

Isotropic measurement of magnetic fields from 1 Hz to 400 kHz

The new BFD-400 magnetic field probe from the Narda FieldMan family enables effective detection and evaluation of radiation exposure in the frequency range from 1 Hz to 400 kHz. The automatic exposure assessment, using the Weighted RMS (WRM) and Weighted Peak (WPM) methods, ensures accurate measurements that comply with standards like IEC/EN 62311 and 62233.

Measured values are displayed and further evaluated on the FieldMan basic unit.

The BFD-400 can also be connected to a PC via USB, enabling full access to all operation modes through the Narda-TSX software, including the Live Mode option for real-time data monitoring.

- Isotropic (non-directional) measurement with standardcompliant 100 cm² sensor
- Shaped time domain assessment STD (WPM and WRM) for all relevant international standards and regulations such as Directive 2013/35/EU
- > Fast gapless real-time spectral analysis
- Spectrum mode with displayed limit value curve for all 3 measuring axes
- > Scope mode offers triggered time signal analysis
- > Adjustable selective filters (band pass or band stop)
- Digital probe interface no basic unit calibration is necessary
- > Integrated probe self-test at startup
- Streaming of raw data with the probe connected to a PC via USB (no FieldMan basic unit necessary)

Use and benefit

 The BFD-400-1 is an innovative probe for measuring exposure to magnetic fields in the workplace and in public spaces.

It is designed for health and safety professionals in industry, occupational health and safety associations and service industries.

- Display of field exposure in percentage of standard limits such as Directive 2013/35/EU for workers
- Exposure evaluation of arbitrary waveforms in compliance with Weighted RMS (WRM) and Weighted Peak (WPM) methods (IEC/EN 62311 and 62233 compliant)

- > Supports multiple international standards
- > Easy software update for future standard modifications, other limits or new standards
- In addition to the field strength and exposure values, the Spectrum and Scope modes offer in-depth signal analysis in the frequency and time domain
- Probe calibration and integrated probe and sensor self-test ensure the highest accuracy and reliability regardless of the frequency range. No basic unit calibration necessary due to digital probe interface

How it works:

The probe consists of three orthogonally and concentrically arranged coils that detect changes in the magnetic field based on the law of induction. The generated voltage is then amplified and pre-conditioned by electronics, depending on the measurement range or the selected standard. A powerful FPGA handles digital processing to ensure phase-correct signal evaluation, providing accurate readings of both field strength and exposure indices. The data is then transmitted to a receiver via USB, either a FieldMan basic unit or any computing device running the TSX software.

Applications

Examples of measurement environments are:

- > Industry and production areas (Assessment of workers' exposure acc. FCC, IEEE, ICNIRP or EMF Directive 2013/35/EU)
- > Induction heating and melting (e.g. EN 50519)
- Household appliances (e.g. IEC/EN 62233)
- > Electric welding equipment (e.g. IEC/EN 62822)
- > Railroad operations (e.g. EN 50500)
- > Automotive operations (e.g. IEC 62764)
- > Energy supply systems (e.g. IEC/EN 62110)
- > Electrical medical devices (e.g. IEC/EN 60601)

Industry

The BFD-400 is an essential tool for assessing magnetic fields generated by various industrial facilities. In many manufacturing environments, machinery produces non-sinusoidal signals, particularly in resistance welding systems using pulse waveforms and phase angle control within traditional 50/60 Hz systems, as well as in modern medium frequency switching units.

To ensure worker safety, exposure to magnetic fields must be continuously monitored and evaluated across a broad range of industrial applications. These include, among others, induction heating, welding, melting, electrolysis, and hardening.

Automotive

The BFD-400 provides a comprehensive solution for measuring and assessing magnetic field exposure in automotive environments, including electric vehicles and their components.

Modern vehicles contain numerous electrical and electronic systems that generate low-frequency magnetic fields, exposing both drivers and passengers to EMF. To safeguard vehicle occupants from excessive exposure, comprehensive assessments are essential. The BFD-400 enables EMF exposure levels to be analyzed in accordance with various industry standards, ensuring compliance with national and international electromagnetic compatibility (EMC) regulations. Automotive manufacturers and international regulatory bodies have established specific guidelines to verify that vehicles meet these safety requirements.

Electronic Article Surveillance (EAS)

Those systems are widely used in public areas, emitting complex fields.

Most of these technologies operate within the low-frequency range, generating electromagnetic fields that vary depending on the type of surveillance system. Many electromagnetic and magneto-acoustic security gates function within the frequency range covered by the BFD-400, making it a valuable tool for measuring and assessing exposure in such environments.

Household appliances

Household appliances and other electrical devices generate magnetic fields that must be assessed for compliance with safety standards. Regulations such as IEC/EN 62233 outline procedures for evaluating these products before they enter the market.

