

Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832)

Model 7280

Wide Bandwidth DSP Lock-in Amplifier

FEATURES

- 0.5 Hz to 2 MHz operation
- Voltage and current mode inputs
- Direct digital demodulation without down-conversion
- 7.5 MHz main ADC sampling rate
- 1 µs to 100 ks output time constants
- Quartz crystal stabilized
 internal oscillator
- Harmonic measurements to 32F
- Dual reference, Dual Harmonic and Virtual Reference modes
- Spectral display mode

APPLICATIONS

- Scanned probe microscopy
- Optical measurements
- Audio studies
- AC impedance studies
- Atomic force microscopy

DESCRIPTION

The model 7280 DSP Lock-in Amplifier is an exceptionally versatile instrument with outstanding performance. With direct digital demodulation over an operating frequency extending up to 2.0 MHz, output filter time constants down to 1 μ s and a main ADC sampling rate of 7.5 MHz it is ideal for recovering fast changing signals. But unlike some other high frequency lock-ins, it also works in the traditional audio frequency band.

In addition to its excellent technical specifications, it is also very easy to use. The front panel is dominated by a large electroluminescent display panel, used both to show the instrument's outputs and for adjusting its controls via a series of menus. Controls are set by a combination of the use of the keys surrounding the display and the numeric

keypad, while four cursor-movement keys simplify use of the graphic display menus.

Users of the **SIGNAL RECOVERY** models 7260 and 7265 will find switching to the 7280 very easy, since we've designed it with a similar menu structure. The only significant changes are in some of the control menus, where the better resolution of the display allows both the controls and the instrument outputs to be shown simultaneously, for even faster feedback on the effects of control adjustments.

Main Display

Naturally, the instrument includes the extended operating modes like dual reference, dual harmonic and virtual reference made popular by the 7260 and 7265, as well as the spectral display mode used to aid reference frequency selection. It also includes GPIB and RS232 interfaces for remote computer control and a range of auxiliary analog and digital inputs and outputs. Compatible software is available in the form of a LabVIEW

driver supporting all instrument functions, and the Acquire lock-in amplifier applications software. The driver and a free demonstration version of the software, DemoAcquire, are available for download from our website at www.signalrecovery.com

In summary, if you need a lock-in capable of working beyond the traditional audio frequency band but still want the drift-free performance that only digital demodulation brings, then look no further - you have found it in the **SIGNAL RECOVERY** Model 7280.

www.signalrecovery.com

Lock-in Amplifiers

1 ppm or 1 mHz,

whichever is the

greater

Reference Frequency Meter Resolution

Demodulator and Output Processing

Output Zero Stability

Displays

Harmonic Rejection

Digital Outputs

Analog Outputs

Specifications General Dual-phase DSP lock-in a over a reference frequent 2.0 MHz. Direct digital de main ADC sampling rate	cy range of 0.5 Hz to modulation using a	Vol C.M Fre Ga Dis
Wide range of extended r auxiliary inputs and outpu firmware.		Lin Gro
Measurement Modes The instrument can simul four of these outputs on t X Y R		Curr Mo Ful
θ Noise Harmonic Dual Harmonic Simultaneously mea two different harmon reference frequency	Phase Angle $nF, n \le 32$ sures the signal at hics F ₁ and F ₂ of the	
Dual Reference Simultaneously mea at two different refer	sures the signal ence frequencies, s the external and F_2	Ma Fre
Reference Modes: Standard Unit With option -/99 With option -/98		Imp
Virtual Reference Locks to and detects reference (100 Hz ≤ Noise	s a signal without a	Noi
Measures noise in a centered at the refer Spectral Display Gives a visual indica power distribution of	ence frequency F ation of the spectral the input signal in a	Ga Lin Gro
of frequency, it is no amplitude. Hence it i	.0 MHz. Note that is calibrated in terms t calibrated for	Refe TTL Anal
Display 320 × 240 pixel (¼ V electroluminescent p analog bar-graph an of measured signals dynamic key function screen context sense	banel giving digital, d graphical indication . Menu system with n allocation. On-	
Signal Channel Voltage Input Modes	A only, -B only or Differential (A-B)	Pha: Pha:
Full-scale Sensitivity $0.5 \text{ Hz} \le F \le 250 \text{ kHz}$ $250 \text{ kHz} < F \le 2.0 \text{ MHz}$ Max. Dynamic Reserve	1-2-5 sequence	Orth Acqı
Impedance Maximum Safa Input	100 MΩ // 25 pF	

