Advanced Test Equipment Rentals

www.atecorp.com 800-404-ATEC (2832)

A\
Established 1981

Errata

Title & Document Type: 1652B/1653B Logic Analyzer Programming Reference

Manual Part Number: 01652-40903

Revision Date: December 1989

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-
Packard's former test and measurement, semiconductor products ad chemical analysis
businesses are now part of Agilent Technologies. We have made no changes to this
manual copy. The HP XXXX referred to in this document is now the Agilent XXXX.
For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

WEe' ve added this manua to the Agilent website in an effort to help you support your
product. This manual provides the best information we could find. It may be incomplete
or contain dated information, and the scan quality may not be ideal. If we find a better
copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. Y ou will find any other available
product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide
you to any available information. Our service centers may be able to perform calibration
if no repair parts are needed, but no other support from Agilent is available.

i Agilent Technologies

Christina Samii
1652B/1653B Logic Analyzer Programming Reference

Christina Samii
01652-40903

Christina Samii
December 1989

ME NNV

ProgrammingReference

HP 1652B/HP 1653B Logic Analyzers

HEWLETT
[b/a] PACKARD

@Copyright Hewlett-Packard Company 1989

Manual Number 0165240903 Printed in the U.S.A. December 1989

Printing History

New editions are complete revisions of the manual. Update packages,
which are issued between editions, contain additional and replacement
pages to be merged into the manual by the customer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporated.

A software code may be printed before the date; this indicates the version
level of the software product at the time of the manua or update was
issued. Many product updates and fixes do not require manua changes
and, conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one to one correspondence
between product updates and manual updates.

Edition 1 December 1989 0165240903

List of Effective Pages

The List of Effective Pages gives the data of the current edition and of any
pages changed in updates to that edition. Within the manual, any page
changed since the last edition will have the date the changes were made
printed on the bottom of the page. If an update is incorporated when a
new edition of the manual is printed, the change dates are removed from

the bottom of the pages and the new edition date is listed in Printing
History and on the title page.

Pages Effective Date

All December 1989

Contents

Chapter 1

HP 1652B/1653B
Programming Reference

Introduction to Programming an Instrument

INErOAUCHION ...t e LRt
About ThisManualociiiil s 1-1
Programming Syntaxiiiiiiiiiiiiii o 1-2
Talking to the Instrument ..., [-2
INStIUCtION SYNTAX ..o\t ee e e 12
Output Commandvt it -3
Device Addressoovviiniii i 1-3
INSETUCTIONS Lttt et e .13
Instruction Headercccviiiiiiii e, [-3
White Spaceo vt e 1-4
Instruction Parameters.ccoiiiiiiiiinennan.. .1-4
Header Typescoovieiii i .. 1-4
Combining Commands from the Same Subsystem I-5
Duplicate Keywordscu oo, I-5
QueryUsageooiiiiiiiiiiiiiiiia e ..1.6
Program Header Optionsccieiiiiiiiiennnnnn.. -7
Parameter Syntax Rules ..., [-7
Instruction Terminatorc.viiuiiiiiianinnannn. .19
Selecting Multiple Subsystems ..., .19
Programming an INStrumentcooeueieeenn... I-10
Initialization i [-10
Example Programc..oiiviiiiiiiiiiiee ... 1-11
ProgramOverview I-11
Receiving Information from the Instrument [-11
Response Header Optionsccoviiiiiiininnnn.n 1-12
Response Data FOrmatscooiuiiiinnni... 1-13
String Variables 1-14
NumericBaseccooiiiiiiiiii i 1-15
Numeric Variables ..., I-15
Definite-Length Block Response Data «........ovovvvvnnnnn. .1-16
Multiple QUENESvo i [-17
InStrument SEatusooviiriiriiiiiei e 1-17

Contents « 1

Chapter 2 Programming Over HP-IB
INtroduction ... i W2-1
Interface Capabilities, .2-1
Command and Data Conceptsovvvieiiiiiiiii2-1
AAreSSING ottt e 2-1
Communicating Over the HP-IB Bus (HP 9000 Series 200/300
Controller) ..o .2-2
Local, Remote, and Local Lockout -« - .. v 2-2
BusCommandscc ittt .2-3
Device Clear ..ot e .2-3
Group Execute Trigger (GET)covvviiiiiii i 2-3
Interface Clear (IFC) ... e 2-3
Chapter 3 Programming Over RS-232C
INtroduction ... W31
Interface Operation ...t i .31
CablES « et 32
Minimum Three-Wire Interface with Software Protocol 32
Extended Interface with Hardware Handshake 33
Cable Examplet 3-4
Configuring the Instrument Interface 35
Interface Capabilitiescoiiii i .3-5
Protocol35
DataBitsttt .36
Communicating Over the RS-232C Bus (HP 9000 Series 200/300
Controller) ..o .3-6
Lockout Commandcooinll W37
L]
Chapter 4 Programming and Documentation Conventions
Introduction s i 4-|
Truncation Rule e 4-|
Infinity Representation Vb e 4-2
Sequential and Overlapped Commands 4-2
Response Generationccovvviie i 4-2
Syntax Diagrams ...t 4-2
Notation Conventions and Definitions 4-3
The Command Tree ... i 4-4

Contents «2

HP 1652B/1653B
Programming Reference

Command TYPES .« vt vv ittt i 4-4

TreeTraversal Rules i, .4-4

Examples ... 45
Command Set Organizationc.ooiiiiiieniniinnn... .4-10

SUDSYSIEMS .\ v v o e i e 4-10
Program Examples 411

Chapter 5

|
Chapter 6

HP 1652B/1653B
Programming Reference

Common Commands

Introduction.. 51
ML 53
RS . 5-4
FESR 56
DN 5-8
P C . 59
RS 5-10
FORE 511
L L= T 513
AL .5-15

System Commands

Introduction i 6-1
ARMBnc 64
DA T A 65

Logic Analyzer Block Datacovviiiiiiiiii.n. 6-8

Section Header Descriptionccveiiiieinannn. .6-8
Section Data . ..ot .6-8
Data Preamble Descriptionccoiiiiiieenn. 6-8
Acquisition Data Description, .6-11
Oscilloscope Block Datao oo i 6-18
Oscilloscope Data Sectionccoiiiiiinnn.. 6-18
Section Header Descriptioncccviiiiieeinn.. 6-18
SectionDataccc i ..6-18

Oscilloscope Display Data Section6-19
DO .6-20
ERROT i it e e 6-21
HEADE .. oo e 6-2 2
KEY . e e e e e 6-23
LER . e 6-25
LOCKout ... 6-2 6

Contents = 3

MENU oo i e e .6-28
MESE « i tiitt ittt et e e 6-29
MESR .ot e 6-31
PPOWer ... 6-3 3
PRINt ..o 6- 34
RMODE oottt e 6-35
SETUD ettt s 6-36
ST AR .. 6-38
Y 0) PP 6-39

|

Chapter 7 MMEMory Subsystem

Introduction 7-1

AUToload o T1-4
CATalogo .7-5
COPY it e e .7-6
DOWNIloadc it it 7-7
INITializecc i 7- 8
LOADD .. e 7- 9
LOADD .. o 7-10
PACK o 7-11
PURGE e 7-12
RENGMEt 7-13
STORE ... 7-14
UPLoado i 7-15

|

Chapter 8 DLISt Subsystem

INtroduction..ot 81

15) 5 K S 8-2
COLUMN ... e e et 8-3
LINE.. 85

Contents = 4 HP 1652B/1653B

Programming Reference

Chapter 9 WLISt Subsystem

Introduction . . . S |
WLISt . . e e e e i e 9-2
OSTate . B T Ve e e 93
XSTate . O e e N
OTIMe . v i e < K.
XTIMe . Gl e e R« X
|
Chapter 10 MACHine Subsystem
INEFOUCHION v v ettt e e e e et e e e 10-1
MACHINE ..o i e e e e e e 10-3
ARM o e e e 10-4
ASSIZI . oottt 10-5
AUToscale 10-6
NAME e 10-7
TY PE e e e 10-8
|
Chapter 11 SFORmat Subsystem
INtrodUCtion ... -1
SFORmaAt .. oo e e e - 3
CLOCK oo - 4
CPERiod - 5
LABel ..o - 6
MAST T .ot 11-8
REMOVE oot -9
SLAVE .11-10
THReshold o -11
Chapter 12 STRace Subsystem
INErOUCEION - oo e e e e J12-1
STRaACE ... 12- 4
BRANch .. i 12- 5
FIND .. o e e e 12- 8
PRESIOre 12-10
RANGE .. e .12-12
HP 1652B/1 653B Contents =5

Programming Reference

RESTart12-14
SEQUENCE ... viee e .12-16
ST ORE ittt e e e .12-17
TAG 12-19
TERM e 12-21

|

Chapter 13 SLISt Subsystem

Introduction 2A3-1

SLISt . e 13-5
COLUmMD13-6
DA T A .13-8
LINE 13- 9
MMODeE ... e .13-10
OPATHEIT . oot e L1311
OSEarch13-13
OSTate13-14
OTAG o 13-15
RUNTIl13-16
TAVEIage ...vovviritiiiiiii i .13-18
TMAXIMUM i .13-19
TMINIMUm ..o e e 13- 20
VRUNS .13-21
XOTag ..o 13-2 2
XPATtern ... 13-2 3
XSEarch 1325
XOTate ...ttt e 13- 26
XTAG A13-27

|

Chapter 14 SWAVeform Subsystem

Introduction..14-1

SWAVeform i J14-3
ACCumulate ...ttt . 14-4
DELay ... 14-5
INSert .14- 6
RANGE ... 14-7
REMOVEo e .14-8

Contents «6 HP 1652B/1653B

Programming Reference

Chapter 15 SCHart Subsystem
Introduction15-1
SCHaArtoovii i .. 15-3
ACCumulatecoiiiir i ..15-4
HAXIS .o A58
VAXIS ..o 15- 7
=
Chapter 16 COMPare Subsystem
Introduction16-1
COMPare ... e .16- 3
CMASK .. 16- 4
COPY 16-5
DAT A i i e i et e e 16-6
FIND .. e e 16-8
RANGE ..ottt ittt e et e ettt eanan e 16-9
RUNTI .. e e e e 16-10
. =
Chapter 17 TFORmat Subsystem
INrOdUCEION ... ot e 171
TFORMALo L17-2
LABel ... e W17-3
REMOVE17-5
THResholdccoviiiii it 17-6
I
Chapter 18 TTRace Subsystem
Introduction........... 18-1
TTRace 18-3
AMODe......... i vvvns 18-4
DURation 18-5
EDGE viivenen Ve 18-6
GLITch, C - Ve 18-8
PATTern'vivese i e 1899

HP 1652B/1653B
Programming Reference

Contents « 7

Chapter 19 TWAVeform Subsystem
INtroduction19-1

TWAVeform ...t .19- 5
ACCUMUIEEE oot e e e e 196
15)2)) A 197
INSEIt ..o .19- 8
MMODeE .. i e e .19- 9
[01000)\ (o110 E 19-10
OPATtern e 19-11
OSEarch19-13
OTIME - o e e e .19-14
RANGeE ... e .19-15
REMOVE ..o e e e .19-16
RUNTH . .19-17
SPERIODo .19-19
TAVerage ... 19-20
TMAXIMUM ..o e e e e 19-21
TMINIMUM ... e 19-2 2
VRUNS oo s 19-2 3
XCONION ..ottt e e e i .19-2 4
XOTIME ... e .19- 25
XPATtern .. oo e .19- 26
XSEarch ... e .19- 28
XTIMeE e 19-2 9

|

Chapter 20 SYMBol Subsystem

INtroductiont e .20-1

SYMBOI i .20- 3
BASE .. 20-4
PATTerno ..20-5
RANGE .o ..20-6
REMoOVE20-7
WIDTh20- 8

Contents =8

HP 1652B/1653B
Programming Reference

Chapter 21 SCOPe Subsystem
Introduction 21-1
SCOPE . .ottt e e e e 21-2
AUToscale ... 21- 3
SMODE ... 21-4
]
Chapter 22 CHANnel Subsystem
Introduction 22-1
CHANRnRel i, 22- 3
COUPHNRE ..o it eas 22-4
OFFSet - .22- 5
PROBeE ... o 22- 6
RANGE oottt it it ie et n i nnaneaaanenes 22-7
|
Chapter 23 TRIGger Subsystem
Introduction i 231
The Edge
TriggerMode 2231
The Immediate Trigger Modeccovvvinn... .23-1
TRIGger ... 23-3
LEVEL ... ettt inases 23-4
MODE ... e 235
K] 0) o 23-6
SOURCE ..ot 23-7
|
Chapter 24 ACQuire Subsystem
INtroduction24-1
Acquisition TypeNormal ..., 24-2
Acquisition Type AVErageoiurieeeaiiiii e 24-2
ACQUITE .. o .24- 3
COUNL i e s 24- 4
TY PE 24- 5
HP 1652B/1653B Contents -9

Programming Reference

I
Chapter 25

Chapter 26

Contents « 10

TIMebase Subsystem
INEFOAUCHION o v e e et et e e e e e e e e e e 25-|
TIMebaseot .25 2
DELAY o e e e e .25-3
MODE ..ttt 25-4
RANGE ..ottt e e 25-6
WAVeform Subsystem
INtrodUCEiON 26-1
Waveform
RECOM .ottt ..26-3
Data ACQUISItion TYPES vvvrrr et .26-3
NormalMode i .26- 3
AverageMode 26-3
Format for Data Transfer it .26-4
BYTEFOrmatcoiiiiiiiitniiia e 26-4
WORD Formatccoiiiiiiii i .26-5
ASCH FOrmMAtovitee e s e 26-5
Data CONVEISION ...ttt et e et e et e e .26-6
Conversion from Data Value to Voltage26-6
Conversion from Data ValuetoTime26-6
Conversion from Data Value to Trigger Point26-6
WAVeformo i .26-7
COUNL o 26-8
DAT A L e e 26-9
FORMat .. oo e ..26-10
POINtS26-11
PREAmDbIE26-12
RECord26-13
SOURCE ... e .26-14
TY PE e e e ..26-15
VAL26-16
D € 12 (00 ¢ 111=) 1| (R 26-17
XORIZIN oot ..26-18
XREFerenceccuiiiiiiiiiiiiniiinnnn o 26-19
YINCrement.....ooovni it 26-20
N (0) T R 2621
YREFerencecccoiiiiiiiiiiiiiiinnn... .26-2 2

HP 1652B/1653B
Programming Reference

Chapter 27

MEASure Subsystem

I
Appendix A

HP 1652B/1653B
Programming Reference

INtrodUCLION « oo e et 27-
Frequencyooiiiiiiii i 27-2
PEiOd .. 27-2
Peak-to-Peakooovvrvtt e e 27-2
Positive Pulse Width. ... 272
NegativePulse Widtho i, 27-2
RISEIMIE - vttt e ettt e e 27-2
Falltimeoooin .27- 2
Preshoot and Overshootcccoiiiiiiiinnnnnnns 27-2
Preshoot . ..o e 27-2
OVErShOOt . 27- 2

MEASUIE i 27- 4
N 27-5
FALLTIME ... 27- 6
FREQuencyccoiiiiiiiiiiiiiiinaanns 27- 7
NWIDth 27-8
OVERShOOt ... 279
PERiOd27-10
PRESHOOlo .27-11
PWIDEh - oot 2712
RISETIME ... 27-13
SOURCE ...ttt 27-14
VAMPIlitude i i e e it 27-15
VBASE ... 27-16
VM AX 27-17
VMIN 27-18
VPP .27-19
VTOP .27-.