With its EXPOSURE STD (Shaped Time Domain) mode, the BFD-400 significantly simplifies the assessment process. This mode sets a standard for reliable magnetic field assessments, even in environments with complex field conditions.

By providing accurate and efficient measurements, the BFD-400 ensures that home appliances meet regulatory requirements before reaching consumers.

Definitions and Conditions

Conditions

Unless otherwise noted, specifications apply within the specified environmental conditions and the product is within the recommended calibration cycle.

Specifications with limits

These describe product performance for the given parameter covered by warranty. Specifications with limits (shown as $<, \leq, >, \geq, \pm, \max, \min$.) apply under the given conditions for the product and are tested during production, considering measurement uncertainty.

Specifications without limits

These describe product performance for the given parameter covered by warranty. Specifications without limits represent values with negligible deviations, which are ensured by design (e.g. dimensions or resolution of a setting parameter).

Typical values (typ.)

These characterize product performance for the given parameter that is not covered by warranty. When stated as a range or as a limit (shown as $<, \leq, >, \geq, \pm$, max., min.), they represent the performance met by approximately 80% of the instruments. Otherwise, they represent the mean value. The measurement uncertainty is not taken into account.

Nominal values (nom.)

These characterize expected product performance for the given parameter that is not covered by warranty. Nominal values are verified during product development but are not tested during production.

Uncertainties

These characterize the dispersion of the values attributed to the measurands with an estimated confidence level of approximately 95%. Uncertainty is stated as the standard uncertainty multiplied by the coverage factor k=2 based on the normal distribution. The evaluation has been carried out in accordance with the rules of the "Guide to the Expression of Uncertainty in Measurement" (GUM).

Specifications^{1,3}

Key Product Features	
Frequency range ²	1 Hz to 400 kHz
Damage Level	300 mT at 50 Hz (see Figure 1)
Filters	Lowpass, High pass filters, 6 th order Bandpass and Band stop filters (see Figure 2 and 3)
Implemented Standards	2013/35/EU, ICNIRP1998, ICNIRP2010, EMFV2016, GB8702, TREMF, IEEE C95
Integrated real time FFT	up to 4096 points
Raw data streaming	Flat (Field) and shaped (WPM) waveforms up to 1.024 MSps with direct link to PC
Sensor type	Isotropic coils (3-axis) for magnetic (B) field (sensor area 100 cm ²)
Spatial assessment	3 separate axes
Self-test	Signal path and coil functional test
Operating Modes	

Mode description	Field Strength	Broadband field measurements. Numerical results with time curve or bar graph display.
	Spatial Average	Procedure of broadband measurements over several measurement positions.
	Timer Logging	Time-controlled broadband measurement of the field strength in a definable period.
	Spectrum	FFT analysis with spectrum display, marker evaluation and display of the broadband level.
	Shaped Time Domain	Time domain assessment (WPM, WRM) with digital filtering related to a selected safety limit.
	Scope	Triggered measurement of the field curve over time with pre-trigger feature.

¹ Unless otherwise noted specifications apply at reference conditions: Ambient temperature 23±3 °C; relative humidity 25% to 75 %

² Cutoff frequency at typ. -3 dB.

³ All values are measured with sinusoidal fields

Field Strength

Μ

Measurement	Frequency Span	1 kHz, 10 kHz, 100 kHz, 400 kHz				
	Range	80 µT	800 μΤ	8 mT	80 mT	
	Overload (typ., single axis)	160 μT _{RMS}	1.6 mT _{RMS}	16 mT _{RMS}	160 mT _{RMS}	
	Noise level (typ., RSS)	38 nT _{RMS} (10 Hz - 400 kHz)	350 nT _{RMS} (10 Hz - 400 kHz)	3.2 μT _{RMS} (10 Hz - 400 kHz)	30 μT _{RMS} (10 Hz - 400 kHz)	
	Resolution (4 digits)	0.1 nT	0.1 nT	0.1 µT	0.1 µT	
	Detectors	RMS, Peak				
	Detector time constant	1 s (integration time for RMS, hold time for Peak)				
	Units	Tesla, Gauss				
	Low Cut Filters	1 Hz, 10 Hz, 30 Hz (digital filters, see Figure 3), Butterworth, 6th order				
	Band pass/ Band Stop filters	Bessel characteristic (digital filters, see Figure 2)				
	Time Span (Interval)	4 min (1 s between consecutive data points) to 24 h (360 s between consecutive data points)				
	Averaging Time	1 s to 24 h				

Spatial Average Measurement Detector RMS Measurement Time Manual, 5 s to 360 s According to Field Strength mode All other corresponding Parameters

