB	± 1.30 dB
	18 to 26.5 GHz	± 1.60 dB	± 1.60 dB
	26.5 to 40 GHz		± 1.70 dB
	40 to 44 GHz		± 2.30 dB
RF preselector off, preamp on	100 kHz to 2 GHz	± 0.60 dB	± 0.60 dB
	2 to 3.6 GHz	± 0.60 dB	± 0.60 dB
	3.6 to 8 GHz	± 1.10 dB	± 1.80 dB
	8 to 18 GHz	± 1.30 dB	± 1.30 dB
	18 to 26.5 GHz	± 1.90 dB	± 1.90 dB
	26.5 to 40 GHz		± 1.90 dB
	40 to 44 GHz		± 2.40 dB

1. Specified for instruments with prefixes MY/SG5322 or greater.

Total measurement uncertainty ¹ (Continued)		95th percentile ($\approx 2\sigma$)	
RF preselector on, preamp off	9 kHz to 2 GHz	± 0.50 dB	± 0.50 dB
	2 to 3.6 GHz	± 0.50 dB	± 0.50 dB
	3.6 to 8 GHz	± 0.80 dB	± 1.70 dB
	8 to 18 GHz	± 1.10 dB	± 1.30 dB
	18 to 26.5 GHz	± 1.60 dB	± 1.60 dB
	26.5 to 40 GHz		± 1.70 dB
	40 to 44 GHz		± 2.30 dB
RF preselector on, preamp on	9 kHz to 2 GHz	± 0.50 dB	± 0.50 dB
	2 to 3.6 GHz	± 0.70 dB	± 0.70 dB
	3.6 to 8 GHz	± 1.10 dB	± 1.80 dB
	8 to 18 GHz	± 1.30 dB	± 1.30 dB
	18 to 26.5 GHz	± 1.90 dB	± 1.90 dB
	26.5 to 40 GHz		± 1.90 dB
	40 to 44 GHz		± 2.40 dB
Trace detectors			
Normal, peak, sample, negative peak, log p	power average, RMS average, and voltag	e average	
CISPR detectors: quasi-peak, EMI-avg, RM	MS-avg		
Preamplifier			
Gain			
 RF preselector off 	100 kHz to 3.6 GHz	+20 dB (nominal)	
	3.6 to 26.5 GHz	+35 dB (nominal)	
	26.5 to 44 GHz	+40 dB (nominal)	
 RF preselector on 	9 kHz to 3.6 GHz	+20 dB (nominal)	
	3.6 to 26.5 GHz	+35 dB (nominal)	
	26.5 to 44 GHz	+40 dB (nominal)	
Amplitude probability distribution			
Dynamic range	> 70 dB		
Amplitude accuracy	< ± 2.7 dB		
Maximum measureable time period	2 minutes		
(no dead time)			
Minimum measureable probability	10-7		
Amplitude level assignment	1000 levels		
Sampling rate	≥ 10 MSa/s (within a 1 MHz RBW)	
Amplitude resolution	0.1881 dB		

1. Specified for instruments with prefixes MY/SG5322 or greater.

Dynamic Range Specifications

1 dB gain compression		Speci	fication	-	pical
		Ontion E02 E00		power at mixer	Option E//
	Frequency range	Option 503, 508, or 526 (RF/μW)	Option 544 (mmW)	Option 503, 508, or 526 (RF/μW)	Option 544 (mmW)
•	out 2 to 1 GHz, performance = RF Inpu	t 1 performance + 9 d	IB)	+4 dBm (nominal)	(dDm (naminal)
RF preselector on and off, preamp off	9 kHz to 10 MHz 10 to 500 MHz	0 dBm	0 dBm	, ,	+4 dBm (nominal)
pround on	500 MHz to 3.6 GHz	+1 dBm	+1 dBm	+3 dBm (typical)	+3 dBm (typical)
		0 dBm	0 dBm	+5 dBm (typical)	+5 dBm (typical)
	3.6 to 26.5 GHz 26.4 to 44 GHz	UUBIII	–1 dBm	+4 dBm (typical)	+4 dBm (typical) +2 dBm (nominal)
RF preselector off,	10 MHz to 3.6 GHz		-I UDIII	–13 dBm (nominal)	–13 dBm (nominal)
preamp on					
F -	3.6 to 26.5 GHz				
	Tone spacing 100 kHz to 20 MHz			-26 dBm (nominal)	-30 dBm (nominal)
	Tone spacing > 70 MHz			–16 dBm (nominal)	-16 dBm (nominal)
DE autoritaria a	26.4 to 44 GHz			10 dDas (a sasia sl)	-30 dBm (nominal)
RF preselector on, preamp on	9 kHz to 10 MHz			-16 dBm (nominal)	-16 dBm (nominal)
	10 to 2 GHz			-18 dBm (typical)	-21 dBm (typical)
	2 GHz to 3.6 GHz 3.6 to 26.5 GHz			–16 dBm (typical)	–17 dBm (typical)
	Tone spacing, 100 kHz to 20 MHz			-26 dBm (nominal)	-30 dBm (nominal)
	Tone spacing > 70 MHz			–16 dBm (nominal)	-16 dBm (nominal)
Displayed average noise lev	26.4 to 44 GHz				–30 dBm (nominal)
RF preselector off,	GHz; RF Input 2 performance = RF Inp	Specification —	1 dB	Typical including N –97 dBm (nominal)	
preamp off RF preselector off,	20 Hz ² 100 Hz ² 1 kHz ² 9 kHz 100 kHz 1 MHz 10 MHz to 2.1 GHz 2.1 to 3.6 GHz 3.5 to 8.4 GHz Option 544 8.3 to 13.6 GHz Option 544 13.5 to 17.1 GHz 17.0 to 20.0 GHz 20.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 44 GHz 100 kHz	-97 dBm -106 dBm -118 dBm -119 dBm -131 dBm -150 dBm -150 dBm -148 dBm -148 dBm -145 dBm -147 dBm -147 dBm -147 dBm -141 dBm -142 dBm -142 dBm -144 dBm -144 dBm			
preamp on	1 MHz 10 MHz to 2.1 GHz 2.1 to 3.6 GHz 3.5 to 8.4 GHz Option 544 8.3 to 13.6 GHz Option 544 13.5 to 17.1 GHz 17.0 to 20.0 GHz 20.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 44 GHz	-144 dBm -162 dBm -163 dBm -161 dBm -161 dBm -162 dBm -160 dBm -160 dBm -158 dBm -155 dBm -155 dBm -150 dBm			

Typical Indicated Noise including NFE = typical DANL+ Bandwidth and Log corrrections-DANL improvement with NFE. Specified for instruments with prefixes MY/SG5213 or greater. Nominal for instruments with earlier prefixes. No NFE at this frequency. 1. 2. 3.