Message Communication and System Functions

Introduction JA- 1

ProtocCols. . o A- 2
Functional Elementsccoiiiiiiiiiiiiiiiiiaannn. A-2
Protocol OVErVIEW A-3
Protocol Operationc.c.oviiiiiii i A-3
Protocol EXCEPtiONS A-4

Syntax Diagramsvvit e A-S

Contents = 11

Syntax Overview
Device Listening Syntax
Device Talking Syntax

Common Commands................

Appendix B Status Reporting

INtroduCtion B-l
Event StatusRegister ...t B-3
Service Request Enable Register B-3
Bit Definitionst B-3
KeyFeatures B-4
Serial Poll B-6
Using Seria Poll (HP-IB)o B-6
Parallel Poll B-8
Polling HP-IBDeVICeSoovviririninianianananns B-10
Configuring Parallel Poll Responses B-10
Conducting a Parallel Poll B-11
Disabling Parallel Poll Responsesc.cccovus. B-11
HP-IBCOMMANdS c.viiiiiiiiiiiiiiiiiiiiiiiinnns B-12
=
Appendix C Error Messages
Device Dependent Errors e, C-l
Command BITOrS - -« v vietiit ittt C2
Execution EIMOrs C3
Internal Errorst C-4
QueryErrors C5
]
Index

Contents - 12

HP 1652B/16538
Programming Reference

Introduction to 1
Programming an Instrument
__|

Introduction This chapter introduces you to the basics of remote programming. The
programming instructions explained in this book conform to the

IEEE 488.2 Standard Digital Interface for Programmable
Instrumentation. These programming instructions provide a means of
remotely controlling the HP 1652B/53B. There are three general
categories of use. You can:

o Set up the instrument and start measurements
o Retrieve setup information and measurement results
o Send measurement data to the instrument

Theinstructions listed in this manual give you access to the measurements
and front panel features of the HP 1652B/53B. The complexity of your
programs and the tasks they accomplish are limited only by your
imagination. This programming reference is designed to provide a
concise description of each instruction.

|
About This This manual is organized in 27 chapters. Chapter 1 is divided into two
Manual sections. The first section (pages 2 through 9) concentrates on program

syntax, and the second section (pages 10 through 17) discusses
programming an instrument. Read either chapter 2, “Programming Over
HP-1B,” or chapter 3, "Programming Over RS-232C” for information
concerning the physical connection between the HP 1652B/53B and your
controller. Chapter 4, “Programming and Documentation Conventions,”
gives an overview of all instructions and also explains the notation
conventions used in our syntax definitions and examples. The remaining
chapters 5 through 27 are used to explain each group of instructions.

HP 1652B/1653B Introduction to Programming an Instrument
Programming Reference [-1

Programming
Syntax

Talking to the
Instrument

Instruction Syntax

In general, computers acting as controllers communicate with the
instrument by sending and receiving messages over a remote interface,
such as HP-IB or RS-232C. Ingtructions for programming the HP
1652B/53B will normally appear as ASCII character strings embedded
inside the output statements of a “host” language available on your
controller. The host language's input statements are used to read in
responses from the HP 1652B/53B.

For example, HP 9000 Series 200/300 BASIC uses the OUTPUT

statement for sending commands and queries to the HP 1652B/53B. After
a query is sent, the response is usualy read in using the ENTER

statement. All programming examples in this manua are presented in
BASIC. The following BASIC statement sends a command which causes
the HP 1652B/53B's machine 1 to be a state analyzer:

OUTPUT XXX:":MACHINE1:TYPE STATE" <terminator>

Each part of the above statement is explained in the following pages.

To program the instrument remotely, you must have an understanding of
the command format and structure expected by the instrument. The IEEE
488.2 syntax rules govern how individual elements such as headers,
separators, parameters and terminators may be grouped together to form
complete ingtructions. Syntax definitions are aso given to show how
query responses will be formatted. Fiie I-I shows the main syntactical
parts of a typical program statement.

INSTRUCTION

OQUTPWT XXX ;" :SYSTEM:MENU LRISPLAY, 2’

OUTPUT COMMAND
DEVICE ADDRESS
INSTRUCTION HEADER
WHITE SPACE
INSTRUCTION ~ PARAMETERS

Figure I-l. Program Message Syntax

Introduction to Programming an Instrument HP 1652B/1653B

[-2

Progmmming Reference

Output Command

Device Address

Instructions

instruction Header

HP 1652B/1653B
Programming Reference

The output command is entirely dependant on the language you choose to
use. Throughout this manual HP 9000 Series 2007300 BASIC 4.0 is used in
the programming examples. People using ancther language will need to
find the equivalents of BASIC commands like OUTPUT, ENTER and
CLEAR in order to convert the examples. The instructions for the

HP 1652B/53B are always shown between the double-quotes.

The location where the device address must be specified is also dependent
on the host language which you are using. In some languages, this could
be specified outside the output command. In BASIC, this is aways
specified after the keyword OUTPUT. The examples in this manual use a
generic address of XXX. When writing programs, the number you use
will depend on the cable you use in addition to the actual address. If you
are using an HP-IB, see chapter 2. RS-232C users should refer to

chapter 3, “Programming Over RS-232C."

Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host language, such as BASIC, Pascal or
C. The only time a parameter is not meant to be expressed as a string is
when the ingtruction’s syntax definition specifies <block data > . There
are only five ingtructions which use block data.

Instructions are composed of two main parts: The header, which specifies
the command or query to be sent; and the parameters, which provide
additional data needed to clarify the meaning of the instruction.

The instruction header is one or more keywords separated by colons (:).
The command tree in figure 4-I illustrates how al the keywords can be
joined together to form a complete header (see chapter 4, “Programming
and Documentation Conventions”).

The example in figure I-| shows a command. Queries are indicated by
adding a question mark (?) to the end of the header. Many ingtructions
can be used as either commands or queries, depending on whether or not
you have included the question mark. The command and query forms of
an ingtruction usualy have different parameters. Many queries do not use
any parameters.

When you look up a query in this programming reference, you'll fmd a
paragraph labeled “Returned Format” under the one labeled “Query
Syntax.” The syntax definition by “Returned format” will always show the
instruction header in square brackets, like [:SYSTem:MENU), What this

Introduction to Programming an Instrument
1-3

really means is that the text between the brackets is optiona, but it's dso a
quick way to see what the header looks like.

White Space White space is used to separate the instruction header from the
instruction parameters. If the instruction does not use any parameters,
you do not need to include any white space. White space is defined as one
or more spaces. ASCII defines a space to be character 32 (in decimal).
Tabs can be used only if your controller first converts them to space
characters before sending the string to the instrument.

Instruction Parameters Instruction parameters are used to clarify the meaning of the command or
query. They provide necessary data, such as whether a function should be
on or off, which waveform is to be displayed, or which pattern is to be
looked for. Each instruction’s syntax definition shows the parameters, as
well as the values they accept. This chapter's “Parameter Syntax Rules’
section has dl of the generd rules about acceptable values.

When there is more than one parameter they are separated by
commas (,). You are alowed to add spaces around the commas.

Header Types There are three types of headers. Simple Command; Compound
Command; and Common Command.

Simple Command Header. Simple command headers contain a single
keyword. START and STOP are examples of simple command headers
typicaly used in this instrument. The syntax is:

<function > c terminator >

When parameters (indicated by < data >) must be included with the
simple command header (for example, :RMODE SINGLE) the syntax is:

< function > <white space > <data > <terminator >

Compound Command Header. Compound command headers are a
combination of two or more program keywords. The first keyword selects
the subsystem, and the last keyword selects the function within that
subsystem. Sometimes you may need to list more than one subsystem
before being alowed to specify the function. The keywords within the
compound header are separated by colons. For example:

To execute a single function within a subsystem, use the following:

Introduction to Progmmming an Instrument HP 1652B/1653B
14 Programming Reference

Combining
Commands from the
Same Subsystem

Duplicate Keywords

HP 1652B/1653B
Programming Reference

. < subsystem > : ¢ function > <white space > <data > <terminator >

(For example :SYSTEM:LONGFORM ON)

To traverse down a level of a subsystem to execute a subsystem within that
subsystem:

. <subsystem >: < subsystem >: <function > < white 8pace > « data > <terminator >

(For example :MMEMORY:LOAD:CONFIG “FILE__")

Common Command Header. Common command headers control IEEE
488.2 functions within the instrument (such as clear status, etc.). Their
syntax is:

*< command header > < terminator >
No space or separator is alowed between the asterisk and the command
header. *CLS is an example of a common command header.

To execute more than one function within the same subsystem a
semi-colon (;) is used to separate the functions:

: <subsystem > : <function > <white space > <data>;
< function > < white space > < data > < terminator >

(For example :SYSTEM:LONGFORM ON;HEADER ON)

Identical function keywords can be used for more than one subsystem.
For example, the function keyword MMODE may be used to specify the
marker mode in the subsystem for state listing or the timing waveforms:

:SLIST:MMODE PATTERN - Sgts the marker mode to pattern in the state
ligting.

;TWAVEFORM:MMODE T - Sets the marker mode to time in the timing
waveforms.

SLIST and TWAVEFORM are subsystem selectors and determine which
marker mode is being modified.

Introduction to Programming an Instrument
I-5

Query Usage Command headers immediately followed by a question mark (?) are
queries. After recelving a query, the instrument interrogates the
requested function and places the response in its output queue. The
output message remains in the queue until it is read or another command
is issued. When read, the message is transmitted across the bus to the
designated listener (typicdly a controller). For example, the logic
analyzer query :MACHINE1L:TWAVEFORM:RANGE? places the
current seconds per division full scale range for machine 1 in the output
queue. In BASIC, the input statement

ENTER XXX; Range
passes the vaue across the bus to the controller and places it in the
variahle Range.

Query commands are used to find out how the instrument is currently
configured. They are also used to get results of measurements made by
the instrument. For example, the command

:MACHINEL:TWAVEFORM:XOTIME?

ingtructs the instrument to place the X to 0 time in the output queue.

@ The output queue must be read before the next program message is sent.

Note For example, when you send the query :TWAVEFORM:XOTIME? you
must follow that with an input statement. In BASIC, this is usually done
with an ENTER statement.

Sending another command before reading the result of the query will
cause the output buffer to be cleared and the current response to be lost.
This will also generate a “QUERY UNTERMINATED” error in the
error queue.

Introduction to Programming an Instrument HP 1652B/1653B
1-6 Programming Reference

Program Header Program headers can be sent using any combination of uppercase or
Options lowercase ASCII characters. Instrument responses, however, are aways
returned in uppercase.

Both program command and query headers may be sent in either
longform (complete spelling), shortform (abbreviated spelling), or any
combination of longform and shortform. Either of the following examples
turns on the headers and longform.

OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON" + longform
OUTPUT XXX;™ :SYST:HEAO ON;LONG ON" . shortform

Programs written in longform are easily read and are almost
self-documenting. The shortform syntax conserves the amount of
controller memory needed for program storage and reduces the amount
of 1/0 activity.

ﬁ The rules for shortform syntax are shown in chapter 4 “Programming and
Note Documentation Conventions.”

Parameter Syntax There are three main types of data which are used in parameters. They
Rules are numeric, string, and keyword. A fourth type, block data, is used only
for five ingtructions; the DATA and SETup ingtructions in the SYSTem
subsystem (see chapter 6); the CATalog, UPLoad, and DOWNIoad
ingtructions in the MMEMory subsystem (see chapter 7). These syntax
rules also show how data may be formatted when sent back from the
HP 1652B/53B as a response.

The parameter list always follows the instruction header and is separated
from it by white space. When more than one parameter is used, they are
separated by commas. You are alowed to include one or more spaces
around the commas, but it is not mandatory.

HP 1652B/1653B Introduction to Programming an Instrument
Programming Reference 1-7

Numeric data. For numeric data, you have the option of using
exponential notation or using suffixes to indicate which unit is being used.
Tables A-l and A-2 in appendix A list al available suffixes. Do not
combine an exponent with a unit. The following numbers are all equal:

28 = (28E2 = 280e-1 = 28000m = 0.028K.

The base of a number is shown with a prefix. The available bases are
binary (#B), octal (#Q), hexadecimal (#H) and decimal (default). For
example, #B11100 = #Q34 = #H1C = 28. You may not specify a
base in conjunction with either exponents or unit suffixes. Additionally,
negative numbers must be expressed in decimal.

When a syntax definition specifies that a number is an integer, that means
that the number should be whole. Any fractional part would be ignored,
truncating the number. Numeric parameters which accept fractional
values are called real numbers.

All numbers are expected to be strings of ASCII characters. Thus, when
sending the number 9, you would send a byte representing the ASCII code
for the character “9” (which is 57, or 00111001 in binary). A three-digit
number like 102 would take up three bytes (ASCII codes 49, 48 and 50).
Thisistaken care of automatically when you include the entire instruction
in astring.