Timer Logging		
Measurement	Storage Interval	1 s to 360 s
	All other corresponding Parameters	According to Field Strength mode

Spectrum (real-time Fl	FT)						
Measurement	Frequency Span	1 kHz	10 kHz	100 kHz	400 kHz		
	Resolution (FFT Point setting: High)	0.625 Hz	6.25 Hz	62.5 Hz	250 Hz		
	Range	According to Field Strength mode					
	Noise Level	According to Field Strength mode					
	Frequency Scale	Linear, Logarithmic					
	FFT Points	Low=1024, Medium=2048, High=4096					
	Detectors	RMS, Peak					
	Detector Time	1 s (integration time fo	r RMS, hold time for P	Peak)			
	Units	Tesla, Gauss					
	Result Types	Actual, Maximum, Ave	rage				
	Low Cut Filters	1 Hz, 10 Hz, 30 Hz					
	Number of Averages	4, 8, 16, 32, 64					

Method		WPM-TD Weighted Peak Method (acc. WRM-TD Weighted RMS Method (acc				
Standards/Limits		Measurement Range (4)	Typ. Noise WRM	Typ. Noise WPM		
	2013/35/EU/ LAL	700 %	0.18 %	0.55 %		
	2013/35/EU/ HAL	700 %	0.18 %	0.55 %		
	2013/35/EU/ Limbs	700 %	0.15 %	0.47 %		
	EMFV 2016 LAL	800 %	0.18 %	0.56 %		
	EMFV 2016 HAL	800 %	0.18 %	0.57 %		
	EMFV 2016 Limbs	700 %	0.14 %	0.47 %		
	GB 8702-2014 GP	1700 %	1.20 %	3.30 %		
	ICNIRP 1998 GP	1200 %	0.60 %	1.90 %		
	ICNIRP 1998 Occ	1200 %	0.60 %	1.75 %		
	ICNIRP 2010 GP	2500 %	0.70 %	1.80 %		
	ICNIRP 2010 Occ	700 %	0.18 %	0.55 %		
	IEEE 2019 Unrest NS	800 %	0.18 %	0.60 %		
	IEEE 2019 Restrd NS	1000 %	0.22 %	0.78 %		
	TREMF NF	1200 %	0.40 %	1.35 %		
Measurement	Time Span (Interval)	4 min (1 s between consecutive data points) to 24 h (360 s between consecutive data points)				
-	Detectors (Method)	WPM-TD (IEC/EN 62311), WRM-TD (IEC/EN 62233) – for pulsed fields consider measurements according to IEC/EN62311 as underestimation of the exposition may occur when using WRM-TD.				
	Units	%				
	Low Cut Filter	1 Hz, 10 Hz, 30 Hz				
	Frequency Span	400 kHz (-3 dB)				
	All other corresponding Parameters	According to Field Strength mode				

Scope (not yet available)			
Measurement	All other corresponding Parameters	According to Field Strength mode	
	Sample counts	tbd.	
	Trigger Type	Free run, Single, Multiple	
	Trigger Modes	Positive transition, negative transition, high active, low active	
	Trigger Level	tbd.	
	Trigger sources	tbd.	
	Pre-Trigger	tbd.	
	Recording Time	1 ms to 30 s	

⁴ The measurement range is the minimum value in the entire frequency range from 1 Hz to 400 kHz with the field in direction of one single coil. Due to the frequency shaping of the specific standards the device can display much higher values.

Raw Data Streaming (r	not yet available)		
Interface		USB 2.0, 480 Mbit/s (Probe directly connected to PC)	
Data transfer rates		1.28 kSps, 2.56 kSps, 25.6 kSps, 256 kSps,1024 kSps	
Frequency Span		According to Field Strength mode	
Range		According to Field Strength mode	
Uncertainty ⁽⁵⁾			
Field Strength, all range	S	5 Hz 200 kHz: 3.0 %, above 200 kHz: 5.0 %	
Linearity deviation (nom	inal) 56 Hz	1.0 %	
Isotropy deviation		5 Hz 200 kHz: 2.0 %, above 200 kHz: 4.0 %	
E-field immunity (nominal) 50 Hz		0.03 nT / (V/m)	
General Specifications	3		
Accredited calibration (n	not yet available)	DAkkS, ILAC-MRA (DIN EN ISO/IEC 17025, IEC Std. 61786) For measurands outside the scope, factory calibration is performed.	
Recommended calibration	on interval	24 months	
Operating temperature		-20 °C to +50 °C	
Humidity		< 29 g/m ³ (< 93 % RH at +30 °C), non-condensing	
Ingress Protection		IP54 (probe attached to FieldMan or Cable)	
Climatic conditions	Storage	-40 °C to +70 °C	
	Operation	-20 °C to +50 °C	
Size		296 mm x 125 mm Ø	
Weight		240 g	
Country of origin		Germany	

⁵ The systematic error of -3 dB and the slope of the low pass filter at the band edge is not part of this error.