Displayed average noise level (DANL) (Continued)

(Input terminated, sample or average detector, averaging type = Log, 0 dB input attenuation, IF Gain = High, 20 to 30 °C) RF Input 1; RF Input 2 to 1 GHz; RF Input 2 performance = RF Input 1 performance +11 dB

		Specification	Typical including NFE ¹
RF preselector on,	3 to 10 Hz	_	-92 dBm (nominal) ²
preamp off	20 Hz ³	–92 dBm	-100 dBm ²
	100 Hz ³	–101 dBm	-109 dBm ²
	1 kHz ³	–114 dBm	-120 dBm ²
	9 kHz	–118 dBm	–132 dBm
	100 kHz	–130 dBm	–143 dBm
	1 to 3 MHz	–147 dBm	–158 dBm
	3 to 30 MHz	–150 dBm	–160 dBm
	30 to 300 MHz	–151 dBm	–161 dBm
	300 to 600 MHz	–153 dBm	–164 dBm
	600 MHz to 1 GHz	–151 dBm	–162 dBm
	1 to 2 GHz	–150 dBm	–161 dBm
	2 to 2.5 GHz	–152 dBm	–164 dBm
	2.5 to 3 GHz	–151 dBm	–163 dBm
	3 to 3.6 GHz	–148 dBm	–161 dBm
	3.5 to 8.4 GHz	–148 dBm	–159 dBm
	– Option 544	–145 dBm	–153 dBm
	8.3 to 13.6 GHz	–147 dBm	–158 dBm
	– Option 544	–147 dBm	–156 dBm
	13.5 to 17.1 GHz	–141 dBm	–150 dBm
	17.0 to 20.0 GHz	–142 dBm	–152 dBm
	20.0 to 26.5 GHz	–135 dBm	–146 dBm
	26.4 to 34.5 GHz	–141 dBm	–148 dBm
	34.4 to 44 GHz	–135 dBm	–143 dBm
RF preselector on, preamp on	1 kHz ³	–119 dBm	-133 dBm ²
	9 kHz	–143 dBm	–154 dBm
	100 kHz	–154 dBm	–165 dBm
	1 to 2 MHz	–166 dBm	–178 dBm
	2 to 30 MHz	–158 dBm	–167 dBm
	30 to 600 MHz	–159 dBm	–166 dBm
	600 to 800 MHz	–157 dBm	–166 dBm
	800 MHz to 1 GHz	–158 dBm	–167 dBm
	1 to 2 GHz	–156 dBm	–164 dBm
	2 to 2.75 GHz	–160 dBm	–168 dBm
	2.75 to 3.6 GHz	–157 dBm	–165 dBm
	3.5 to 8.4 GHz	–164 dBm	–172 dBm
	- Option 544	–161 dBm	–166 dBm
	8.3 to 13.6 GHz	–162 dBm	–173 dBm
	– Option 544	–161 dBm	–170 dBm
	13.5 to 17.1 GHz	–160 dBm	–171 dBm
	17.0 to 20.0 GHz	–158 dBm	–165 dBm
	20.0 to 26.5 GHz	–155 dBm	-162 dBm
	26.4 to 34.5 GHz	–156 dBm	-164 dBm
	34.4 to 44 GHz	–150 dBm	–158 dBm

Typical DANL including NFE = Typical DANL-DANL Improvement.
 No NFE factor at this frequency.
 Specified for instruments with prefixes MY/SG5213 or greater. Nominal for instruments with earlier prefixes.

		Typical including NFE ¹
RF preselector on, preamp off	3 to 10 Hz (1 Hz RBW) 3	+ 17 dBuV ² (nominal)
	20 Hz (1 Hz) ³	+9 dBuV ²
	100 Hz (10 Hz) ³	+10 dBuV ²
	1 kHz (100 Hz) ³	+9 dBuV ²
	9 kHz (200 Hz)	–2 dBuV
	100 kHz (200 Hz)	–13 dBuV
	1 to 3 MHz (9 kHz)	–11 dBuV
	3 to 30 MHz (9 kHz)	–13 dBuV
	30 to 300 MHz (120 kHz)	–3 dBuV
	300 to 600 MHz (120 kHz)	–6 dBuV
	600 MHz to 1 GHz (120 kHz)	–4 dBuV
	1 to 2 GHz (1 MHz)	+6 dBuV
	2 to 2.5 GHz (1 MHz)	+3 dBuV
	2.5 to 3 GHz (1 MHz)	+4 dBuV
	3 to 3.6 GHz (1 MHz)	+6 dBuV
	3.5 to 8.4 GHz (1 MHz)	+8 dBuV
	– Option 544	+14 dBuV
	8.3 to 13.6 GHz (1 MHz)	+9 dBuV
	– Option 544	+11 dBuV
	13.5 to 17.1 GHz (1 MHz)	+16 dBuV
	17.0 to 20.0 GHz (1 MHz)	+15 dBuV
	20.0 to 26.5 GHz (1 MHz)	+21 dBuV
	26.4 to 34.5 GHz (1 MHz)	+19 dBuV
	34.4 to 44 GHz (1 MHz)	+24 dBuV
RF preselector on, preamp on	1 kHz (100 Hz RBW) ³	-4 dBuV ²
	9 kHz (200 Hz)	-24 dBuV
	100 kHz (200 Hz)	-35 dBuV
	1 to 2 MHz (9 kHz)	–31 dBuV
	2 to 30 MHz (9 kHz)	-20 dBuV
	30 to 600 MHz (120 kHz)	-8 dBuV
	600 to 800 MHz (120 kHz)	–8 dBuV
	800 MHz to 1 GHz (120 kHz)	–9 dBuV
	1 to 2 GHz (1 MHz)	+3 dBuV
	2 to 2.75 GHz (1 MHz)	–1 dBuV
	2.75 to 3.6 GHz (1 MHz)	+2 dBuV
	3.5 to 8.4 GHz (1 MHz)	–5 dBuV
	– Option 544	–1 dBuV
	8.3 to 13.6 GHz (1 MHz)	-6.0 dBuV
	– Option 544	-4 dBuV
	13.5 to 17.1 GHz (1 MHz)	-4 dBuV
	17.0 to 20.0 GHz (1 MHz)	+2 dBuV
	20.0 to 26.5 GHz (1 MHz)	+5 dBuV
	26.4 to 34.5 GHz (1 MHz)	+3 dBuV
	34.4 to 44 GHz (1 MHz)	+9 dBuV

Typical Indicated Noise including NFE = Typical DANL+ Bandwidth and Log corrrections-DANL improvement with NFE.
 No NFE factor at this frequency.
 Specified for instruments with prefixes MY/SG5213 or greater. Nominal for instruments with earlier prefixes.