String data. String data may be delimited with either single (‘) or double
(") quotes. String parameters representing labels are case-sensitive. For
instance, the labels “Bus A" and “bus a” are unique and should not be used
indiscriminately. Also pay attention to the presence of spaces, since they
act aslegal charactersjust like any other. So thelabels“In” and" In" are
also two separate labels.

Keyword data. In many cases a parameter must be a keyword. The
available keywords are always included with the instruction’s syntax
definition. When sending commands, either the longform or shortform (if
one exists) may be used. Upper-case and lower-case letters may be mixed
freely. When receiving responses, upper-case letters will be used
exclusively. The use of longform or shortform in a response depends on
the setting you last specified via the SY STem:LONGform command (see
chapter 6).

Introduction to Programming an Instrument HP 1652B/1653B
1-8 Progremming Reference

Instruction Terminator

i
Note %

Selecting Multiple
Subsystems

Note

HP 1652B/1653B
Programming Reference

An instruction is executed after the instruction terminator is received.
The terminator is the NL (New Line) character. The NL character is an
ASCII linefeed character (decima 10).

The NL (New Line) terminator has the same function as an EOS (End Of
String) and EOT (End Of Text) terminator.

Y ou can send multiple program commands and program queries for
different subsystems on the same line by separating each command with a
semicolon. The colon following the semicolon enables you to enter anew
subsystem. For example:

<instruction header > <data >;: c instruction header > <data > <terminator >

:MACHINE1:ASSIGN2;:SYSTEM:HEADERS ON

Multiple commands may be any combination of simple, compound and
common commands.

Introduction to Programming an Instrument
1-9

-
Programming
an Instrument

Initialization ~ To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. BASIC provides a
CLEAR command which clears the interface buffer. If you're using
HP-IB, CLEAR will aso reset the HP 1652B/53B’s parser. The parser is
the program which reads in the instructions which you send it.

After clearing the interface, load a predefmed configuration file from the
disk to preset the instrument to a known state. For example:

OUTPUT XXX;' :MMEMORY:LOAD:CONFIG "DEFAULT-""
This BASIC statement would load the configuration file “DEFAULT-"

(if it exists) into the HP 1652B/53B. Refer to the chapter "MMEMory
Subsystem” for more information on the LOAD command.

m' Refer to your controller manual and programming language reference
Not J manua for information on initidizing the interface.

Introduction to Programming an Instrument HP 1652B/1653B
[-10 Programming Reference

Example Program This program demonstrates the basic command structure used to program

the HP 1652B/53B.

10 CLEAR XXX !Initialize instrument interface
20 OUTPUT XXX;" :SYSTEM:HEADER ON" tTurn headers on
30 OUTPUT XXX; ":SYSTEM:LONGFORM ON" {Turn longfonn on
40 OUTPUT XXX;" :MMEM:LOAD:CONFIG “TEST-E*" ILoad configuration file
50 OUTPUT XXX;™:MENU FORMAT,1" tSelect Format menu for machine 1
60 OUTPUT XXX;':RMODE SINGLE" 1Select run mode
70 OUTPUT XXX ;™ :START" !Run the measurement

Program Overview Line 10 initidizes the instrument interface to a known state
Lines 20 and 30 turn the headers and longform on.
Line 40 loads the configuration file “TEST E" from the disc drive.
Line 50 displays the Format menu for machine 1.
Lines 60 and 70 tell the analyzer to run the measurement configured by
the file “TEST-E” one time.

Receiving Information After receiving a query (command header followed by a question mark),
from the Instrument the instrument interrogates the requested function and places the answer

in its output queue. The answer remains in the output queue wuntit it is
read or another command is issued. When read, the message is
transmitted across the bus to the designated listener (typicaly a
controller). The input statement for receiving a response message from
an instrument’s output queue typicaly has two parameters;the device
address and a format specification for handling the response message.
For example, to read the result of the query command
:SYSTEM:LONGFORM? you could execute the BASIC statement:

ENTER XXX Setting

where XXX represents the address of your device. This would enter the
current setting for the longform command in the numeric variable Setting.

HP 1652B/1653B Introduction to Programming an Instrument
Progmmming Reference 1-11

Note #

Response Header
Options

All results for queries sent in a program message must be read before
another program message is sent. For example, when you send the query
:MACHINE1:ASSIGN?, you must follow that query with an input
statement. In BASIC, this is usualy done with an ENTER statement.

The format specification for handling the response messages is dependent
on both the controller and the programming language.

The format of the returned ASCII string depends on the current settings
of the SYSTEM HEADER and LONGFORM commands. The general
format is:

< instruction header > <space > <data > < terminator >

The header identifies the data that follows (the parameters) and is
controlled by issuing a :SYSTEM:HEADER ON/OFF command. If the
state of the header command is OFF, only the data is returned by the

query.

The format of the header is controlled by the :SYSTEM:LONGFORM
ON/OFF command. If longform is OFF, the header will be in its
shortform and the header will vary in length depending on the particular

query. The separator between the header and the data always consists of
one space.

The following examples show some possible responses for a
:MACHINE1:SFORMAT:THRESHOLD2? query:

+ with HEADER OFF:

<data> <terminator>

« Wwith HEADER ON and LONGFORM QFF:
‘MACH1:SFOR:THR2 < space > <data > <terminator >

+ with HEADER ON and LONGFORM ON:
:MACHINE1:SFORMAT:THRESHOLD2 <«space> <data> <terminator>

Introduction to Programming an Instrument HP 1652B/1653B

1-12

Programming Reference

A command or query may be sent in either longform or shortform, or in

Note 3 any combination of longform and shortform. The HEADER and
LONGFORM commands only control the format of the returned data
and have no effect on the way commands are sent.

Refer to the chapter “System Commands’ for information on turning the
HEADER and LONGFORM commands on and off.

Response Data Both numbers and strings are returned as a series of ASCII characters, as
Formats described in the following sections. Keywords in the data are returned in
the same format as the header, as specified by the LONGform command.

Like the headers, the keywords will always be in upper-case.

The following are possible responses to the "MACHINEL: TFORMAT:
LAB? ‘ADDR’ " query.

MACHINE1: TFORMAT:LABEL "ADDR *,19,POSITIVE < terminator > (Header on;
Longform on)

MACH1:TFOR:LAB “ADDR *",19,POS <terminator > (Header on; Longform off)
“ADDR *,19,POSITIVE < terminator > (Header off; Longform on)

“ADDR *,19,POS < terminator > (Header off; Longform off)

@ Refer to the individual commands in this manual for information on the
Note format (alpha or numeric) of the data returned from each query.

HP 1852B/1653B Introduction to Programming an Instrument
Programming Reference 1-13

String Variables ~ Since there are so many ways to code numbers, the HP 1652B/53B
handles almost all dataas ASCII strings. Depending on your host
language, you may be able to use other types when reading in responses.

Sometimes it is helpful to use string variables in place of constants to send
instructions to the HP 1652B/53B. The example below combines variables
and constantsin order to make it easier to switch from MACHINE1 to
MACHINE2. In BASIC, the & operator is used for string concatenation.

10 LET Machine$ = ":MACHINE2" !Send all instructions to machine 2

20 OUTPUT XXX; Machine$ & ":TYPE STATE" {Make machine a state analyzer
30 ! Assign all labels to be positive

40 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL *CHAN 1°. POS"

50 OUTPUT XXX; Machine$ & *:SFORMAT:LABEL "CHAN 2. POS"

60 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL -ouT®, POS"

99 END

If you want to observe the headers for queries, you must bring the
returned data into a string variable. Reading queries into string variables
requires little attention to formatting. For example:

ENTER XXX;Result$

places the output of the query in the string variable Result%.

% In the language used for this book (HP BASIC 4.0), string variables are
Note case sensitive and must be expressed exactly the same each time they are
used.

The output of the instrument may be numeric or character data
depending on what is queried. Refer to the specific commands for the
formats and types of data returned from queries.

Introduction to Programming an Instrument HP 1652B/1653B
I-14 Programming Reference

Numeric Base

Numeric Variables

HP 1652B/1653B
Programming Reference

The following example shows logic analyzer data beli returned to a
string variable with headers off:

10 OUTPUT XXX;™ :SYSTEM:HEAOER OFF"
20 DIM Rang$[30]

30 OUTPUT XXX;':MACHINEL: TWAVEFORM:RANGE?"
40 ENTER XXX;Rang$

50 PRINT Rang$

60 END

After running this program, the controller displays:
+ 1.00000E-05

Most numeric data will be returned in the same base as shown on screen.
When the prefix #B precedes the returned data, the value is in the bii
base. Likewise, #Q is the octa base and #H is the hexadecima base. If
no prefix precedes the returned numeric data, then the value is in the
decimal base.

If your host language can convert from ASCII to a numeric format, then
you can use numeric variables. Turning off the response headers will help
you avoid accidently trying to convert the header into a number.

The following example shows logic analyzer data being returned to a
numeric variable.

10 OUTPUT XXX;":SYSTEM:HEADER OFF"

20 OUTPUT XXX;": MACHINEL: TWAVEFORM: RANGE?"
30 ENTER XXX;Rang

40 PRINT Rang

50 END

This time the format of the number (such as whether or not exponentia
notation is used) is dependant upon your host language. In BASIC, the
output would look like:

1E-5

Introduction to Programming an Instrument
1-15

Definite-Length Block Definite-length block response data alows any type of device-dependent
Response Data data to be transmitted over the system interface as a series of 8-bit binary
data bytes. This is particularly useful for sending large quantities of data
or 8-bit extended ASCII codes. The syntax is a pound sign (#) followed
by a non-zero digit representing the number of digits in the decima
integer. After the non-zero digit is the decima integer that states the
number of 8-hit data bytes being sent. This is followed by the actual data

For example, for transmitting 80 bytes of data, the syntax would be:

NUMBER OF DIGITS
THAT FOLLOW

ACTUAL DATA

et e

#80000008BR<eighty bytes of data><terminator>
[Y

NUMBER OF BYTES
TO BE TRANSMITTED 16500/BL22

Figure 1-2. Definite-length Block Response Data

The "8" states the number of digits that follow, and "00000080" states the
number of bytes to be transmitted.

Not % Indefinite-length block data is not supported on the HP1652B/53B.
ote

Introduction to Progmmming an Instrument HP 1652B/1653B
1-16 Progmmming Reference

Multiple Queries Y ou can send multiple queries to the instrument within a single program
message, but you must also read them back within a single program
message. This can be accomplished by either reading them back into a
string variable or into multiple numeric variables. For example, you could
read the result of the query :SYSTEM:HEADER?,LONGFORM? into
the string variable Results$ with the command:

ENTER XXX: Results$

When you read the result of multiple queriesinto string variables, each
response is separated by a semicolon. For example, the response of the
query :SYSTEM:HEADER?LONGFORM? with HEADER and
LONGFORM on would be:

:SYSTEM:HEADER 1;:SYSTEM:LONGFORM 1

If you do not need to see the headers when the numeric values are
returned, then you could use following program message to read the query
:SYSTEM:HEADERS?,LONGFORM? into multiple numeric variables:

ENTER XXX; Resultl, Result2

g When you are receiving numeric datainto numeric variables, the headers
Note should be turned off. Otherwise the headers may cause misinterpretation
of returned data.

Instrument Status Status registers track the current status of the instrument. By checking the
instrument status, you can find out whether an operation has been
completed, whether the instrument is receiving triggers, and more.
Appendix B, “Status Reporting,” explains how to check the status of the
instrument.

HP 1652B/1653B Introduction to Programming an Instrument
Programming Reference 1-17

Programming

Over HP-IB 2

Introduction

Interface
Capabilities
|

Command and
Data Concepts

Addressing

HP 1652B/1653B
Programming Reference

This section describes the interface functions and some general concepts
of the HP-IB. In general, these functions are defined by |EEE 488.1
(HP-1B bus standard). They deal with general bus management issues, as
well as messages which can be sent over the bus as bus commands.

The interface capabilities of the HP 1652B/53B, as defined by IEEE 488.1
are SH1, AH1, T5, TEO, L3, LEO, SR1, RL1, PP1, DC1, DT1, CO, and E2.

The HP-1B has two modes of operation: command mode and data mode.
The busisin command mode when the ATN lineis true. The command
mode is used to send talk and listen addresses and various bus commands,
such as a group execute trigger (GET). The busisin the data mode when
the ATN lineisfalse. The datamodeis used to convey device-dependent
messages across the bus. These device-dependent messages include all of
the instrument commands and responses found in chapters 5 through 27
of this manual.

By using the front-panel I/Q and SELECT keys, the HP-IB interface can
be placed in either talk only mode “Printer connected to HP-I1B” or
addressed talk/listen mode “ Controller connected to HP-IB” (see "I/O
Port Configuration” in Chapter 5 of the HP 1652BIHP 1653B Front-Panel
Reference manual Talk only mode must be used when you want the
instrument to talk directly to a printer without the aid of a controller.
Addressed talk/listen mode is used when the instrument will operatein
conjunction with a controller. When the instrument is in the addressed
talk/listen mode, the following is true:

+ Each device on the HP-IB resides at a particular address ranging
from O to 30.

« Theactive controller specifies which devices will talk, and which
will listen.

o Aninstrument, therefore, may be talk addressed, listen addressed,
or unaddressed by the controller.

Programming Over HP-IB
2-1

If the controller addresses the instrument to talk, it will remain configured
to talk until it receives an interface clear message (IFC), another
instrument’s talk address (OTA), its own listen address (MIA), or a
universal untalk (UNT) command.

If the controller addresses the instrument to listen, it will remain

configured to listen until it receives an interface clear message (I1FC) its

own talk address (MTA), or a universa unlisten (UNL) command.
|

Communicatin 0 Since HP-IB can address multiple devices through the same interface
Over the HP-IB card, the device address passed with the program message must include

not only the correct instrument address, but also the correct interface
Bus (HP 9000 Lo,
Series 200/300 Interface Select Code (Selects Interface). Each interface card has its own
Controller) ()

interface select code. This code is used by the controller to direct

commands and communications to the proper interface. The default is
always "7" for HP-IB controllers.

Instrument Address (Selects Instrument). Each instrument on the
HP-1B port must have a unique instrument address between decimal 0
and 30. The device address passed with the program message must
include not only the correct instrument address, but also the correct
interface select code.