Characteristics

Damage field level

The damage level is determined by power dissipation of internal components, and thus frequency dependent. Figure 1 shows the damage level for constant field. Because of the thermal nature of the damage level at higher frequencies, it is permissible to apply higher fields with a suitable duty cycle considering the average power, however, those fields must not exceed the limit for non-repetitive fields.

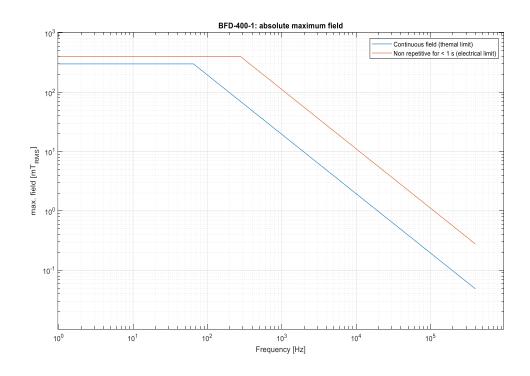


Figure 1: Damage field level versus frequency

Bandpass and Bandstop Filters

Bandpass filters are min. 4th order Bessel characteristic filters with a bandwidth that is 10 % of the center frequency. Bandstop filters are min. 4th order Bessel characteristic filters with a bandwidth that is app. 5 % of the center frequency. Figure 2 shows the frequency response of the 1 kHz bandpass and bandstop filter.

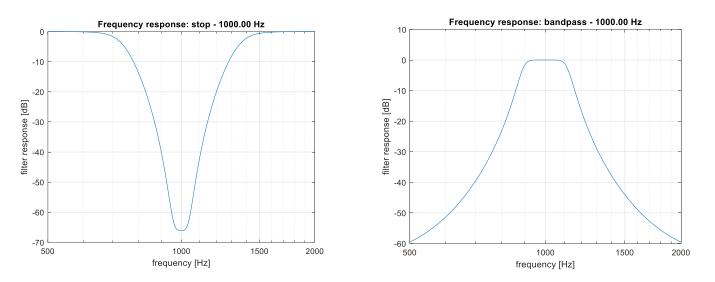


Figure 2: Example frequency response of the digital Bandstop and Bandpass filters

Low-Cut Filters

Low cut filters are 6th order Butterworth filters. See Figure 3 for example frequency responses.

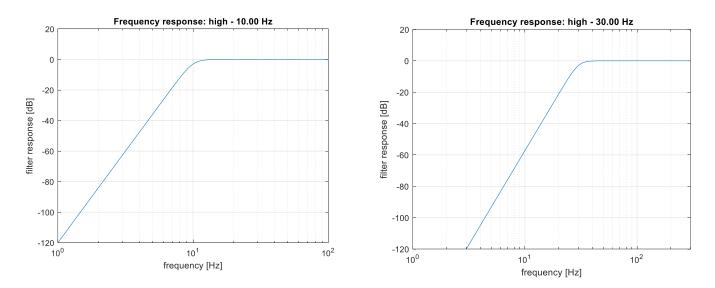


Figure 3: Example frequency response of Low-cut filters

Ordering information

Your local Narda sales representative can provide further information and will be pleased to offer advice.

Digital Low Frequency	Part number
Probe BFD-400-1, B-Field, 100 cm ² , 1 Hz – 400 kHz, selective	2463/01
Optional Accessories	Part number
Cable, Digital Probe Extension, 2 m	2460/90.02
Cable, Digital Probe to USB 2.0, 3 m	2460/90.03
Cable, Digital Probe to USB 2.0, 5 m	2460/90.08
Narda-TSX Live Measurement	2460/95.01

Narda Safety Test Solutions GmbH

Sandwiesenstrasse 7 72793 Pfullingen, Germany Phone +49 7121 97 32 0 info@narda-sts.com

www.narda-sts.com

Narda Safety Test Solutions North America Sales Office 435 Moreland Road Hauppauge, NY11788, USA Phone +1 631 231 1700 info@narda-sts.com Narda Safety Test Solutions S.r.l. Via Benessea 29/B 17035 Cisano sul Neva, Italy Phone +39 0182 58641 nardait.support@narda-sts.it

Narda Safety Test Solutions GmbH Beijing Representative Office New Century Hotel Office Building, No. 6 Capital Gymnasium South Road, Haidian 100044 Beijing, China Phone +86 10 68492121 support@narda-sts.cn

[®] Names and Logo are registered trademarks of Narda Safety Test Solutions GmbH - Trade names are trademarks of the owners.