Indicated noise in CISPR BW

Spurious responses			
	1 - 66		
RF Input 1; RF preselector on and			T 1
1	Source frequency	Specification	Typical
Residual responses ¹	200 kHz to 8.4 GHz (swept)	–100 dBm	
(Input terminated and 0 dB	Zero span or FFT or other	–100 dBm (nominal)	
attenuation)	frequencies		
Image responses	10 MHz to 3.6 GHz	-80 dBc	–108 dBc
f ± 645 MHz	3.5 to 13.6 GHz	–78 dBc	-88 dBc
Mixer level –10 dBm	13.5 to 17.1 GHz 17.0 to 22 GHz	–74 dBc	-85 dBc
	22 to 26.5 GHz	–70 dBc	-82 dBc
	26.5 to 34.5 GHz ³	-68 dBc	-78 dBc
	34.4 to 44 GHz ³	–70 dBc	-94 dBc
		-60 dBc	–79 dBc
LO related spurious - (f > 600 MHz from carrier)	10 MHz to 3.6 GHz		-90 dBc + 20xlogN ²
Other spurious			
- f ≥ 10 MHz from carrier	Carrier frequency ≤ 26.5 GHz	-80 dBc + 20xlogN ²	
	Carrier frequency > 26.5 GHz		–90 dBc (nominal)
Second harmonic distortion (SHI)			
RF Input 1; input power -9 dBm, i	nput attenuation 6 dB; RF Input 2 to 1	GHz. RF Input 2 performance = R	F Input 1 performance +9 dB
	Source frequency	Specification	Typical
RF preselector off, preamp off	10 MHz to 1.0 GHz	+45 dBm	+54 dBm
	1.0 to 1.8 GHz	+41 dBm	+50 dBm
	1.8 to 6.8 GHz	+65 dBm	+68 dBm
	Option 544 1.8 to 3 GHz	+58 dBm	+64 dBm
	3 to 6.8 GHz	+60 dBm	+69 dBm
	6.8 to 11 GHz	+55 dBm	+64 dBm
	11 to 13.25 GHz	+50 dBm	+60 dBm
	13.2 to 22 GHz (Option 544)	+44 dBm	+51 dBm
RF preselector off, preamp on			
 Preamp power = -45 dBm 	10 MHz to 1.8 GHz		+33 dBm (nominal)
 Preamp power = -50 dBm 	1.8 to 13.25 GHz 13.2 to 22 GHz (Option 544)		+10 dBm (nominal) +0 dBm (nominal)
DE procedenter en process off	10 to 30 MHz	+47 dBm	+50 dBm
RF preselector on, preamp off	30 to 500 MHz	+47 dBm +57 dBm	+50 dBm
	500 MHz to 1GHz	+45 dBm	+47 dBm
	1 to 1.6 GHz	+58 dBm	+47 dBm
	1.6 to 1.8 GHz	+46 dBm	+52 dBm
	1.8 to 6.8 GHz	+65 dBm	+68 dBm
	Option 544 1.8 to 3 GHz	+58 dBm	+64 dBm
	3 to 6.8 GHz	+60 dBm	+69 dBm
	6.8 to 11 GHz	+55 dBm	+64 dBm
	11 to 13.25 GHz	+50 dBm	+60 dBm
	13.2 to 22 GHz (Option 544)	+44 dBm	+51 dBm
RF preselector on, preamp on,	10 to 300 MHz		+53 dBm (nominal)
– Input power = –9 dBm	300 to 500 MHz		+58 dBm (nominal)
 Attenuation = 26 dB 	500 MHz to 1 GHz		+47 dBm (nominal)
	1 to 1.6 GHz		+53 dBm (nominal)
	1.6 to 1.8 GHz		+30 dBm (nominal)
 Preamp power = -50 dBm 	1.8 to 13.25 GHz		+10 dBm (nominal)
11	13.2 to 22 GHz (Option 544)		+0 dBm (nominal)

RF2 performance = RF1 performance +11 dB.
 N is the LO multiplication factor.
 Mixer level -30 dBm.

Third-order intermodulation distortion (TOI)

(Two -14 dBm tones at input and 4 dB of input attenuation; tone separation > 5 times IF prefilter bandwidth, 20 to 30 °C, see Specifications Guide for IF prefilter bandwidths); RF Input 1; RF Input 2 to 1 GHz; RF Input 2 performance = RF Input 1 performance +9 dB