DEVICE ADDRESS = (Interface Select Code) X 100 + (Instrument Address)

For example, if the instrument address for the HP 1652B/53B is 4 and the
interface select code is 7, when the program message i s passed, the
routine performs its function on the instrument at device address 704.

I
Local, Remote, The local, remote, and remote with local lockout modes may be used for

and Local various degrees of front-panel control while a program is running. The
instrument will accept and execute bus commands while in local mode,

Lockout and the front panel will also be entirely active. If the HP1652B/53B isin
remote mode, the instrument will go from remote to local with any front
panel activity. In remote with local lockout mode, all controls (except the
power switch) are entirely locked out. Local control can only be restored
by the controller.

Programming Over HP-IB HP 1652B/1653B

2-2 Programming Reference

% Cycling the power will also restore local control, but thiswill also reset
Note certain HP-IB states.

The instrument is placed in remote mode by setting the REN (Remote
Enable) bus control line true, and then addressing the instrument to
listen. The instrument can be placed in local lockout mode by sending the
local lockout (LLO) command (see SY STem:LOCKout in chapter 6).
The instrument can be returned to local mode by either setting the REN
line false, or sending the instrument the go to local (GTL) command.
|

Bus Commands The following commands are IEEE 488.1 bus commands (ATN true).
|EEE 488.2 defmes many of the actions which are taken when these
commands are received by an instrument.

Device Clear The device clear (DCL) or selected device clear (SDC) commands clear
the input and output buffers, reset the parser, clear any pending
commands, and clear the Request-OPC flag.

Group Execute The group execute trigger command will cause the same action as the
Trigger (GET) START command for Group Run: the instrument will acquire data for
the active waveform and listing display(s),

Interface Clear (IFC) Thiscommand halts all bus activity. Thisincludes unaddressing all
listeners and the talker, disabling serial poll on all devices, and returning
control to the system controller.

HP 16528/1 6538 Programming Over HP-IB
Programming Reference 2-3

Programming

Over RS-232C 3

Introduction

Interface
Operation

HP 1652B/1653B
Programming Reference

This section describes the interface functions and some general concepts
of the RS-232C. The RS-232C interface on this instrument is
Hewlett-Packard’s implementation of EIA Recommended Standard
RS-232C, “Interface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Binary Data Interchange.”
With thisinterface, datais sent one bit at atime and characters are not
synchronized with preceding or subsequent data characters. Each
character is sent as a complete entity without relationship to other events.

The HP 1652B/53B can be programmed with a controller over RS-232C
using either aminimum three-wire or extended hardwire interface. The
operation and exact connections for these interfaces are described in
more detail in the following sections. When you are programming an

HP 1652B/53B over RS-232C with a controller, you are normally
operating directly between two DTE (Data Terminal Equipment) devices
as compared to operating between a DTE device and a DCE (Data
Communications Equipment) device.

When operating directly between two DTE devices, certain
considerations must be taken into account. For three-wire operation,
XON/XOFF must be used to handle protocol between the devices. For
extended hardwire operation, protocol may be handled either with
XON/XOFF or by manipulating the CTS and RTS lines of the RS-232C
link. For both three-wire and extended hardwire operation, the DCD and
DSR inputs to the HP 1652B/53B must remain high for proper operation.

With extended hardwire operation, a high on the CTS input allows the HP
1652B/53B to send data and alow on this line disables the HP 1652B/53B
data transmission. Likewise, ahigh on the RTS line allows the controller
to send data and alow on thisline signals arequest for the controller to
disable data transmission. Since three-wire operation has no control over
the CTS input, internal pull-up resistorsin the HP 1652B/53B assure that
this line remains high for proper three-wire operation.

Programming Over RS-232C
3-1

Cables Selecting a cable for the RS-232C interface is dependent on your specific
application. The following paragraphs describe which lines of the
HP 1652B/53B are used to control the operation of the RS-232C rdative
to the HP 1652B/53B. To locate the proper cable for your application,
refer to the reference manua for your controller. This manual should
address the exact method your controller uses to operate over the
RS-232C bus.
]
Minimum With a three-wire interface, the software (as compared to interface
Three-Wire hardware) controls the data flow between the HP 1652B/53B and the
. controller. This provides a much simpler connection between devices
Interface with since you can ignore hardware handshake requirements. The
Software HP 1652B/53B uses the following connections on its RS-232C interface for
Protocol three-wire - communication:

Note .ﬁ

o Pin 7 SGND (Signa Ground)
o Pin2TD (Transmit Data from HP 1652B/53B)
+ Pin 3 RD (Receive Data into HP 1652B/53B)

The TD (Transmit Datd) line from the HP 1652B/53B must connect to the
RD (Receive Data) line on the controller.’Likewise, the RD line from the
HP 1652B/53B must connect to the TD line on the controller. Interna
pull-up resistors in the HP 1652B/53B assure the DCD, DSR, and CTS
lines remain high when you are using a three-wire interface.

The three-wire interface provides no hardware means to control data flow
between the controller and the HP 1652B/53B. XON/OFF protocol is the
only means to control this data flow.

Programming Over RS-232C HP 1652B/1653B

3-2

Programming Reference

Extended With the extended interface, both the software and the hardware can
Interface with control the data flow between the HP 1652B/53B and the controller. This

alows you to have more control of data flow between devices. The
Hardware HP 1652B/53B uses the following connections on its RS-232C interface for
Handshake extended interface communication:

o Pin 7 SGND (Signd Ground)
o+ Pm2TD (Transmit Data from HP 1652B/53B)
+ Pin 3 RD (Receive Data into HP 1652B/53B)

The additiona lines you use depends on your controller’s implementation
of the extended hardwire interface.

o Pin 4 RTS (Request To Send) is an output from the
HP 1652B/53B which can be used to control incoming data flow.

o Pin5CTS (Clear To Send) is an input to the HP 1652B/53B
which controls data flow from the HP 1652B/43B.

o+ Pm 6 DSR (Data Set Ready) is an input to the HP 1652B/53B
which controls data flow from the HP 1652B/53B within two bytes.

+ Pin 8 DCD (Data Carrier Detect) is an input to the HP
1652B/53B which controls data flow from the HP 1652B/53B within
two bytes.

o Pin 20 DTR (Data Terminal Ready) is an output from the
HP 1652B/53B which is enabled as long as the HP 1652B/53B is
turned on.

The TD (Transmit Data) line from the HP 1652B/53B must connect to the
RD (Receive Datd) line on the controller. Likewise, the RD line from the
HP 1652B/53B must connect to the TD line on the controller.

HP 1652B/1653B Programming Over RS-232C
Programming Reference 3-3

]
Cable Example

The RTS (Request To Send), is an output from the HP 1652B/53B which
can be used to control incoming dataflow. A true on the RTS line alows
the controller to send data and afalse on thisline signals arequest for the
controller to disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data
Carrier Detect) lines are inputs to the HP 1652B/53B which control data
flow from the HP 1652B/53B (Pin 2). internal pull-up resistors in the

HP 1652B/53B assure the DCD and DSR lines remain high when they are
not connected. If DCD or DSR are connected to the controller, the
controller must keep these lines and the CTS line high to enable the

HP 1652B/53B to send data to the controller. A low on any one of these
lines will disable the HP 1652B/53B data transmission. Dropping the CTS
line low during data transmission will stop HP 1652B/53B data
transmission immediately. Dropping either the DSR or DCD line low
during data transmission will stop HP 1652B/53B data transmission, but as
many as two additional bytes may be transmitted from the HP 1652B/53B.

Fiie 3- is an example of how to connect the HP 1652B/53B to the
HP 98628A Interface card of an HP 9000 series 200/300 controller. For
more information on cabling, refer to the reference manual for your
specific controller.

Since this example does not have the correct connections for hardware
handshake, XON/XOFF protocol must be used when connecting the
HP 1652B/53B as shown in figure 3-|

HP 1652B/53B
REAR PANEL

HP 9862BA
INTERFACE CARD

p—

il

13242N 5061—4216
(MALE-TO-MALE) DCE OPT . @082
(FEMALE-TO-FEMALE)

01852809

Figure 3-1. Cable Example

Programming Over RS-232C HP 1652B/1653B

3-4

Programming Reference

Configuring the
Instrument
Interface

Interface
Capabilities

Protocol

HP 1652B/16853B
Programming Reference

The front-panel I/O menu key alows you access to the RS-232C
Configuration menu where the RS-232C interface is configured.

If you are not familiar with how to configure the RS-232C interface, refer
to the HP 1652B/53B Front-panel Reference manual.

The baud rate, stop hits, parity, protocol, and data bits must be configured
exactly the same for both the controller and the HP 1652B/53B to
properly communicate over the RS-232C bus. The HP 1652B/53B
RS-232C interface capabilities are listed below:

+ Baud Rate: 110, 300, 600, 1200, 2400, 4800, 9600, or 19.2 k
o Stop Bits: 1, 1.5, or 2

o Parity: None, Odd, or Even

+ Protocol: None or XON/XOFF

« Data Bits. 8

NONE. With a three-wire interface, selecting NONE for the protocol
does not alow the sending or receiving device to control data flow. No
control over the data flow increases the possibility of missing data or
transferring incomplete data.

With an extended hardwire interface, selecting NONE allows a hardware
handshake to occur. With hardware handshake, hardware signas control
data flow.

XON/XOFF. XON/XOFF stands for Transmit On/Transmit Off. With
this mode the receiver (controller or HP 1652B/53B) controls data flow
and can request that the sender (HP 1652B/53B or controller) stop data
flow. By sending XOFF (ASCII 19) over its tranamit data line, the
receiver requests that the sender disables data transmission. A
subsequent XON (ASCII 17) alows the sending device to resume data
transmission.

Programming Over RS-232C
3-5

Data Bits Data hits are the number of bits sent and received per character that
represent the binary code of that character. Characters consist of either 7
or 8 hits, depending on the application. The HP 1652B/53B supports 8 hit
only.

8 Bit Mode. Information is usualy stored in bytes (8 hits a a time). With
8-bit mode, you can send and receive data just as it is stored, without the
need to convert the data

ﬁ The controller and the HP 1652B/53B must be in the same bit mode to

Note properly communicate over the RS-232C. This means that both the
controller and the HP 1652B/53B must have the capability to send and
receive 8 hit data.

For more information on the RS-232C interface, refer to the

HP 1652B/HP 1653B Front-Panel Reference Manua. For information on
RS-232C voltage levels and connector pinouts, refer to the HP 2652B/538
Service Manual.

Communicating Each RS-232C interface card has its own interface select code. This code

Over the. is used by the controller to direct commands and communications to the

RS-232C BuUS r;j%per interface by specifying the correct interface code for the device

ress.
(HP 9000 Generally, the interface select cod b decimal value bet 0
: enerally, the interface select code can be any decimal value between

Series 200/300 and 31, except for those interface codes which are reserved by the

Controller) controller for internal peripherals and other internal interfaces. This
value can be selected through switches on the interface card. For more
information, refer to the reference manua for your interface card or

controller.

For example, if your RS-232C interface select code is 9, the device
address required to communicate over the RS-232C bus is 9.

Programming Over RS-232C HP 1652B/1653B
3-6 Programming Reference

Lockout To lockout the front panel controls use the SYSTem command LOCKout.

Command When this function is on, al controls (except the power switch) are
entirely locked out. Local control can only be restored by sending the
command :LOCKout OFF. For more information on this command see

the chapter “System Commands’ in this manual.

!! Cycling the power will also restore local control, but this will aso reset
Note : certain RS-232C dtates.

HP 1652B/1653B Programming Over AS-232C
Programming Reference 3-7

Programming and _ 4
Documentation Conventions

Introduction

|
Truncation Rule

Note 'g

HP 1652B/1653B
Programming Reference

This section covers the progr amming conventions used in programming
the instrument, as well as the documentations conventions used in this
manual. This chapter also contains a detailed description of the command
tree and command tree traversal.

The truncation rule for the keywords used in headers and parameters is:

If the longform has four or fewer characters, there is no change in the
shortform. When the longform has morethan four charactersthe
shortform is just the first four characters, unless the fourth character is
avowel. In that case only thefirst three charactersare used.

There are some commands that do not conform to the truncation rule by
design. These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various commands
are shown in table 4-1.

Longform Shortform
OFF OFF
DATA DATA
START STAR
LONGFORM LONG
DELAY DEL
ACCUMULATE ACC

Table 4-1, Keyword Truncation

Programming and Documentation Conventions
41

Infinity
Representation

Sequential and

The representation of infinity is 9,9E + 37 for real numbers and 32767 for
integers. This is also the vaue returned when a measurement cannot be
made.

IEEE 488.2 makes the distinction between sequential and overlapped

Overlapped commands. Sequential commands finish their task before the execution of
the next command starts. Overlapped commands run concurrently, and

Commands therefore the command following an overlapped command may be started
before the overlapped command is completed. The overlapped commands
for the HP 1652B/53B are STARt, STOP, and AUToscale.

|

Response IEEE 488.2 defines two times at which query responses may be buffered.

Generation The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read
the response. The HP 1652B/53B will buffer responses to a query when it
is parsed.

|

Syntax Diagrams At the beginning of each of the following chapters are syntax diagrams

showing the proper syntax for each command. All characters contained in
acircle or oblong are literals, and must be entered exactly as shown.
Words and phrases contained in rectangles are names of items used with
the command and are described in the accompanying text of each
command. Each line can only be entered from one direction as indicated
by the arrow on the entry line. Any combination of commands and
arguments that can be generated by following the lines in the proper
direction is syntacticaly correct. An argument is optiona if there is a
path around it. When there is a rectangle which contains the word
“space,” a white space character must be entered. White space is optional
in many other places.

Programming and Documentation Conventions HP 1652B/1653B

4-2

Programming Reference

Notation The following conventions are used in this manual when describing
Conventions and Programming rules and examples:

Definitions < >

[]
{}

Angular brackets enclose words or characters that are used
to symbolize a program code parameter or a bus command.

“is defined as.” For example, A :: = B indicates that A
can be replaced by B in any statement containing A .

“or”: indicates a choice of one element from alist. For
example, A B indicates A or B, but not both.

An ellipsis (trailing dots) is used to indicate that the
preceding element may be repeated one or more times.

Square brackets indicate that the enclosed items are optional .

When several items are enclosed by braces and separated
by s, one, and only one of these elements must be sel ected.

Three Xs after an ENTER or OUTPUT statement
represent the device address required by your controller.