100 MΩ // 25 pi Maximum Safe Input 20 V pk-pk

Voltage Noise C.M.R.R. Frequency Response Gain Accuracy	5 nV/√Hz @ 1 kHz > 100 dB @ 1 kHz 0.5 Hz to 2.0 MHz ±0.3% typ, ±0.6%
Distortion	max. (full bandwidth -90 dB THD (60 dB
Line Filter	AC gain, 1 kHz) attenuates 50, 60, 100, 120 Hz
Grounding	BNC shields can be grounded or floated via 1 k Ω to ground
urrent Input Mode	Low Noise, Normal Wide Bandwidth
Full-scale Sensitivity Low Noise	10 fA to 10 nA in a 1-2-5 sequence
Normal	10 fA to 1 μA in a 1-2-5 sequence
Wide Bandwidth $F \le 250 \text{ kHz}$	1 pA to 100 μA in a 1-2-5 sequence
F > 250 kHz Max. Dynamic Reserve	10 pA to 100 μA in a 1-2-5 sequence
Frequency Response (- Low Noise Normal	
Wide Bandwidth Impedance	\geq 1 MHz
Low Noise Normal Wide Bandwidth Noise	< 2.5 kΩ @ 100 Hz < 250 Ω @ 1 kHz < 25 Ω @ 10 kHz
Loose Normal Wide Bandwidth Gain Accuracy Line Filter Grounding	13 fA/√Hz @ 500 H 130 fA/√Hz @ 1 kH 1.3 pA/√Hz @ 1 kH ± 0.6% typ, midban attenuates 50, 60, 100, 120 Hz BNC shield can be grounded or floated
eference Channel	via 1 k Ω to ground
TL Input (rear panel) Frequency Range nalog Input (front panel	
Impedance Sinusoidal Input Level	1 MΩ // 30 pF 1.0 V rms*
Frequency Range Squarewave Input	0.5 Hz to 2.0 MHz
Level Frequency Range	250 mV rms* 2 Hz to 2 MHz
*Note: Lower levels analog input at the phase errors	can be used with the expense of increase
hase Set Resolution hase Noise at 100 ms T	0.001° increments C, 12 dB/octave slo

Phase Set Resolution	0.001° increments
Phase Noise at 100 ms 7	C, 12 dB/octave slope
Internal Reference	< 0.0001° rms
External Reference	< 0.01° rms @ 1 kHz
Orthogonality	90° ±0.0001°
Acquisition Time	
Internal Reference	instantaneous
	acquisition
External Reference	2 cycles + 50 ms

0.3% typ, ±0.6% hax. (full bandwidth) 90 dB THD (60 dB C gain, 1 kHz) ttenuates 50, 60, 00, 120 Hz RNC shields can be rounded or floated ia 1 kΩ to ground
ow Noise, Normal or Vide Bandwidth
0 fA to 10 nA in a -2-5 sequence 0 fA to 1 μA in a -2-5 sequence
pA to 100 μA in a -2-5 sequence 0 pA to 100 μA in a -2-5 sequence 100 dB dB) 500 Hz 50 kHz 1 MHz
2.5 kΩ @ 100 Hz 250 Ω @ 1 kHz 25 Ω @ 10 kHz
3 fA/ $\sqrt{\text{Hz}}$ @ 500 Hz 30 fA/ $\sqrt{\text{Hz}}$ @ 1 kHz .3 pA/ $\sqrt{\text{Hz}}$ @ 1 kHz 0.6% typ, midband ttenuates 50, 60, 00, 120 Hz NC shield can be rounded or floated ia 1 k\Omega to ground

ef ΓL

I L Input (rear panel)		
Frequency Range	0.5 Hz to 2.0 MHz	
nalog Input (front panel)	
Impedance	1 MΩ // 30 pF	
Sinusoidal Input		
Level	1.0 V rms*	
Frequency Range	0.5 Hz to 2.0 MHz	
Squarewave Input		
Level	250 mV rms*	
Frequency Range	2 Hz to 2 MHz	
*Note: Lower levels can be used with the		
0 1	expense of increased	
phase errors		
hase Set Resolution	0.001° increments	