· · · · · · · · · · · · · · · · · · ·	1 1	
	TOI	TOI (typical)
10 to 100 MHz 100 to 400 MHz 400 MHz to 1.7 GHz 1.7 to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 26.5 GHz	+12 dBm +15 dBm +16 dBm +16 dBm +15 dBm +15 dBm +10 dBm	+17 dBm +20 dBm +20 dBm +19 dBm +18 dBm +18 dBm +14 dBm
	+10 dBm	+13 dBm +4 dBm (nominal)
500 MHz to 3.6 GHz 3.6 to 26.5 GHz 26.4 to 44 GHz		+5 dBm (nominal) -15 dBm (nominal) -17 dBm (nominal)
2F preselector on, preamp off 10 to 30 MHz 30 MHz to 1 GHz 1 to 1.5 GHz 1.5 to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 26.5 GHz 26.4 to 44 GHz (Option 544)		+16 dBm +15 dBm +14 dBm +16 dBm +18 dBm +18 dBm +14 dBm +13 dBm
10 to 30 MHz 30 MHz to 1 GHz 1 to 2 GHz 2 to 3.6 GHz 3.6 to 26.5 GHz 26.4 to 44 GHz (Option 544)	-9 dBm -9 dBm -4 dBm -6 dBm	–5 dBm –4 dBm –2 dBm –3 dBm –15 dBm (nominal) –17 dBm (nominal)
Offset	Specification	Typical
10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz	–91 dBc/Hz –113 dBc/Hz –116 dBc/Hz –135 dBc/Hz	-80 dBc/Hz (nominal) -100 dBc/Hz -112 dBc/Hz (nominal) -114 dBc/Hz -117 dBc/Hz -136 dBc/Hz
	100 to 400 MHz 400 MHz to 1.7 GHz 1.7 to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 26.5 GHz 26.4 to 44 GHz 10 to 500 MHz 500 MHz to 3.6 GHz 3.6 to 26.5 GHz 26.4 to 44 GHz 10 to 30 MHz 30 MHz to 1 GHz 1 to 1.5 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 26.5 GHz 26.4 to 44 GHz (Option 544) 10 to 30 MHz 30 MHz to 1 GHz 1 to 2 GHz 2 to 3.6 GHz 3.6 to 26.5 GHz 2 co 4 to 44 GHz (Option 544) 10 to 2 GHz 2 to 3.6 GHz 3.6 to 26.5 GHz 2 co 4 to 44 GHz (Option 544) 0 Hz 10 Hz 10 Hz 10 Hz 10 Hz 10 KHz 10 kHz 10 kHz 10 kHz 10 kHz 10 kHz 10 kHz 10 kHz 10 kHz 10 kHz 1 MHz	10 to 100 MHz +12 dBm 100 to 400 MHz +15 dBm 400 MHz to 1.7 GHz +16 dBm 1.7 to 3.6 GHz +16 dBm 3.5 to 8.4 GHz +15 dBm 8.3 to 13.6 GHz +15 dBm 13.5 to 26.5 GHz +10 dBm 26.4 to 44 GHz +10 dBm 10 to 500 MHz 500 MHz to 3.6 GHz 3.6 to 26.5 GHz +10 dBm 26.4 to 44 GHz +10 dBm 10 to 500 MHz 500 MHz to 3.6 GHz 3.6 to 26.5 GHz +12.5 dBm 10 to 30 MHz +12.5 dBm 1 to 1.5 GHz +12.5 dBm 1 5 to 3.6 GHz +14.5 dBm 3.5 to 8.4 GHz +15 dBm 3.5 to 8.4 GHz +15 dBm 3.5 to 26.5 GHz +10 dBm 26.4 to 44 GHz (Option 544) +10 dBm 20 to 3.0 GHz -9 dBm 3.0 MHz to 1 GHz -9 dBm 2 to 3.6 GHz -6 dBm 3.6 to 26.5 GHz -6 dBm 3.6 to 26.5 GHz <t< td=""></t<>

1. Preamp input power = input power-input attenuation (-9 dB for input 2).

2. For nominal values, refer to Figure 1.

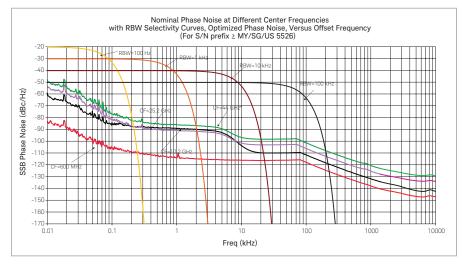


Figure 1. Nominal phase noise at different center frequencies.

PowerSuite Measurement Specifications

Channel power		
Amplitude accuracy, W-CDMA or IS95 (20 to 30 °C,	± 0.82 dB (± 0.23 dB 95 th percentile)	
attenuation = 10 dB)		
Occupied bandwidth		
Frequency accuracy	±[span/1000] (nominal)	
Adjacent channel power	_ [op and	
Accuracy, W-CDMA (ACLR)		
(at specific mixer levels and ACLR ranges)	Adjacent	Alternate
– MS	± 0.14 dB	± 0.21 dB
- BTS	± 0.49 dB	± 0.44 dB
Dynamic range (typical)		
 Without noise correction 	–73 dB	–79 dB
 With noise correction 	–78 dB	-82 dB
Offset channel pairs measured	1 to 6	
ACP measurement and transfer time (fast method)	14 ms (nominal) (σ = 0.2 dB)	
Multiple number of carriers measured	Up to 12	
Power statistics CCDF		
Histogram resolution	0.01 dB	
Harmonic distortion		
Maximum harmonic number	10 th	
Result	Fundamental power (dBm), relative harmonic	cs power (dBc), total harmonic distortion in %
Intermod (TOI)	Measure the third-order products and interc	epts from two tones
Burst power		
Methods	Power above threshold, power within burst v	vidth
Results	Single burst output power, average output p	ower, maximum power, minimum power within
	burst, burst width	
Spurious emission		
W-CDMA (1 to 3.6 GHz) table-driven spurious signals;		
search across regions		
 Dynamic range 	96.7 dB	101.7 dB (typical)
 Absolute sensitivity 	–85.4 dBm	
Spectrum emission mask (SEM)		
cdma2000® (750 kHz offset)		
 Relative dynamic range (30 kHz RBW) 	78.9 dB	85 dB (typical)
 Absolute sensitivity 	–100.7 dBm	
 Relative accuracy 	± 0.12 dB	
3GPP W-CDMA (2.515 MHz offset)		
 Relative dynamic range (30 kHz RBW) 	81.9 dB	88.2 dB (typical)
 Absolute sensitivity 	–100.7 dBm	
 Relative accuracy 	± 0.12 dB	

General Specifications

Operating	0 to 55 °C
Storage	-40 to 70 °C
EMC	
Complies with European EMC Directive 2004/108/EC	
- IEC/EN 61326-2-1	
 CISPR Pub 11 Group 1, class B 	
– AS/NZS CISPR 11	
- ICES/NMB-001	
This ISM device complies with Canadian ICES-001	
Cet appareil ISM est conforme à la norme NMB-001 du Canada	
Radio disturbance measuring apparatus	
CISPR 16-1-1	The features in this instrument comply with the performance requirements of this basic standard ¹
Safety	
Complies with European Low Voltage Directive 2006/95/EC – IEC/EN 61010-1 2nd Edition – Canada: CSA C22.2 No. 61010-01-04 – USA: UL 61010-1 2nd Edition	
Acoustic noise emission	Geraeuschemission
LpA < 70 dB	LpA < 70 dB
Operator position	Am Arbeitsplatz
Normal position	Normaler Betrieb
Per ISO 7779	Nach DIN 45635 t.19
Environmental stress	

altitude, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3

1. The use of Noise Floor Extension (NFE) is required to meet the "isolated pulse" test case in Bands B, C, and D. In addition, when making measurements in Band B below 160 kHz using time domain scans or making measurements using meters in monitor spectrum, NFE is also required to meet the 1 Hz pulse repetition frequency (prf) test case for the quasi-peak detector (QPD) and for the 5 Hz prf test case for the RMS-avg detector.