In addition, the following definition is used:

<NL>

HP 1652B8/1653B
Programming Reference

:: = Linefeed (ASCII decimd 10).

Programming and Documentation Conventions
4-3

The Command
Tree

Command Types

Tree Traversal Rules

The command tree (figure 4-1) shows al commands in the HP 1652B/53B
logic analyzers and the relationship of the commands to each other.
Parameters are not shown in this figure. The command tree allows you to
see what the HP 1652B/53B’s parser expects to receive. All legal headers
can be created by traversing down the tree, adding keywords until the end
of a branch has been reached.

As shown in chapter I's “Header Types’ section, there are three types of
headers. Each header has a corresponding command type. This section

shows how they relate to the command tree.

System Commands. The system commands reside at the top level of the
command tree. These commands are always parsable if they occur a the
beginning of a program message, or are preceded by a colon. START and
STOP are examples of system commands.

Subsystem Commands. Subsystem commands are grouped together
under a common node of the tree, such as the MMEMORY commands.

Common Commands. Common commands are independent of the tree,
and do not affect the position of the parser within the tree. *CLS and
*RST are examples of common commands.

Command headers are created by traversing down the command tree. For
each group of keywords not separated by a branch, one keyword must be
selected. As shown on the tree, branches are always preceded by colons.
Do not add spaces around the colons. The following two rules apply to
traversing the tree:

A leading colon (the first character of a header) or a < terminator >
places the parser at the root of the command tree.

Executing a subsystem command places you in that subsystem (until a
leading colon or a < terminator > is found). The parser will stay at the
colon above the keyword where the last header terminated. Any
command below that point can be sent within the current program
message without sending the keywords(s) which appear above them.

Programming and Documentation Conventions HP 1652B/1653B

4-4

Programming Reference

Examples

Example 1

Example 2

Example 3

HP 1652B/1653B
Programming Reference

The following examples are written using HP BASIC 4.0 ona HP9000
Series 200/300 Controller. The quoted string is placed on the bus,
followed by a carriage return and linefeed (CRLF).

The three Xs (XXX) shown in this manual after an ENTER or OUTPU
statement represents the device address required by your controller.

OUTPUT XXX;*:SYSTEM:HEADER ON;LONGFORM ON"

In example 1, the colon between SYSTEM and HEADER is necessary
since SYSTEM:HEADER is a compound command. The semicolon

T

between the HEADER command and the LONGFORM command is the

required < program message unit separator > . The LONGFORM
command does not need SY STEM preceding it, since the
SYSTEM:HEADER command sets the parser to the SYSTEM node in
thetree.

OUTPUT XXX;*:MMEMORY:INITIALIZE;STORE 'FILE_','FILE DESCRIPTION™

or

OUTPUT XXX;":MMEMORY:INITIALIZE"
OUTPUT XXX;":MMEMORY:STORE 'FILE__''FILE DESCRIPTION"

In the first line of example 2, the “ subsystem selector” isimplied for the
STORE command in the compound command. The STORE command
must be in the same program message as the INITIALIZE command,
since the < program message terminator > will place the parser back at
the root of the command tree.

A second way to send these commands is by placing “MMEMORY:"
before the STORE command as shown in the fourth line of example 2.

OUTPUT XXX;*:MMEM:CATALOG?;:SYSTEM:PRINT ALL
In example 3, the leading colon before SY STEM tells the parser to go

back to theroot of the command tree. The parser can then see the
SYSTEM:PRINT command.

Programming and Documentation Conventions

4-5

SR

[[
PPOWer RMODe STARt STOP MMEM: MACH

I
SYSTem:

T T
]he{1|2): DLllfStt WILISt: |
| COLumn XSTat e ARMBnc
f LINE 0STate DATA
AUTg | oad LO‘AD: ST(!)Re: OT IMe DSP
fg;‘? 99 conFig CONF i g XTIMe ERRor
ASSemb er HEADe r
DOWN 1 oad KEY
INITialize LER
PACK ARM
PURG e ASS i gn LOCKou t
RENc;rr;e AUTosca e LONGform
‘ NAME MENU
UPLoad TYPE MESE
MESR
PRINt
SETup
T T |
SFORma t STRace: SLISt: TFORMat : TTRace: TWAVeform:
| !
CLOCKk BRANch COL umn LABel AMODe ACCumu i ate
CPER i od FIND DATA REMove DURat ion DELay
LABe PREStore LINE THReshold EDGE INSert
MASTer RANGe MMODe GLITch MMODe
REMove RESTar t QPATtern PATTern OCONdition
SL AVe SEQuence QOSEarch OPATtern
THReshold STORe OSTate OSEarch
TAG OTAG OTIMe
TERM RUNT i | RANGe
TAVerage REMove
TMAX i mum RUNT i |
TMIN imum SPERI od
01650852 VRUNSs TAVerage
)(OTog TvMAX i mum
Common XPATtern TMINimum
Commands XSEarch VRUNS
WCLS XSTate XCONdition
«E£G55 XTAG XOT i me
SR XPATtern
=IDN COMPIO re.; SCHIgr t: SWAVelfo rm: SYMBOL : XStorch
0P) | | XTIMe
WRST CMASKk ACCumulate ACCumulate BASE
*SRE COPY HAX i g DELQy PATTern
*STB DATA VAXi s INSer t RANGe
WTST FIND RANGe REMove
TWAT RANGe REMove WIDTh
— RUNT,
Figure 4-i. HP 1852B/53B Command Tree
Programming and Documentation Conventions HP 1652B/1653B

4-6

Programming Reference

-
SCOPe:

AUToscale

SMODe
T T T T 1
CHANne | : TRI?ger ACO?ire: TIMebase: WAVﬁform: MEA?ure
COUPI ng LEVel COUN t DELay COUNt ALL
OFFSet MODE TYPE MODE DATA FALLt Ime
PROBe SLOPe RANGe FORMa t FREQuency
RANGe SOURce POINts NWID th
PREamble OVERshoo t
RECord PERiod
SOURce PREShoo t
TYPE PWIDth
VAL i d RISet ime
XINCrement SOURce
XORigin VAMP | i tude
XREFerence VBASe
YINCrement VMAX
YORigin VMIN
01650851 YREFerence VPP
VTOP

Figure 41. HP 1652B/53B Command Tree (continued)

HP 1652B/1653B Progmmming and Documentation Conventions

Programming Reference

4-7

Table 4-2. Alphabetic Command Cross-Reference

Command Where used Command Where used

ACCumulate SCHart, SWAVeform, GLITch TTRace
TWAVeform HAXis SCHart

ALL MEASure HEADer System

AMODe TTRace INITialize MMEMory

ARM MACHine INSert SWAVeform, TWAVeforn

ARMBnc System KEY System

ASSign MACHine LABe! SFORma, TFORmat

AUToload MMEMory LER System

AUToscale MACHine, SCOPe LEVel TRIGger

BASE SYMBol LINE DLISt, SLIS

BRANch STRace LOAD MMEMory

CATalog MMEMory LOCKout System

CLOCk SFORmat LONGform System

CMASk COMPare MASTer SFORmat

COLumn DLISt, SLIS MENU System

COPY COMPare, MMEMory MESE System

COUNt ACQuire, WAVeform MESR System

COUPling CHANRel MMODe SLISt

CPERiod SFORmat MODE TIMebase, TRIGger

DATA COMPere, SLISt, System, NAME MACHine
WAVEform NWIDth MEASure

DELay SWAVeform, TIMebase, OCONdition = TWAVeform
TWAVeform OFFSet CHANRel

DOWNIoad MMEMory OPATtem SLISt

DSP System MMODe TWAVeform

DURation TTRace OPATtem TWAVeform

EDGE TTRace OSEarch SLISt, TWAVeform

ERRor System OSTate SLISt, WLISt

FALLtime MEASure OTAG SLISt

FIND COMPare, STRace OTIMe TWAVeform, WLISt

FORMat WAVeform OVERshoot MEASure

FREQuency MEASure PACK MMEMory

Programming and Documentation Conventions

4-8

HP 1652B/1653B
Programming Reference

Table 42. Alphabetic Command Cross-Reference (continued)

Command Where used Command Where used
PATTern SYMBol, TRace STORe MMEMory, STRace
PERiod MEASure TAG STRace
POINts WAVeform TAVerage SLISt, TWAVeform
PPOWer System TERM STRace
PREamble WAVeform THReshold SFORmat, TFORmat
PREShoot MEASure TMAXmmum SLISt, TWAVeform
PREStore STRace TMINimum SLISt, TWAVeform
PRINt System TYPE ACQuire, MACHine,
PROBe CHANRel WAVeform
PURGe MMEMory UPLoad MMEMory
PWIDth MEASure VALid WAVeform
RANGe CHANRel, COMPare, VAMPlitude = MEASure
STRace, SWAVeform, VAXis SCHart
SYMBol, TIMebase, VBASe MEASure
TWAVeform VMAX MEASure
RECord WAVeform VMIN MEASure
REMove SFORmat, SWAVeform, VPP MEASure
Symbol, TFORmat, VRUNs SLISt, TWAVeform
TWAVeform VTOP MEASure
REName MMEMory WIDTh SYMBol
RESTart STRace XCONdition TWAVeform
RISetime MEASure XINCrement WAVeform
RMODe System XORigin WAVeform
RUNTI COMPare, SLIS, XOTag SLISt
WAVeform XOTime TWAVeform
SEQuence STRace XPATtern SLISt, TWAVeform
SETup System XREFerence WAVeform
SLAVe SFORmat XSEarch SLISt, TWAVeform
SLOPe TRIGger XSTate SLISt, WLISt
SMODe SCOPe XTAG SLISt
SOURce MEASure, TRIGger, XTIMe TWAVeform, WLISt
WAVeform YINCrement WAVeform
SPERiod TWAVeform YORigin WAVeform
STARt System YREFerence WAVeform
STOP System
HP 1652B/1653B Programming and Documentation Conventions

Programming Reference

4-9

Command Set
Organization

Subsystems

The command set for the HP 1652B/53B logic analyzer is divided into 24
separate groups: common commands, system commands and 22 sets of
subsystem commands. Each of the 24 groups of commands is described in
the following chapters. Each of the chapters contain a brief description of
the subsystem, a set of syntax diagrams for those commands, and finally,
the commands for that subsystem in alphabetical order. The commands
are shown in the longform and shortform using upper and lowercase
letters. As an example AUToload indicates that the longform of the
command is AUTOLOAD and the shortform of the command is AUT.
Each of the commands contain a description of the command and its
arguments, the command syntax, and a programming example.

There are 19 subsystems in this instrument. In the command tree (figure
4-1) they are shown as branches, with the node above showing the name of
the subsystem. Only one subsystem may be selected at a time. At power
on, the command parser is set to the root of the command tree, and
therefore no subsystem is selected. The 22 subsystems in the

HP 1652B/53B are:

o SYSTem - controls some basic functions of the instrument.

o MMEMory - provides accessto theinternal disk drive.

DLISt - allows access to the dual listing function of two state

analyzers.

WLISH - allows access to the mixed (timing/state) functions.

MACHine - provides access to analyzer functions and subsystems.

SFORmat - allows access to the state format functions.

STRace - allows access to the state trace functions.

SLISt = allows access to the state listing functions.

SWAVeform - allows access to the state waveforms functions.

SCHart .« allows access to the state chart functions.

COMPare - allows access to the compare functions.

TFORmat - allows access to the timing format functions.

TTRace - allows access to the timing trace functions.

TWAVeform - allows access to the timing waveforms functions.

SYMBol - allows access to the symbol specification functions.

SCOPe - provides access to oscilloscope functions and subsystems.

CHANGRel - provides access to the vertical axis of the oscilloscope

¢ TRIGger - alows control of the trigger conditions

+ ACQuire - allows changes to the settings for the DIGitize
command.

Programming and Documentation Conventions HP 1652B/1653B

4-10

Programming Reference

+ TIMebase - dlows control of the timebase (horizonta axis) of the
oscilloscope.

+ WAVeform - allows access to data transfer commands.

+ MEASure - dlows you to control automated measurements.

]
Program The program examples given for each command in the following chapters
Examples and appendices were written on an HP 9000 Series 200/300 controller

using the HP BASIC 4.0 language. The programs always assume a generic
address for the HP 1652/53B of XXX.

In the following examples, specia atention should be paid to the ways in
which the command and/or query can be sent. Keywords can be sent
using either the longform or shortform (if one exists for that word). With
the exception of some string parameters, the parser is not case-sensitive.
Upper-case (capital) and lower-case (small) letters may be mixed freely.
System commands like HEADer and LONGform dlow you to dictate
what forms the responses take, but have no affect on how you must
structure your commands and queries.

The following commands dl set Timing Waveform Delay to 100 ms.

+ keywords in longform, numbers using the decimal format.

OUTPUT XXX:":MACHINEL: TWAVEFORM:DELAY .1"

+ keywords in shortform, numbers using an exponential format.

OUTPUT XXX;":MACH1:TWAV:DEL 1E-1"

+ keywords in shortform using lower-case letters, numbers using a
suffix.

OUTPUT XXX;":machl:twav:del 1{0Qms"

.# In these examples, the colon shown as the first character of the command
Note is optional on the HP 1652B/53B.

The space between DELay and the argument is required.

HP 1652B/1653B Programming and Documentation Conventions
Programming Reference 4-11

Common Commands 5

Introduction The common commands are defined by the IEEE 488.2 standard. These
commands will be common to dl instruments that comply with this
standard.

The common commands control some of the basic instrument functions,
such as instrument identification and reset, how status is read and cleared,
and how commands and queries are received and processed by the
instrument.

Common commands can be received and processed by the HP 1652B/53B
whether they are sent over the bus by themselves or as part of a
multiple-command string. If an instrument subsystem has been selected
and a common command is received by the instrument, the instrument will
remain in the selected subsystem. For example, if the instruction

*:*MMEMORY:INITIALIZE;*CLS; STORE 'FILE_','DESCRIPTION"

is received by the instrument, the instrument will initiaize the disk and
store the file; and clear the status information. This would not be the case
if some other type of command were received within the program
message. For example, the program message

*:MMEMORY:INITIALIZE;:SYSTEM:HEADERS ON:MMEMORY
:STORE 'FILE_', DESCRIPTION"

would initidize the disk, turn headers on, then store the file. In this
example :MMEMORY must be sent again in order to reenter the
mmemory subsystem and store the file.