al or	Output Filters	-30
	X, Y and R outputs only	,
	Time Constant	1 με
a	Time Constant	seq
a	Slope (roll-off)	6 ar
	All outputs	0 ui
	Time Constant	5 m
		1-2-
а	Slope	6, 1
u	0.000	octa
na	Synchronous Filter	Ava
	,	F <
	Offset	Auto
		and
		scal
	Absolute Phase Measure	emer
		≤ 0.
lz	Oscillator	
	Frequency	
	Range	0.5
	Setting Resolution	1 m
Hz	Absolute Accuracy	± 50
Hz	Distortion (THD)	-80
Hz		100
nd	Amplitude (rms)	
	Range	1 m
	Setting Resolution	1 m
е	Accuracy	±0.2
ed	Stability	50 p
ł	Output Impedance	50 <u>(</u>
	Sweep	
	Amplitude Sweep	
	Output Range	0.00
:	Law	Line
	Step Rate	20 H
	F 0	(50
	Frequency Sweep	~ -
	Output Range	0.5
	Law Star Data	Line
	Step Rate	20 H
		(50
	Auxiliary Inputs	
he	ADC 1, 2, 3 and 4	
ed	Maximum Input	±10
	Resolution	1 m
	Accuracy	±20
3	Input Impedance	1 M

No zero drift on all settings No zero drift on all settings < 5 ppm/°C -90 dB is to 1 ms in a 1-2-5 uence, and 4 ms nd 12 dB/octave ns to 100 ks in a -5 sequence . 12, 18 and 24 dB/ ave ailable for 20 Hz to and Manual on X d/or Y: ±300% fullale

nt Accuracy .01°

Hz to 2.0 MHz ηΗz 0 ppm dB @ 1 kHz and) mV rms

וV to 1 V ١V 2% ppm/°C Ω

00 to 1.000 V rms ear Hz maximum ms/step)

Hz to 2.0 MHz ear or Logarithmic Hz maximum ms/step)

Input Impedance Sample Rate ADC 1 only ADC 1 and 2 Trigger Mode **Trigger Input**

V v mV 1 MΩ // 30 pF

40 kHz max. 17.8 kHz max. Internal, External or burst TTL compatible

Model 7280 Specifications Outputs

Main Analog (CH1 and CH2) Outputs Function X, Y, R, θ, Noise, Ratio, Log Ratio and User Equations 1 & 2.

	User Equations I &
Amplitude	±2.5 V full-scale;
	linear to ±300% full-
	scale
Impedance	1 kΩ
Update Rate:	
X, Y or R @ TC ≤4	ms 7.5 MHz
All outputs @ TC 2	≥5 ms 1 kHz
Signal Monitor	
Amplitude	±1 V FS
Impedance	1 kΩ
Auxiliary D/A Output 1 a	nd 2
Maximum Output	±10 V
Resolution	1 mV
Accuracy	±10 mV
Output Impedance	1 kΩ

8-bit Digital Port

0 to 8 lines can be configured as inputs, with the remainder being outputs. Each output line can be set high or low and each input line read to allow interaction with external equipment. Extra line acts as trigger input

Reference Output Waveform

Impedance

0 to 3 V rectangular wave TTL-compatible

±15 V at 100 mA rear Power - Low Voltage Interfaces RS232 and GPIB (IEEE-488). A second panel 5-pin 180° DIN connector for RS232 port is provided to allow "daisypowering SIGNAL RECOVERY preamplifiers **Data Storage Buffer** General Power Requirements 32k × 16-bit data Size Volta points, may be organized as 1×32k, Freq 2×16k, 3×10.6k, 4×8k, Pow Dimensio etc. Max Storage Rate Widt From LIA up to 1000 16-bit Dept values per second Heig From ADC1 up to 40,000 16-bit Wit Wit values per second Weight **User Settings** Up to 8 complete instrument settings can be saved or recalled at will from

chain" connection and control of up to 16 units from a single RS232 computer port

equirements	
age	110/120/220/240 VAC
quency	50/60 Hz
/er	200 VA max
ons	
th	17¼" (435 mm)
oth	19" (485 mm)
ght	
th feet	6" (150 mm)
thout feet	5¼" (130mm)
	25.4 lb (11.5 kg)

a 20

Yew Dreject Sa

Storter

SIGNAL RECOVERY Acquire Software (see page 56)