Power requirements	
Voltage and frequency (nominal)	100 to 120 V, 50/60/400 Hz
	220 to 240 V, 50/60 Hz
Power consumption	
– On	450 W maximum
– Standby	20 W
Display	
Resolution	1024 x 768, XGA
Size	213 mm (8.4 in.) diagonal (nominal)
Data storage	
Internal	≥ 80 GB (nominal) (removable solid state drive)
External	Supports USB 2.0 compatible memory devices
Weight (without options)	
Net	24 kg (52 lbs) (nominal)
Shipping	36 kg (79 lbs) (nominal)
Dimensions	
Height	177 mm (7.0 in)
Width	431 mm (17.0 in)
Length	535 mm (21.0 in)
Calibration cycle	
The recommended calibration cycle is one year; calibr	ation services are available through Keysight service centers

Inputs and Outputs

Front panel	
RF input	
 RF Input 1 Connector 	Type-N female, 50 Ω (nominal) (standard) 3.5 mm male, 50 Ω (Opt C35) 2.4 mm male, 50 Ω (Option 544 only)
– RF Input 2 Connector	Type-N female, 50 Ω (nominal) (standard)
External Mixing (Option EXM) – Connection port – Connector – Impedance – Functions – Mixer bias range	SMA, female 50 Ω, nominal Triplexed for LO output, IF input, and mixer bias ± 10 mA in 10 μA step
 IF input center frequency IF BW path <= 25 MHz 85 MHz BW IF path LO output frequency range 	322.5 MHz (note - please use the proper <= sign) 300 MHz 3.75 to 14.0 GHz
Probe power – Voltage/current	+15 Vdc, ± 7% at 150 mA max (nominal) –12.6 Vdc, ± 10% at 150 mA max (nominal)
USB 2.0 ports – Host (2 ports) – Standard – Connector – Output current	Compatible with USB 2.0 USB Type-A female 0.5 A (nominal)
Headphone jack – Connector	Miniature stereo audio jack 3.5 mm
Rear panel	
10 MHz out – Connector – Output amplitude – Frequency	BNC female, 50 Ω (nominal) ≥ 0 dBm (nominal) 10 MHz × (1+ frequency reference accuracy)
Ext Ref In – Connector – Input amplitude range – Input frequency – Frequency lock range	BNC female, 50 Ω (nominal) –5 to 10 dBm (nominal) 1 to 50 MHz (nominal) ± 5 x 10 ⁻⁶ of specified external reference input frequency
Trigger 1 and 2 inputs – Connector – Impedance – Trigger level range	BNC female > 10 kΩ (nominal) –5 to 5 V
Trigger 1 and 2 outputs – Connector – Impedance – Level	BNC female 50 Ω (nominal) 0 to 5 V (CMOS)

Rear panel (continued)	
Monitor output	
- Connector	VGA compatible, 15-pin mini D-SUB
– Format	XGA (60 Hz vertical sync rates, non-interlaced) Analog RGB
- Resolution	1024 x 768
Noise source drive +28 V (pulsed)	
– Connector	BNC female
SNS Series noise source	For use with Keysight Technologies' SNS series noise sources
Analog out	
– Connector	BNC female (used by Option YAS)
USB 2.0 ports	
– Host (4 ports)	
– Standard	Compatible with USB 2.0
– Connector	USB Type-A female
 Output current 	0.5 A (nominal)
 Device (1 port) 	
– Standard	Compatible with USB 2.0
– Connector	USB Type-B female
GPIB interface	
– Connector	IEEE-488 bus connector
 GPIB codes 	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0
– GPIB mode	Controller or device
LAN TCP/IP interface	
– Standard	1000Base-T
– Connector	RJ45 Ethertwist
Aux I/O connector	
– Connector	25-pin D-SUB