HP 1652B/1653B Common Commands
Progmmming Reference 5-1

Each status register has an associated status enable (mask) register. By
setting the bits in the mask value you can select the status information you
wish to use. Any status hits that have not been masked (enabled in the
enable register) will not be used to report status summary information to
hits in other status registers.

Refer to appendix B, “Status Reporting,” for a complete discussion of how
to read the status registers and how to use the status information available
from this instrument.

Refer to figure 5-1 for the common commands syntax diagram.

—

-

*CLS

«ESE space l—b{ mask]—>

»ESE? -

*«ESR?

\i

«IDN?

~0PC

*0PC?

*RST

*SRE space ‘—P{ mask ‘——’

«SRE?

*STB?

*WAT

OIS

01650501

mask = An integer, O through 255. This number is the sum of all the bitsin
the mask corresponding to conditions that are enabled. Refer to the
*ESE and *SRE commands f or bit definitions in the enable registers.

Figure 8-1. Common Commands Syntax Diagram

Common Commands HP 1652B/1653B
52 Programming Reference

*CLS

*CLS (Clear Status) command

The *CLS common command clears the status data structures, including
the device defined error queue. If the ® CLS command immediately
follows a <terminator > , the output queue and the MAV (Message
Available) bit will be cleared.

Command Syntax: -cLs

Example: outPuT Xxxx;"*cLS"

%‘ Refer to appendix B, “Status Reporting,” for a complete discussion of
Note Status.

HP 1652B/1653B Common Commands
Programming Reference §-3

*ESE

*ESE

Note ﬂ

Command Syntax:

where:

< mask >

Example:

Common Commands
5-4

(Event Status Enable) command/query

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a mask value for the
bits to be enabled in the Standard Event Status Register. A one in the
Standard Event Status Enable Register will enable the corresponding bit
in the Standard Event Status Register. A zero will disable the bit. Refer
to table 4 for information about the Standard Event Status Enable
Register hits, bit weights, and what each bit masks.

The *ESE query returns the current contents of the enable register.

Refer to appendix B, “Status Reporting,” for a complete discussion of
status.

*ESE <mask >

:» = integer from 0 to 255

OUTPUT XXX;"*ESE 32"

In this example, the *ESE 32 command will enable CME (Command
Error), bit § of the Standard Event Status Enable Register. Therefore,
when a command error occurs, the event summary bit (ESB) in the Status
Byte Register will also be set.

HP 1652B/1653B
Programming Reference

*ESE

Query Syntax: *Esg?
Returned Format: <mask> <NL>

Example: 10 piv Event$[100]

20 OUTPUT XXX;"*ESE?"

30 ENTER XXX:Event$

40 PRINT Event$
50 END

Table 51. Standard Event Status Enable Register

Bit Weight Enables

7 128 PON . Power On

6 64 URQ - User Request

5 32 CME - Command Error

4 16 EXE - Execution Error

3 8 DDE . Device Dependent Error
2 4 QYE - Query Error

1 2 RQC « Request Control

0 1 OPC « Operation Complete

High - enables the ESR bit

HP 1652B/1653B
Programming Reference

Common Commands

5-5

*ESR

*ESR

Note '1

Query Syntax:
Returned Format:

where:

<status >

Example:

Common Commands
5-6

(Event Status Register) query

The *ESR query returns the contents of the Standard Event Status
Register. Reading the register clears the Standard Event Status Register.

The bits in this register must be set by sending the *ESE command before
sending the *ESR query (see "™ESE command/query" on page 5-4).

*ESR?

<status > <n. >

. s integer from 0 to 255

10 DIMEsr_event$[100]
20 OUTPUT XXX;"“*ESR?"

30 ENTER XXX;Esr_event$
40 PRINT Esr_event$

50 END

With the example, if a command error has occurred the variable
"Esr_event" Will have hit 5 (the CME bit) set.

Table 4-2 shows the Standard Event Status Register. The table shows
each bit in the Standard Event Status Register, and the bit weight. When
you read Standard Event Status Register, the value returned is the total bit
weights of all hits that are high at the time you read the byte.

HP 1652B/1653B
Programming Reference

*ESR

Table 52. The Standard Event Status Register.

BIT BIT BIT CONDITION
__ WEIGHT NAME
7 128 PON 0 = Register read - not in power up mode
1 = Power up
6 64 URQ 0 = user request - not used « always zero
5 2 CME | 0 = no command errors
1 = a command error has been detected
4 16 EXE 0 = no execution errors
1 = an execution error has been detected
3 8 DDE | 0 = no device dependent errors
1 = a device dependent error has been detected
2 4 QYE 0 = no query errors
1 = a query error has been detected
1 2 RQC 0 = request control « NOT used - always 0
0 1 OPC 0 = operation is not complete
1 = operation is complete
= False = Low
1 = True = High

HP 1652B/1653B
Programming Reference

Common Commands

57

*IDN

*IDN

Query Syntax:
Returned Format:

where:

<revision code >

Example:

Common Commands
58

(Identification Number) query

The *IDN? query alows the instrument to identify itself. It returns the
gring:

"HEWLETT-PACKARD, 16528, 0,REV <revision code>"
An *IDN? query must be the last query in a message. Any queries after
the *IDN? in the program message will be ignored.

o W

HEWLETT-PACKARD,1652B,0,REV <revision code>

.. = four-digit code representing ROM revision

10 DIM Id$[100]

20 OUTPUT XXX;"*IDN?"
30 ENTER XXX;Id$

40 PRINT [d$

50 END

HP 1652B/1653B
Programming Reference

*OPC

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B

Programming Reference

*OPC

(Operation Complete) command/query

The *OPC command will cause the instrument to set the operation
complete bit in the Standard Event Status Register when al pending
device operations have finished. The commands which affect this bit are
the Overlapped Commands. An Overlapped Command is a command
that alows execution of subsequent commands while the device
operations initiated by the Overlapped Command are till in progress.
The overlapped commands for the HP 1652B/53B are:

STARt
STOP
AUToscale

The * OPC query places an ASCII “1" in the output queue when all
pending device operations have been completed.

o orc

OUTPUT XXX;"*OPC"
o opc/

1< NL>

10 DIM Status$ [100]
20 OUTPUT XXX;'*OPC?"
30 ENTER XXX;Status$
40 PRINT Status$

50 END

Common Commands
59

*RST
E—

*RST (Reset) command

The *RST command (488.2) sets the HP 1652B/53B to the power-up
default settings as if no autoload file was present.

Command Syntax: *RST

Example: OUTPUT XXX;"*RST"

Common Commands HP 1652B/1653B
5-10 Programming Reference

*SRE

*SRE (Service Request Enable) command/query

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding hit in the Status Byte Register. A
zero will disable the hit. Refer to table 5-3 for the bits in the Service
Request Enable Register and what they mask.

The *SRE query returns the current value.

IIC' Refer to appendix B, “Status Reporting,” for a complete discussion of
Note J status.

Command Syntax: *SRE < mask >

where:

< mask > = integer from 0 to 255

Example: OUTPUT XXX; "*SRE 16”

This example forces the MAV bhit high (see table 5-3).

HP 1652B/1653B Common Commands
Programming Reference 511

*SRE

Query Syntax:
Returned Format:

where:

< mask >

Example:

o SwW

c mask > < NL>

. = sum of all bits that are set -« 0 through 255

10 DIM Sre_value$[100]
20 OUTPUT XXX;"*SRE?"

30 ENTER XXX;Sre_value$
40 PRINT Sre_value$

50 END

Table 6-3. HP 1852B/53B Service Request Enable Register

Bit Weight Enables
15-8 not used
7 128 not used
6 64 MSS - Master Summary Status
5 32 ESB - Event Status
4 16 MAYV » Message Available
3 8 LCL - Local
2 4 not used
1 2 not used
0 1 MSB . Module Summary

Common Commands
512

HP 1652B/1653B
Programming Reference

*STB

. m
*STB (Status Byte) query

The *STB query returns the current value of the instrument’s status byte.
The MSS (Master Summary Status) bit and not RQS (Request Service)
hit is reported on bit 6. The MSS indicates whether or not the device has
at least one reason for requesting service. Refer to table 5-4 for the
meaning of the bits in the status byte.

g;' Refer to gppendix B, “Status Reporting,” for a complete discussion of
Note status.

Query Syntax: *STB?
Returned Format: <vaiue > cNL>

where:

<value> ::= integer from Oto 255

Example: 10 pIv Stb_value$[100]
20 OUTPUT XXX;"*STB?"
30 ENTER XXX;Stb_value$
40 PRINT Stb_value$
50 END

HP 1652B/1653B Common Commands
Programming Reference 5-13

*STB

Table 5-4. The Status Byte Register

BIT BIT BIT CONDITION
WEIGHT NAME

7 128 0 = not used

6 64 MSS 0 = instrument has no reason for service
1 = instrument is requesting service

5 32 ESB 0 = no event status conditions have occurred
1 = an enabled event status condition has occured

4 16 MAV 0 = no output messages are ready
1 = an output message is ready

3 8 LCL 0 = a remote-to-loca transition has not occurred
1 = a remote-to-loca transition has occurred

2 4 - not used

1 2 not used

1 MSB 0 = HP 1652B/1653B has activity to report

1 = no activity to report

O0=Fdse = Low

1 = True = High

Common Commands HP 1652B/1653B

514 Programming Reference

*WAI

Command Syntax:

Example:

HP 1652B/1653B
Programming Reference

*WAI

(Wait) command

The *WAI command causes the device to wait until the completion of all
overlapped commands before executing any further commands or queries.
An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the
overlapped command are till in progress. The overlapped commands for
the HP 1652B/53B are:

STARt
STOP
AUToscale

*WAI

OUTPUT XXX;"*WAI"

Common Commands
5-15

System Commands

6

Introduction

HP 1652B/1653B8
Programming Reference

System commands control the basic operation of the instrument including
formatting query responses and enabling reading and writing to the
advisory line of the instrument’'s display. They can be called at anytime.
The HP 1652B/53B System commands are:

ARMBnc
DATA

DSP (display)
ERRor
HEADer
KEY

LER (Loca Event Register)
LOCKout
LONGform
MEND
MESE

MESR

PRINt
SETup

In addition to the system commands, there is are three run control
commands and a preprocessor power supply condition query. These
commands are:

PPOWer
RMODe
STARt
STOP

The run control commands can be called at anytime and also control the
basic operation of the logic analyzer. These commands are at the same
level in the command tree as SYSTem; therefore they are not preceded by
the :SYSTem header.

System Commands
61

(r Y

»-{ SYSTemJ—D—‘L—QARMBHC)——D! space

mach_num]

ARMBnC? >
N —

—@—P‘ space H block data in # formo(yr
il

DATA?}
*@——‘ space H message_string H

s HEADe)| space hﬂOFF{Q)

——(HEADer?
s ——

@H space H key-code I
KEY? }
—><LER?\/

——<LOCKou LH space OFF |9>
ON| 1)—}

e LOCKout?

01650808 A

Figure 6-1. System Commands Syntax Diagram

System Commands HP 1652B/16538
6-2 Programming Reference

——CLONGfornD—D{ space OFFI@\

LONGform?

N D W ey By Wy
(o) -
——<Mt:at j_“’{ space s enable_mask ';

D

PRINt space SCReen)
. ALL
—DCSETup}—DI space H block data in # format }
~a={ SETup? }

= PPOWer?

-a{ RMODE SINGle
={ REPetitive

—{ :STAR?)

\,

L»(i STOP }

018630511

value =integer from O to 255.

menu = integer. Refer to the individualprogramming manuals for each module and the system for
specific menu number definitions.

enable-value = jnteger from 0 to 255.

index = integerfrom 0 to 5.

block-data = data in IEEE 4882 format.

string = dring of up to 60 alphanumeric characters.

Figure 81. System Commands Syntax Diagram (continued)

HP 1652B/1653B System Commands

Programming Reference

6-3

ARMBnNc
]
ARMBnNc command/query

The ARMBnNc command sel ects the source that will generate the arm out
signal that will appear on the rear panel BNC labelled External Trigger
out.

The ARMBNC query returns the source currently selected.

Command Syntax: :SYSTem:ARMBnc { MACHine{ 1|2} SCOPe | NONE}

Example: OUTPUT XXX;™:SYSTEM:ARMBNC MACHINEL"
Query Syntax: :SYSTem:ARMBnc?
Returned Format: [:SYSTem:ARMBnc] { MACHine{ 1|2} SCOPe NONE} <NL>

Example: 10 DIM Mode$[100]
20 OUTPUT XXX;":ARMBNC?"
30 ENTER XXX;Mode$
40 PRINT Mode$
50 END

System Commands HP 1652B/1653B
6 4 Programming Reference

DATA

i
Note %

1
Note '&

HP 1652B/1653B
Programming Reference

DATA

command/query

The DATA command allows you to send and receive acquired data to and
from a controller in block form. This helps saving block data for:

¢ Re-loading to the logic analyzer
e Processing data later
¢ Processing datain the controller.

The format and length of block data depends on the instruction being
used and the configuration of the instrument. This section describes each
part of the block data as it will appear when used by the DATA
instruction. The beginning byte number, the length in bytes, and a short
description is given for each part of the block data. Thisisintended to be
used primarily for processing of datain the controller.

Do not change the block datain the controller if you intend to send the
block data back into the logic analyzer for later processing. Changes
made to the block datain the controller could have unpredictable results
when sent back to the logic analyer.

The SYSTem:DATA query returns the block data.

The data sent by the SY STem:DATA query reflects the configuration of
the machines when the last run was performed. Any changes made since
then through either front-panel operations or programming commands do
not affect the stored configuration.

System Commands
65

DATA

System Commands
6-6

For the DATA instruction, block data consists of either 14506 bytes
containing logic analyzer only information or 26794 bytes containing both
logic analyzer and oscilloscope information. This information is captured
by the acquisition systems. Theinformation for the logic analyzer will be
in one of four formats depending on the type of data captured. The logic
analyzer format is described in the “ Acquisition Data Description” section
in "Logic Analyzer Block Data.” The oscilloscope format is described in
the “Acquisition Data Description” section in “Oscilloscope Block Data.”
Since no parameter checking is performed, out-of-range values could
cause instrument lockup; therefore, care should be taken when
transferring the data string into the HP 1652B/53B.