Users who do not wish to write their own control code but who still want to record the instrument's outputs to a computer file will find the SIGNAL RECOVERY Acquire Lock-in Amplifier Applications Software, available at a small extra cost, useful. This 32-bit package, suitable for Windows XP/ Vista, extends the capabilities of the instrument by, for example, adding the ability to record swept frequency measurements. It also supports the internal curve buffer, allowing acquisition rates of up to 1000 points per second independent of the computer's processor speed.

LabVIEW Driver Software A LabVIEW driver for the instrument is available from the

non-volatile memory

www.signalrecovery.com website, offering example VIs for all its controls and outputs, as well as the usual Getting Started and Utility VIs. It also includes example soft-front panels built using these VIs, demonstrating how you can incorporate them in more complex LabVIEW programs.

Ordering Information

0

Each model 7280 is supplied complete with a comprehensive instruction manual. Users may download the instrument's LabVIEW driver software and a free demonstration copy, DemoAcquire, of the SIGNAL RECOVERY lock-in amplifier applications software package, from the www.signalrecovery.com website.

Dptional Accessories Model 7280/99	Extended frequency range (800 kHz) for Dual Reference and Dual Harmonic Modes
Model 7280/98	Extended frequency range (2.0 MHz) for Dual Reference and Dual Harmonic Modes
Acquire™	32-bit lock-in amplifier applications software for use with Windows XP/Vista operating systems
Model K02004	Rack mount to mount one model 7280 in a 19" rack

www.signalrecovery.com

Why should you choose *SIGNAL RECOVERY* products?

Models 7280 and 7280BFP Wide Bandwidth DSP Lock-in Amplifiers

SIGNAL RECOVERY Product Features	Benefit to you
 They are the only commercially available 2 MHz genuine DSP lock-in amplifiers 	Allows use in systems requiring short output time constants without problems caused by an insufficient number of samples per signal cycle
 Analog outputs updated at 7.5 MHz for use with time constants down to 1 µs 	Ideal for scanned probe microscopy feedback control loops
 Spectral Display (Model 7280 only) 	See in the frequency domain where interfering signals are and choose a quiet region for your reference frequency
◆ Dual Reference	Measure two signals at two different frequencies simultaneously, without the expense involved in buying two instruments
◆ Dual Harmonic	Measure two signals at two different harmonics simultaneously, without the expense involved in buying two instruments
 Curve Buffer Graphical Display 	Strip chart mode display is invaluable for monitoring during manual adjustment of experiments
Virtual Reference	Recover signals even without a reference
 Large high resolution electroluminescent display (Model 7280 only) 	Excellent viewing angle for good visibility even across a crowded laboratory
 Easy to set controls with keypad and cursor movement keys (Model 7280 only) 	Enter the exact setting you need without having to fiddle with a sensitive rotary knob. Move the cursors on the graphical display with ease
 User upgradeable firmware 	Benefit from future firmware upgrades without having to send the instrument to a service facility
 2-input multiplexing using A and -B inputs even under computer control 	Measure two signals sequentially under computer control using the same lock-in without having to switch connections
 8 User Settings Memory (Model 7280 only) 	Several users can share an instrument but keep their own personalized settings
 Internal Oscillator can be used independently of rest of instrument 	Set OSC OUT to a different frequency to the reference e.g. Use it to control a SIGNAL RECOVERY chopper at <i>f</i> and then connect the lock-in's reference input to the chopper's <i>f</i> /10 SYNC output
 Auxiliary Digital Input and Output port 	Eliminate the need for separate digital I/O cards when building complex computer controlled experiments
Excellent LabVIEW driver	Saves programming time
Compatible with Acquire software	Eliminates the need to develop programs
 Compatible with SRInstComms 	Control the instrument from any ActiveX enabled programming language, such as Visual Basic, VBA (Excel, Word, Access) and VBScript (Internet Explorer)

www.signalrecovery.com