I/Q Analyzer

Resolution bandwidth (spectrum measurement)RangeOverall100 mHz to 3 MHz-Span = 10 HHz50 Hz to 1 MHz-Span = 10 kHz1 Hz to 10 kHz-Span = 100 Hz100 mHz to 100 HzWindow shapes-Standand K-B 110 dB)Analysis bandwidthAnalysis bandwidthI Hz to 10 MHzOption B2510 Hz to 25 MHzI Frequency response (standard 10 MHz FT response relative to the center frequency, 20 to 30 °CCenter frequency (GHz)Span (MHz)Microwave preselectorMax errorRMS (nominal) $43.6 < 42.65$ 410 NA $\pm 0.40 dB$ $0.04 dB$ $3.6 < 42.65$ 410 On $0.25 dB$ $0.25 dB$ I Frequency (GHz)Span (MHz)Microwave preselectorRMS (nominal) $0.02 < 45.3.6$ 410 NA 0.4° 0.1° $0.02 < 54.3.6$ 410 NA 0.4° 0.1° Center frequency (GHz)Span (MHz)NA 0.4° 0.2° (nom) $0.02 < 45.3.6$ 410 NA 0.4° 0.1° $0.02 < 54.3.6$ 410 NA 0.4° 0.1° $0.02 < 65.5$ 410 NA 0.4° 0.1° $0.02 < 65.5$ 410 NA 0.4	Resolution bandwidth (spectrum measured				
Overall 100 mHz to 3 MHz - Span = 1 MHZ 50 Hz to 1 MHZ - Span = 100 HZ 1 Hz to 10 0 HZ - Span = 100 HZ 1 Hz to 100 HZ Window shapes - Flat top, Uniform, Hanning, Gaussian, Blackman-Harris, Kaiser Bessel (K-B 70 dB, K-B 90 dB and K-B 110 dB) Analysis bandwidth Standard 10 Hz to 10 MHZ Option B25 10 Hz to 25 MHZ Ffrequency response (damodulation arr FT response relative to thet frequency, 20 to 30 °C IF frequency response (demodulation arr FT response relative to thet frequency, 20 to 30 °C 6 a.6 < 10		rement)			
$ \begin{array}{c c c c c } & & & & & & & & & & & & & & & & & & &$	0				
Span = 10 kHz1 Hz to 10 kHzSpan = 100 Hz100 mHz to 100 HzWindow shapesFlat top, Uniform, Hanning, Gaussian, Blackman-Harris, Kaiser Bessel (K-B 70 dB, K-B 90 dB and K-B 110 dB)Analysis bandwidthStandard10 Hz to 10 MHzOption B2510 Hz to 25 MHzOption B2510 Hz to 35 MHzIF frequency response (standard 10 MHz Fpath)IF frequency response (standard 10 MHz Fpath)IF frequency response (standard 10 MHz for 25 MHzOption B2510 Hz to 35 MHzIF frequency response (standard 10 MHz Fpath)IF frequency response (standard 10 MHz for 25 MHzOption B2500 Hz to 35 MHzIF frequency response (standard 10 MHz for 25 MHzOption B2500 Hz to 35 MHzIF frequency response (standard 10 MHz for 25 MHzOption B2500 Hz to 35 MHzIF frequency response (standard 10 MHz for 25 MHZ0 Age5 Aga (MHz)Microwave preselectorMax. errorRMS (nominal) $4 3.6 \ 3.6 \ < 10 \ 0n \ 0n \ 0.2 \ 0.4 \ 0.25 \ 0.25 \ 0.2 \ 0.25 \ 0.25 \ 0.2 \ 0.25 \ 0.2 \ 0.2 \ 0.25 \ 0.2 \$					
- Span = 100 Hz100 mHz to 100 HzWindow shapesFlat top, Uniform, Hanning, Gaussian, Blackman-Barris, Kaiser Bessel (K-B 70 dB, K-B 90 dB and K-B 110 dB)Analysis bandwidthAnalysis bandwidthStandard10 Hz to 10 MHzOption B2510 Hz to 25 MHzOption B8510 Hz to 85 MHzIF frequency response (standard 10 MHz IF path)IF frequency response (standard 10 MHz IF path)IF frequency response (demodulation and FFT response relative to the creter frequency, 20 to 30° CCenter frequency (GHz)Span (MHz)Microwave preselectorMax. errorRMS (nominal)64 10AnAnOn0.25 dB10 Hz to 25 MHzIF frequency response (demodulation and FFT response relative to the creter frequency, 20 to 30° CCenter frequency (GHz)Span (MHz)Microwave preselectorMax. errorRMS (nominal)AS d 10On0.25 dB0.25 dB0.25 dB0.25 dB0.20On0.20On0.20On0.20On0.200.200.20<					
Window shapesFlat top, Uniform, Hanning, Gaussian, Blackman, Blackman-Harris, Kaiser Bessel (K-B 70 dB, K-B 90 dB and K-B 110 dB)Analysis bandwidthStandard10 Hz to 10 MHz Option B25 0 Hz to 25 MHz 0ption B8510 Hz to 25 MHz 0ption B85IF frequency response (standard 10 MHz IF path)IF frequency response (standard 10 MHz IF path)IF frequency response (standard 10 MHz IF path)IF frequency (GHz)Span (MHz)Microwave preselectorMax. errorRMS (nominal)3.6 \leq 10NA \pm 0.40 dB0.04 dB3.6 \leq 5.26.5 \leq 10On0.25 dBIF phase linearity (deviation from mean phase linearity, nominal)IF prase linearity (deviation from mean phase linearity, nominal)0.02 < f \leq 3.6 \leq 10NA $=$ 0.40 dB0.04 dB0.25 dB10On0.25 dB0.26 dS \leq 10On0.35 dB0.02 < f \leq 3.6 \leq 10NA $=$ 0.40 dB0.1°0.02 < f \leq 3.6 \leq 10On0.35 dB0.02 < f \leq 3.6 \leq 10On0.1°0.02 < f \leq 3.6 \leq 10NA0.4°0.1°0.02 < f \leq 3.6 \leq 10On0.2° (nom)					
Flat top, Uniform, Hanning, Gaussian, Blackman-Harris, Kaiser Bessel (K-B 70 dB, K-B 90 dB and K-B 110 dB)Analysis bandwidthStandard Option B25 Option B8510 Hz to 10 MHz 10 Hz to 25 MHz 10 Hz to 85 MHz		IUU MHZ to IUU HZ			
Analysis bandwidthStandard10 Hz to 10 MHzOption B2510 Hz to 25 MHzOption B8510 Hz to 85 MHzIF frequency response (standard 10 MHz IF path)IF frequency response (demodulation and FFT response relative to the center frequency, 20 to 30 °CCenter frequency (GHz)Span (MHz)Microwave preselectorMax. errorRMS (nominal) ≤ 3.6 ≤ 10 NA $\pm 0.40 dB$ $0.04 dB$ $3.6 < f \le 26.5$ ≤ 10 On $0.25 dB$ $f > 26.5$ ≤ 10 On $0.35 dB$ IF phase linearity (deviation from mean phase linearity, nominal)Center frequency (GHz)Span (MHz)Microwave preselectorPeak-to-peak (nominal) $0.02 < f \le 3.6$ ≤ 10 NA 0.4° 0.1° $0.02 < f \le 26.5$ ≤ 10 On 0.2° (nominal) 0.2° (nominal)					
Standard Option B25 Option B85 10 Hz to 10 MHz 10 Hz to 25 MHz 10 Hz to 85 MHz Standard Standard <td></td> <td>ckman, Blackman-Harris, Ka</td> <td>iser Bessel (K-B 70 dB, K-B !</td> <td>90 dB and K-B 110 dB)</td> <td></td>		ckman, Blackman-Harris, Ka	iser Bessel (K-B 70 dB, K-B !	90 dB and K-B 110 dB)	