The < block data > parameter can be broken down into a
< block length specifier > and a variable number of < section> s.

The <block length specifier > always takes the form #8DDDDDDDD.
Each D represents a digit (ASCII characters "0" through "9"). The value of
the eight digits represents the total length of the block (all sections). For
example, if the total length of the block is 14522 bytes, the block length
specifier would be "#800014522".

Each < section > consists of a <section header > and < section data > .
The < section data> format varies for each section and may be any
length. For thisinstruction, the < section data> section is composed of a
data preambl e section and an acquisition data section.

HP 1652B/1653B
Programming Reference

DATA

Command Syntax: :SYSTem:DATA c block data >
Example: OUTPUT XXX;*: SYSTEM: DATA” <block data >

where:

< block data »

<block length specifier » < section » . . .

< block length specifier > ::= #8 <length >
¢ length > ;. & the total length of all sections in byte format (must be represented with 8 digits)
<section » i = <section header » < section data »
< section header > :» & 16 bytes, described in the following ‘Section Header” sections
<section data > :» = format depends on the type of data

m' Thetotal length of asection is 16 (for the section header) plus the length
Note of the section data. So when calculating the value for <length> , don’t
forget to include the length of the section headers.

QuerySyntax: :SYSTem:DATA?

Returned Format: [:SYSTem:DATA] <block data> < NL>

HP-IB Example: 10 DIM Num$[2].8lock$[32000)] | allocate enough memory for block data
20 OUTPUT XXX;”: SYSTEM: HEAD OFF”
30 OUTPUT XXX;":SYSTEM:DATA?" | send data query

40 ENTER XXX USING "#,2A":Num$§ 'readin X8

50 ENTER XXX USING "#,8D";Block length! read in block length
60 ENTER XXX USING "-K";Block$ | read in data
70 END

HP 1652B/1653B System Commands
Programming Reference 6-7

DATA

Log Ic An alyzer Thelogic analyzer block datais described in the following sections. The

Block Data oscilloscope block datais appended at the end of the logic analyzer block
datawhen the oscilloscope is on and has acquired and stored waveform
data. The oscilloscope block datais described in “Oscill oscope Block
Data” later in this section.

Section Header The section header uses bytes 1 through 16 (this manual begins counting
Description at 1; thereisno byte 0). The 16 bytes of the section header are as follows:

1 10 bytes . section name such as "DATA " (six trailing spaces)
11 1 byte - reserved
12 1bytes - module 1D (31 for HP1652B/53B)

13 4 bytes- length (14506 for the logic analyzer only and 26794 for both the
logic analyzer and oscilloscope).

Section Data For the SYSTem:DATA command, the < section data > parameter
consists of two parts: the data preamble and the acquisition data. These
are described in the following two sections.

Data Preamble Theblock datais organized as 160 bytes of preamble information,
Description followed by 1024 14-byte groups of information, followed by 10 reserved
bytes. The preamble gives information for each analyzer describing the
amount and type of data captured, where the trace point occurred in the
data, which pods are assigned to which analyzer, and other information.

Each 14-byte group is made up of two bytes (16 bits) of status for

Analyzer 1, two bytes of status for Analyzer 2, then five sets of two bytes of
information for each of the five 16-bit pods of the HP 1652B. In the

HP 1653B, the status and format for the sets of bytes are the same, but the
data in not valid on pods 3,4, and 5.

System Commands HP 1652B/1653B
68 Programming Reference

DATA

Note %

17

19

Note %

21

HP 1652B/1653B
Programming Reference

One analyzer’sinformation is independent of the other analyzer’'s
information. In other words, on any given line, one analyzer may contain
data information for a timing machine, while the other analyzer may
contain count information for a state machine with time tags enabled. The
status bytes for each analyzer describe what the information for that line
contains. Therefore, when describing the different formats that data may
contain below, keep in mind that this format pertains only to those pods
that are assigned to the analyzer of the specified type. The other analyzer’s
datais TOTALLY independent and conforms to its own format.

The preamble (bytes 17 through 176) consists of the following 160 bytes:

2 bytes - Instrument ID (always 1652 for HP 1652B and HP 1653B)

2 bytes - Revision Code

The values stored in the preamble represent the captured data currently
stored in this structure and not what the current configuration of the
analyzer is. For example, the mode of the data (bytes 21 and 99) may be
STATE with tagging, while the current setup of the analyzer is TIMING.

The next 78 bytes arefor Analyzer 1 Data Information.

1 byte« Machine data mode, one of the following values:
0 = off
1 = state data (with either time or state tags)
2 = state data (without tags)
3 = glitch timing data
4 = transitional timing data

1 byte- List of podsin thisanalyzer, where a1 indicates that the
corresponding pod is assigned to this analyzer.

hit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1
unused unused Pod!1 Pod 2 Pod 3 Pod 4 Pod5 unused

System Commands
6-9

DATA

System Commands
810

23

24

25

35

36

37

47

51

52

53

1 byte - Master chip in this analyzer - When several chips are grouped
together in asingle analyzer, one chip is designated as a master chip. This
byte identifies the master chip. A value of 4 represents POD 1, 3 for POD
2,2 for POD 3,1 for POD 4, and 0 for POD 5.

1 byte - Reserved

10 bytes - Number of rows of valid datafor this analyzer - Indicates the
number of rows of valid data for each of the five pods. Two bytes are used
to store each pod value, with the first 2 bytes used to hold POD 5 value,
the next 2 for POD 4 value, and so on.

1 byte « Trace point seen in this analyzer - Was a trace point seen (value
= 1) or forced (value = Q)

1 byte- Reserved

10 bytes - Trace point location for this analyzer « Indicates the row
number in which the trace point was found for each of the five pods. Two

bytes are used to store each pod value, with the first 2 bytes used to hold
POD 5 value, the next 2 for POD 4 value, and so on.

4 bytes« Time from arm to trigger for this analyzer » The number of 40 ns
ticks that have taken place from the arm of this machine to the trigger of
thismachine. A value of -1 (all 32 bits set to 1) indicates counter overflow.

1 byte « Armer of this analyzer » Indicates what armed this analyzer (1 =
RUN, 2 = BNC, 3 = other anayzer)

1 byte = Devices armed by this analyzer = Bitmap of devices armed by this
machine

bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1

unused unused unused unused SCOPE BNC out Mach. 2 Mach.

A linagiven bit position implies that this analyzer arms that device,
while a0 meansthe device is not armed by this analyzer.

4 bytes « Sample period for this analyzer (timing only) - Sample period at
which data was acquired. Value represents the number of nanoseconds
between samples.

HP 1652B/1653B
Programming Reference

DATA

57

61

62

63

68

69

Acquisition Data
Description

HP 1652B/16538
Programming Reference

4bytes - Delay for thisanayzer (timing only) . Delay at which datawas
acquired. Value represents the amount of delay in nanoseconds.

1 byte - Time tags on (state with tagging only) - In state tagging mode, was
the data captured with time tags (value = 1) or state tags (value = 0).

1 byte - Reserved

5 bytes « Demultiplexing (state only) - For each of the five pods (first byte

is POD 5, fifth byte is POD 1) in a state machine, describes multiplexing
of each of the five pods. (0 = NO DEMUX, 1 = TRUE DEMUX, 2 =
MIXED CLOCKS).

1 byte = Reserved

20 bytes « Trace point adjustment for pods = Each pod uses 4 bytes to
show the number of nanoseconds that are to be subtracted from the trace
point described above to get the actual trace point value. Thefirst 4 bytes
arefor Pod 5, the next four are for Pod 4, and so on.

10 bytes « Reserved

The next 78 bytes arefor Analyzer 2 Data Information. They are
organized in the same manner as Analyzer 1 above, but they occupy bytes
99 through 176

The acquisition data section consists of 14336 bytes (1024 14-byte groups),
appearing in bytes 177 through 14512. The last ten bytes (14513 through
14522) are reserved. The data contained in the data section will appear in
one of four forms depending on the mode in which it was acquired (as
indicated in byte 21 for machine 1 and byte 99 for machine 2). The four
modes are:

State Data (without tags)

State Data (with either time or state tags)
Glitch Tiig Data

Transitional Timing Data

The following four sections describe the four data modes that may be
encountered. Each section describes the Status bytes (shown under the

Machine 1 and Machine 2 headings), and the Information bytes (shown
under the Pod 5 through Pod 1 headings).

System Commands
611

DATA

State Data Status Bytes. In normal state mode, only the least significant bit (bit 1) is
(without tags) used. When bit 1 is set, this means that there has been a sequence level
transition.

Information Bytes. In state acquisition with no tags, data is obtained from
the target system with each clock and checked with the trace specification.
If the state matches this specification, the datais stored, and is placed into

the memory.
Machine 1 Machine 2 Pod 5 Pod4 Pod 3 Pod 2 Pod 1*
177 Status Status Data Data Data Data Data
191 Status Status Data Data Data Data Data
205 Status Status Data Data Data Data Data
14499 Status Status Data Data Data Data Data

*The headings are not a part of the returned data.

State Data (with either — Status Bytes. In state tagging mode, the tegs indicate whether a given row
time or state tagg) of thedataisadataline, acount (tag) line, or aprestoreline.

Bit 2 isthe Datavs. Count bit. Bit 3 isthe Prestore vs. Tag bit. The two
bits together show what the corresponding Information bytes represent.

Bit 3 B|t 2 [nformation_byte represents:
0 Acquisition Data
0 l Count
1 0 Prestore Data
1 1 Invalid

If Bit 2 is clear, the information contains either actual acquisition data as
obtained from the target system (if Bit 3 is clear), or prestore data (if Bit 3
issat). If Bit 2is set and Bit 3isclear, thisrow’ s bytesfor the pods
assigned to this machine contain tags. If Bit 2 and Bit 3 are set, the
corresponding Information bytes are invalid and should be ignored. Bit 1
is used only when Bit 2 is clear. Whenever there has been a sequence level
transition Bit 1 will be set, and otherwise will be clear.

System Commands HP 1652B/1653B
6-12 Programming Reference

DATA

HP 1652B/1653B
Programming Reference

Information Bytes. In the State acquisition mode with tags, datais
obtained from the target system with each clock and checked with the
trace specification. If the state does not match the trace specification, it is
checked against the prestore qualifier. If it matches the prestore qualifier,
then it is placed in the prestore buffer. If the state does not match either
the sequencer qualifier or the prestore qualifier, it is discarded.

The type of information in the bytes labeled Data depends on the Prestore
vs. Tags bit. When the Data bytes are used for prestore information, the
following Count bytes (in the same column) should be ignored. When the
Data bytes are used for tags, the Count bytes are formatted as
floating-point numbers in the following fashion:

bits
EEEEE MMMMMMMMMMM

The live most-significant bits (EEEEE) store the exponent, and the eleven
|east-significant bits (MMMMMMMMMMM) store the mantissa. The
actual value for Count is given by the equation:

Count = (2048 + mantissa) X Jexponent _ anq

Since the counts are relative counts from one state to the one previous, the
count for thefirst state in the data structureisinvalid.

If time tagging is on, the count value represents the number of 4()
nanosecond ticks that have elapsed between the two stored states. In the
case of state tagging, the count represents the number of qualified states
that were encountered between the stored states.

If astate matches the sequencer qualifiers, the prestore buffer is checked.
If there are any states in the prestore buffer at this time, these prestore
states are first placed in memory, along with a dummy count row. After
this check, the qualified state is placed in memory, followed by the count
row which specified how many states (or 40 ns ticks) have elapsed since
the last stored state. If thisisthe first stored statein memory, then the
count information that is stored should be discarded.

System Commands
6-13

DATA

177
191

219

14485
14499

Glitch Timing Data

System Commands
6-14

Machi . I I BL

Status Status Data Data Data Data Data
Status Status ® ® ® ® ®

Status Status Data Data Data Data Data
Status Status count count Count count count
Status Status Data Data Data Data Data
Status Status count count count Count count

*The headings are not a part of the returned data.
® = Invalid data

Status Bytes. In glitch timing mode, the status bytes indicate whether a
given row in the data contains actual acquisition datainformation or glitch
information.

Bit 1isthe Datavs. Glitch bit. If Bit 1 is set, this row of information
contains glitch information. If Bit 1 is clear, then this row contains actual
acquisition data as obtained from the target system.

Information Bytes. In the Glitch timing mode, the target system is
sampled at every sample period. The dataisthen stored in memory and
the glitch detectors are checked. If a glitch has been detected between the
previous sample and the current sample, the corresponding glitch bits are
set. The glitch information is then stored. If thisisthefirst stored sample
in memory, then the glitch information stored should be discarded.

HP 1652B/1653B
Programming Reference

DATA

177
191
205
219

14405
14499

Transitional Timing Data

HP 1652B/1653B

Programming Reference

Machine 1 Machine 2 Pod 5 Pod4 Pod 3 Pod 2 Pod 1*

Status Status Data Data Data Data Data
Status Status ® ® ® ® ®
Status Status Data Data Data Data Data
Status Status Glitch Glitch Glitch Glitch Glitch
Status Status Data Data Data Data Data
Status Status Glitch Glitch Glitch Glitch Glitch

*The headings are not a part of the returned data.
® = Invalid data

Status Bytes. In transitional timing mode, the status bytes indicate
whether a given row in the data contains acquisition information or
transition count information.

bits 10-9 bits 8-7 bits 6-5 bits4-3 bits 2-
Pod 5 Pod4 Pod3 Pod 2 Pod 1

Each pod uses two bits to show what is being represented in the
corresponding Information bytes. Bits10, 8, 6, 4 and 2 are set when the
appropiate pod’s Information bytes represent acquisition data. When that
bit is clear, the next bit showsif the Information bytes represent the first
word of a count. Together there are three possible combinations:

10 - This pods Information bytes contain acquisition data as obtained from
the target system.

01 = This pod’'s Information bytes contain the first word of a count.

00- This pod’ s Information bytes contain part of a count other than the
first word.

System Commands
615

DATA

Information Bytes. In the Transitional timing mode the logic analyzer
performs the following steps to obtain the information bytes:

1. Four samples of data are taken at 10 nanosecond intervals. The dataiis
stored and the value of the last sampleis retained.