Option B25 Option B8510 Hz to 25 MHz 10 Hz to 85 MHzIF frequency response (standard 10 MHz IF path)IF frequency response (demodulation and FFT response relative to the center frequency, 20 to 30 °CCenter frequency (GHz)Span (MHz)Microwave preselectorMax. errorRMS (nominal) ≤ 3.6 ≤ 10 NA $\pm 0.40 dB$ $0.04 dB$ $3.6 < f \le 26.5$ ≤ 10 On $0.25 dB$ $f > 26.5$ ≤ 10 On $0.35 dB$ IF phase linearity (deviation from mean phase linearity, nominal)IF phase linearity (deviation from mean phase linearity, nominal)Old Center frequency (GHz)Span (MHz)Microwave preselectorPeak-to-peak (nominal)OnOnOld Center frequency (GHz)RMSOld Center frequency (GHz)Span (MHz)Microwave preselectorPeak-to-peak (nominal)Old Center frequency (GHz)NAOld Colspan="2">Old Colspan="2"Old Colspa	Analysis bandwidth				
Option B85 10 Hz to 85 MHz IF frequency response (standard 10 MHz IF path) IF requency co 30 °C Center frequency (GHz) Span (MHz) Microwave preselector Max. error RMS (nominal) ≤ 3.6 ≤ 10 NA ± 0.40 dB 0.04 dB 3.6 < ≤ 10	Standard	10 Hz to 10 MHz			
IF frequency response (standard 10 MHz IF path)IF frequency response (demodulation and FFT response relative to the center frequency, 20 to 30 °C)Center frequency (GHz)Span (MHz)Microwave preselectorMax. errorRMS (nominal) ≤ 3.6 ≤ 10 NA $\pm 0.40 dB$ $0.04 dB$ $3.6 < f \le 26.5$ ≤ 10 On $0.25 dB$ $f > 26.5$ ≤ 10 On $0.35 dB$ IF phase linearity (deviation from mean phase linearity, nominal)Microwave preselectorPeak-to-peak (nominal)RMSCenter frequency (GHz)Span (MHz)Microwave preselectorPeak-to-peak (nominal)RMS $0.02 < f \le 3.6$ ≤ 10 NA 0.4° 0.1° $0.02 < f \le 3.6$ ≤ 10 On 1.0° $0.2^{\circ} (nom)$					
IF frequency response (demodulation and FFT response relative to the center frequency, 20 to 30 °CCenter frequency (GHz)Span (MHz)Microwave preselectorMax. errorRMS (nominal) ≤ 3.6 ≤ 10 NA $\pm 0.40 \text{ dB}$ 0.04 dB $3.6 < f \le 26.5$ ≤ 10 On 0.25 dB $f > 26.5$ ≤ 10 On 0.35 dB IF phase linearity (deviation from mean phase linearity, nominal)Microwave preselectorPeak-to-peak (nominal)RMS (nominal)Center frequency (GHz)Span (MHz)Microwave preselectorPeak-to-peak (nominal)RMS (nominal) $0.02 < f \le 3.6$ ≤ 10 NA 0.4° 0.1° $0.2^{\circ} (nom)$					
$\begin{array}{c c c c c c } \hline \textbf{Center frequency (GHz)} & \textbf{Span (MHz)} & \textbf{Microwave preselector} & \textbf{Max. error} & \textbf{RMS (nominal)} \\ \hline & \leq 3.6 & \leq 10 & NA & \pm 0.40 \ \text{dB} & 0.04 \ \text{dB} & 0.25 \ \text{dB} & 0.25$	IF frequency response (standard 10 MHz	IF path)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IF frequency response (demodulation and	FFT response relative to the	center frequency, 20 to 30	°C)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Center frequency (GHz)	Span (MHz)	Microwave preselector	Max. error	RMS (nominal)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
IF phase linearity (deviation from mean phase linearity, nominal)Center frequency (GHz)Span (MHz)Microwave preselectorPeak-to-peak (nominal)RMS (nominal) $0.02 < f \le 3.6$ ≤ 10 NA 0.4° 0.1° $3.6 < f \le 26.5$ ≤ 10 On 1.0° 0.2° (nom)		≤ 10	NA	± 0.40 dB	0.04 dB
$\begin{array}{ c c c c } \hline \mbox{Center frequency (GHz)} & \mbox{Span (MHz)} & \mbox{Microwave preselector} & \mbox{Peak-to-peak (nominal)} & \mbox{RMS} & \mbox{(nominal)} \\ \hline \mbox{0.02} < f \le 3.6 & \\ 3.6 < f \le 26.5 & \le 10 & \mbox{NA} & \mbox{0.4}^\circ & \mbox{0.1}^\circ & \\ 1.0^\circ & \mbox{0.2}^\circ (nom) & \mbox{0.2}^\circ (nom) & \mbox{0.2}^\circ (nom) \\ \hline \mbox{0.2}^\circ (nom) & \mbox{0.2}^\circ$	3.6 < f ≤ 26.5	≤ 10		± 0.40 dB	0.25 dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.6 < f ≤ 26.5 f > 26.5	≤ 10 ≤ 10	On	± 0.40 dB	0.25 dB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.6 < f ≤ 26.5 f > 26.5	≤ 10 ≤ 10	On	± 0.40 dB	0.25 dB
$3.6 < f ≤ 26.5$ ≤ 10 On 1.0° 0.2° (nom)	$3.6 < f \le 26.5$ f > 26.5 IF phase linearity (deviation from mean ph	≤ 10 ≤ 10 ase linearity, nominal)	On On		0.25 dB 0.35 dB
	$3.6 < f \le 26.5$ f > 26.5 IF phase linearity (deviation from mean ph	≤ 10 ≤ 10 ase linearity, nominal)	On On		0.25 dB 0.35 dB RMS
Data acquisition (10 MHz IF path)	3.6 < f ≤ 26.5 f > 26.5 IF phase linearity (deviation from mean ph Center frequency (GHz)	≤ 10 ≤ 10 ase linearity, nominal) Span (MHz)	On On Microwave preselector	Peak-to-peak (nominal)	0.25 dB 0.35 dB RMS (nominal)
	$3.6 < f \le 26.5$ f > 26.5 IF phase linearity (deviation from mean ph Center frequency (GHz) $0.02 < f \le 3.6$	≤ 10 ≤ 10 ase linearity, nominal) Span (MHz) ≤ 10	On On Microwave preselector NA	Peak-to-peak (nominal)	0.25 dB 0.35 dB RMS (nominal) 0.1°
Time record length	$\begin{array}{l} 3.6 < f \leq 26.5 \\ f > 26.5 \end{array}$ IF phase linearity (deviation from mean ph Center frequency (GHz) \\ 0.02 < f \leq 3.6 \\ 3.6 < f \leq 26.5 \end{array}	≤ 10 ≤ 10 ase linearity, nominal) Span (MHz) ≤ 10	On On Microwave preselector NA	Peak-to-peak (nominal)	0.25 dB 0.35 dB RMS (nominal) 0.1°
– IQ analyzer 4,000,000 IQ sample pairs	$\begin{array}{l} 3.6 < f \leq 26.5 \\ \hline f > 26.5 \\ \end{array}$ IF phase linearity (deviation from mean ph Center frequency (GHz) \\ 0.02 < f \leq 3.6 \\ 3.6 < f \leq 26.5 \\ \end{array} Data acquisition (10 MHz IF path)	≤ 10 ≤ 10 ase linearity, nominal) Span (MHz) ≤ 10	On On Microwave preselector NA	Peak-to-peak (nominal)	0.25 dB 0.35 dB RMS (nominal) 0.1°
Sample rate at ADC 100 MSa/s	3.6 < f \leq 26.5 f > 26.5 IF phase linearity (deviation from mean ph Center frequency (GHz) 0.02 < f \leq 3.6 3.6 < f \leq 26.5 Data acquisition (10 MHz IF path) Time record length	 ≤ 10 ≤ 10 ase linearity, nominal) Span (MHz) ≤ 10 ≤ 10 	On On Microwave preselector NA On	Peak-to-peak (nominal)	0.25 dB 0.35 dB RMS (nominal) 0.1°
ADC resolution 16 bits	$\begin{array}{l} 3.6 < f \le 26.5 \\ f > 26.5 \\ \hline \\ IF phase linearity (deviation from mean phenomenan phenomena phe$	 ≤ 10 ≤ 10 ase linearity, nominal) Span (MHz) ≤ 10 ≤ 10 4,000,000 IQ sample pairs 	On On Microwave preselector NA On	Peak-to-peak (nominal)	0.25 dB 0.35 dB RMS (nominal) 0.1°

I/Q Analyzer – Option B25

25 MHz analysis bandwidth

IF frequency response				
IF frequency response (demodulation and	d FFT response relative to the	e center frequency, 20 to 30 '	°C)	
Center frequency (GHz)	Span (MHz)	Microwave preselector	Max. error	RMS (nominal)
≤ 3.6 3.6 < f ≤ 44	10 to ≤ 25 10 to ≤ 25	NA On	± 0.45 dB	0.051 dB 0.45 dB
IF phase linearity (deviation from mean p	hase linearity, nominal)			
Center frequency (GHz)	Span (MHz)	Microwave preselector	Peak-to-peak (nominal)	RMS (nominal)
0.02 ≤ f < 3.6 3.6 ≤ f ≤ 26.5	≤ 25 ≤ 25	NA On	0.6° 4.5°	0.14° 1.2°
Data acquisition (25 MHz IF path)				
Time record length (IQ pairs)				
– IQ analyzer	4,000,000 IQ sample pair	S		
– 89600 VSA software	Data packing			
- 09000 VSA SUITWATE	32-bit	64-bit	Memory	
	536 MSa	268 MSa	2 GB	
Sample rate at ADC	100 MSa/s			
ADC resolution	16 bits			

I/Q Analyzer – Option B85

85 MHz analysis bandwidth

IF frequency response					
IF frequency response (20 to 30 °C)				Relative to center	frequency
Center freq. (GHz)	Span (MHz)	Microwave preselector		Typical	RMS (nominal)
0.15 ≤ f < 3.6	≤ 85	NA	± 0.6 dB	± 0.17 dB	0.05 dB
IF phase linearity (deviation from mean p	hase linearity, nominal)				
Center freq. (GHz)	Span (MHz)	Microwave preselector		Peak-to-peak (nominal)	RMS (nominal)
0.03 ≤ f < 3.6	≤ 85	NA		1.6°	0.54°
Dynamic range					
 SFDR (Spurious-free dynamic range) Signal frequency and spurious response anywhere within 85 MHz BW 	–76 dBc, nominal				
Full scale (ADC clipping)					
Default settings, signal at CF (IF gain = Lo	ow: IF gain offset = 0 dB	3)			
– Band O	-8 dBm mixer level,	nominal			
 Band 1 through 4 	–7 dBm mixer level,	nominal			
High gain setting, signal at CF (IF gain = H	High)				
– Band O	–18 dBm mixer level	nominal, subject to ga	ain limitations		
 Band 1 through 4 	–17 dBm mixer level	nominal, subject to ga	ain limitations		
Effect of signal frequency ≠ CF	Up to ± 3 dB, nomina	al			
Data acquisition (85 MHz IF path)					
Time record length					
– IQ analyzer	4,000,000 IQ sampl	e pairs			
– 89600 VSA software Data packing					
	32-bit	64-bit			
 Length (IQ sample pairs) 	536 MSa (2 ²⁹ Sa)	268 MSa (2 ²⁸ Sa)	2 GB total memory		
 Length (time units) 	Samples/(span x 1.2	5)			
Sample rate					
– At ADC	400 Msa/s				
IQ pairs	Span dependent				
ADC resolution	14 bits				

Real-Time Spectrum Analyzer (RTSA)¹

Option RT1

Real-time analysis		
Real-time analysis bandwidth		
 Option RT1 	Up to 85 MHz ≤ 3.6 GHz	
	Up to 40 MHz > 3.6 GHz	
Minimum signal duration with 100% pr	obability of intercept (POI) at full amplitude accura	асу
 Option RT1 	3.7 µs	
Minimum acquisition time	104 µs	Spectrogram view only
FFT rate	292,969/s	
Supported triggers	Level, Level with time qualified (TQT) with TQT	I, Line, External, RF burst, Frame, Frequency mask (FMT), FMT

1. For additional RTSA specifications, please refer to Option RT1 Chapter in the MXE Signal Analyzer specifications guide (part number: N9038-90010).

Related Literature

Keysight MXE EMI receiver

Publication title	Publication number
MXE EMI Receiver, Configuration Guide	5990-7419EN
MXE EMI Receiver, Brochure	5990-7422EN

Learn more at: www.keysight.com

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