2. Four more samples of data are taken. If any of these four samples differ
from the last sample of the step 1, then these four samples are stored
and the last value is once again retained.

3. If al four samples of step 2 are the same as the last sample taken in step
1, then no datais stored. Instead, a counter isincremented. This
process will continue until a group of four samples is found which
differs from the retained sample. At thistime, the count will be stored
in the memory, the counters reset, the current data stored, and the last
sample of the four once again retained for comparison.

m‘ The stored count indicates the number of 40 ns intervals that have elapsed
Note wf between the old data and the new data.

The rows of the acquisition data may, therefore, be either four rows of
data followed by four more rows of data, or four rows of data followed by
four rows of count. Rows of count will always be followed by four rows of
data except for the last row, which may be either data or count.

@ This process is performed on a pod-by-pod basis. The individual status
Note bits will indicate what each pod is doing.

System Commands HP 1652B/1653B
6-16 Programming Reference

DATA

Example;
177
191
205
219
233
247
261
275
289
303
317
331
345
359
373
387

14457
14471
14485
14499

HP 1652B/1653B
Programming Reference

The following table is just an example. The meaning of the Information
bytes (Data or Count) depends upon the corresponding Status bytes.

Machi Machine? PodS Pod4 Pod3 Pod2 Pod

Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status

Status
Status
Status
Status

Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status

Status
Status
Status
Status

Data
Data
Data
Data
Data
Data
Data
Data
count
Count
count
count
Data
Data
Data
Data

Data
Data
Data
Data

Data
Data
Data
Data
count
count
count
Count
Data
Data
Data
Data
Data
Data
Data
Data

Data
Data
Data
Data

Data
Data
Data
Data
Count
Count
Count
count
Data
Data
Data
Data
count
count
count
count

Data
Data
Data
Data

*The headings are not a part of the returned data.

Data
Data
Data
Data
Data
Data
Data
Data
Count
Count
count
count
Data
Data
Data
Data

Data
Data
Data
Data

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

Data
Data
Data
Data

%

System Commands

6-17

DATA

|
Oscilloscope

Block

Oscilloscope
Data Section

Data

Section Header
Description

Section

14523
14533
14534
14535

Data

System Commands

6-18

The oscilloscope block data is described in the following sections. This
datais appended to the logic analyzer block data and is present only when
the oscilloscope is on and waveform data has been acquired and stored.

The oscilloscope data contains both a section header and section data
similar to the logic analyzer for both of its sections. The oscilloscope block
data sections are Oscilloscope Data and Oscilloscope Display Data.

¢ Oscilloscope Data s the raw data captured on the last acquisition.

o Oscilloscope Display Data - the segment of data displayed after
each acquisition.

The oscilloscope data and oscilloscope display data sections are sent only
when the oscilloscope is on and there is waveform data stored in the
oscilloscope memory.

The Oscilloscope Data section contains the raw data the oscilloscope
acquired on the last acquisition.

The oscilloscope data < section header > used bytes 14523 through 14539.
The 16 bytes of the section header are as follows:

10 bytes « Section name, "scorepat " (two trailing spaces)
1 byte - Reserved (dways 0)

1 byte - Unused

4 bytes - Length of oscilloscope data

The oscilloscope raw data < section data> contains theinitially acquired
data. Each data unit is contained in a byte. The lower six bits contain the
data, while the upper two bits are not used and as aresult, each data unit
can represent avalue from 0 to 63. The total number of bytesisthis
section is 4096 with the first 2048 bytes for channel 1 and the remaining
2048 bytes for channel 2.

HP 1652B/1653B
Programming Reference

DATA

14539

16587

Oscilloscope
Display Data
Section

1
Note “#

18635

22731

HP 1652B/1653B
Programming Reference

2048 bytes - raw oscilloscope data for channel 1.

2048 bytes - raw oscilloscope data for channel 1.

The display data section < section data > contains the initiad data
displayed after an acquisition. Each data unit is represented by a 16 bit
value which is generated by taking the raw oscilloscope data and shifting it
the the left by 8 hits.

Changing the seconds-per-division after the oscilloscope has stopped will
change the data displayed on the screen but it will not change the display
data in this section.

4096 bytes - Displayed oscilloscope data for channel 1
4096 bhytes » Displayed oscilloscope data for channel 2

System Commands
6-19

DSP
)

DSP (Display) command

The DSP command writes the specified quoted stringto a device
dependent portion of the instrument display.

Command Syntax: :SYSTem:DSP <string >

where:

<string > :: = string of up 1O 60 alphanumeric characters

Examples: OUTPUT XXX;":SYSTEM:DSP ‘The message goes here™

System Commands HP 1652B/1653B
6-20 Programming Reference

ERRor

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

ERRor

query

The ERRor query returns the oldest error number from the error queue.
A complete list of error numbers for the HP1652B/53B is shown in
appendix C, “Error Messages.” If no errors are present in the error queue,
azero is returned.

:8YSTem:ERRor?
[:SYSTem:ERRor] <error number> <NL>

10 OUTPUT XXX;":SYSTEM:ERROR?"

20 ENTER XXX;Err_num
30 PRINT Err-num

40 END

System Commands
621

HEADer

HEADer

Command Syntax:
Example:
Query Command:
Returned Format:

Example:

|
Note %

System Commands
822

command/query

The HEADER command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, query
responses will include the command header.

The HEADer query returns the current state of the HEADer command.

:SYSTem:HEADer {{ON|1}|{OFF|0}}
OUTPUT XXX;":SYSTEM:HEADER ON"

:8YSTem:HEADer?
[:SYSTem:HEADer]} { 1 |0} < NL>

10 DIM Mode$[100]
20 OUTPUT XXX;":SYSTEM:HEADER?"
30 ENTER XXX;Mode$

40 PRINT Mode$
50 END

Headers should be turned off when returning values to numeric variables.

HP 1652B/1653B
Programming Reference

KEY

]
Note %

Command Syntax:

where:

< key-code >

Example:

HP 1652B/1653B
Programming Reference

KEY

command/query

The KEY command allows you to simulate pressing a specified

front-panel key. Key commands may be sent over the bus in any order

that islegal from the front panel. Be sure the instrument isin adesired
setup before executing the KEY command. Key codes range from 0 to 36
with 99 representing no key (returned at power-up). See table 6-1 for key
codes.

The external KEY buffer is only two keys deep; therefore, attempting to
send KEY commands too rapidly will cause a KEY buffer overflow error
to be displayed on the HP 1652B/53B screen.

The KEY query returns the key code for the last front- panel key pressed
or the last simulated key press over the bus.

:SYSTem:KEY <key-code >

:: = integer from 0to 36

OUTPUT XXX;":SYSTEM:KEY 24~

System Commands
6-23

KEY

Query Syntax: :SysTem:KEY?
Returned Format: [:SYSTem:KEY] <key-code> <NL>

Example: 10 DIM Key$[100]
20 OUTPUT XXX;":SYSTEM:KEY?"
30 ENTER XXX; KEY$
40 PRINT KEY$

50 END
Table 6-1. Key codes
Key Value HP 1652B/53B Key Value HP1652B/53B
Key Key
0 RUN 19 D
1 STOP 20 E
2 unused 21 F
3 SELECT 22 unused
4 CHS 23 unused
5 Don't Care 24 Knob left
6 0 25 Knob right
7 1 26 L/R Roll
8 2 27 U/D Roll
9 3 28 unused
10 4 29 unused
1 5 30 unused
12 6 31 nH
13 7 32 Clear Entry
14 8 3 FORMAT/CHAN
15 9 A TRACE/MTRIG
16 A 35 DISPLAY
17 B 36 /O
18 C 99 Power Up
.
System Commands HP 1652B/1653B

624 Programming Reference

LER

LER

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

(LCL Event Register) query

The LER query alows the LCL (local) Event Register to be read. After
the LCL Event Register is read, it is cleared. A one indicates a
remote-to-loca transition has taken place. A zero indicates a
remote-to-local transition has not taken place.

:SYSTem:LER?
[:8YSTem:LER] {0|1}<NL>

10 DIM Event$[100]

20 OUTPUT XXX;":SYSTEM:LER?"
30 ENTER XXX;Event$

40 PRINT Event$

50 END

System Commands
6-25

LOCKout
|
LOCKout command/query

The LOCKout command locks out or restores front-panel operation.
When this function ison, al controls (except the power switch) are

entirely locked out.

The LOCKout query returns the current status of the LOCKout command.

Command Syntax: :SYSTem:LOCKout {{ON|1}|{OFF|0}}
Example: OUTPUT XXX;™:SYSTEM:LOCKOUT ON"
Query Syntax: :SYSTem:LOCKout?
Returned Format: [:SYSTem:LOCKout] {0]|1}<NL>

Example: 10 DIM Status$[100]
20 OUTPUT XXX;":SYSTEM:LOCKOUT?"
30 ENTER XXX;Status$
40 PRINT Status$
50 END

System Commands HP 1652B/1653B
6-26 Programming Reference

LONGform

——
LONGform command/query

The LONGform command sets the longform variable which tells the
instrument how to format query responses. If the LONGform command
is set to OFF, command headers and al pha arguments are sent from the
instrument in the abbreviated form. If the LONGform command is set to
ON, the whole word will be sent to the controller.

This command has no affect on the input data messages to the instrument.
Headers and arguments may be input in either the longform or shortform
regardless of how the LONGform command is set.

The query returns the status of the LONGform command.

Command Syntax: :SYSTem:LONGform {{ON|1}|{OFF|0}}
Example: OUTPUT XXX;":SYSTEM:LONGFORM ON"
Query Syntax: :SYSTem:LONGform?
Returned Format: {:SYSTem:LONGform] {1(0} <NL>

Example: 10 DIM Mode$ {100]
20 OUTPUT XXX;'":SYSTEM:LONGFORM?"
30 ENTER XXX;Mode$
40 PRINT Mode$
50 END

HP 1652B/1 653B System Commands
Programming Reference 6-27

MENU

MENU command/query

The MENU command puts a menu on the display.
The MENU query returns the current menu selection.

Command Syntax: :8YSTem:MENU c menu-type >, <mach_num >

where:
< menu-type> i = {SCONfig|FORMat CHANnel TRACe TRIGger| DISPlay WAVeform SWAVeform
COMPare SCHart SLISt}
<mach num > n= {0 1 2 3
0 :=mixed mode
! = analyzer 1
2 o= analyzer 2
3 = oscilloscope

Example: OUTPUT XXX;"SYSTEM:MENU FORMAT.I"
Query Syntax: :sySTem:MENU?
Returned Format: [:SYSTem:MENU] <menu-type >, < mach_num >

Example: 10 DIM Response$[100]
20 OUTPUT XXX;":SYSTEM:MENU?"
30 ENTER XXX;Response$
40 PRINT Response$
50 END

System Commands HP 1652B/1653B
6-28 Programming Reference

MESE

Command Syntax:

where:

< enable mask >

Example:

HP 1652B/1653B
Programming Reference

MESE

command/query

The MESE command sets the Module Event Status Enable Register hits.
The MESE register contains a mask value for the bits enabled in the
MESR register. A one in the MESE will enable the corresponding hit in
the MESR, a zero will disable the bit.

The MESE query returns the current setting.

Refer to table 6-2 for information about the Module Event Status Enable
register hits, bit weights, and what each bit masks for the logic analyzer.

:SYSTem:MESE <enable-mask>

:» = integer from 0 to 255

OUTPUT XXX;” :SYSTEM:MESE 1"

System Commands
629

MESE

Query Syntax: :8YSTem:MESE?

Returned Format: [:SYSTem:MESE] <enable-mask> <NL>

Example: 10 OUTPUT XXX;":SYSTEM:MESE?"
20 ENTER XXX; Mes

30 PRINT Mes

40 END

Table 62. Module Event Status Enable Register

Module Event Status Enable Register
(A “1" enables the MESR bit)

Bit Weight| Enables

7 128 Not used

6 64 Not used

5 32 Not used

4 16 Not used

3 8 Not used

2 4 Not used

1 2 RNT - Run until satisified
0 1 MC « Measurement complete

System Commands
630

HP 1652B/1653B
Programming Reference

MESR

MESR query

The MESR query returns the contents of the Module Event Status
register.

@ Reading the register clears the Module Event Status Register.
Note

Table 6-3 shows each bit in Module Event Status Register and their bit
weights for the logic analyzer. When you read the MESR, the value
returned isthe total bit weights of all bitsthat are set at the time the
register isread.

Query Syntax: :SYSTem:MESR?
Returned Format: [:SYSTem:MESR] <« status > < NL>

where:

< status > 2 = integer from 0 to 255

Example: 10 OUTPUT XXX;":SYSTem:MESR?"
20 ENTER XXX; Mer
30 PRINT Mer
40 END

HP 1652B/1653B System Commands
Programming Reference 631

MESR

System Commands
6-32

Table 83. Module Event Status Register

Module Event Status Register

Bit

Weight

Condition

_ WAoo

[EEN
N
(o]

s o5 8R

Not used

Not used

Not used

Not used

Not used

Not used

1 = Run until satisified

0 = Run until not satisified

1 = Measurement complete
0 = Measurement not complet

HP 1652B/1653B
Programming Reference

PPOWer

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B
Programming Reference

PPOWer

query

The PPOWer (preprocessor power) query returns the current status of
the HP 1652B/53B’s high-current limit circuit. If it is functioning properly,
Oisreturned. If the current draw istoo high, 1 isreturned until the
problem is corrected and the circuit automatically resets.

:PPOWer?

[:PPOWer] {o 1}

10 DIM Response$[10]

20 OUTPUT XXX;":PPOWER?"
30 ENTER XXX; Response$
40 PRINT Response$

50 END

System Commands
633

PRINt

PRINt

Command Syntax:

Example:

System Commands
6-34

command

The PRINt command initiates a print of the screen or print al over the
RS-232C bus. The PRINt parameters SCReen or ALL specify how the
screen data is sent to the controller. PRINt SCReen transfers the data to
the controller in a printer specific graphics format. PRINt ALL transfers
the datain araster format for the following menus:

State and Timing Format menus
Disk menu

State and Timing Symbol menus
State Listing menu

State Trace

State Compare

:SYSTem:PRINt {SCReen | ALL}

OUTPUT XXX;':SYSTEM:PRINT SCREEN”

HP 1652B/1653B
Programming Reference

RMODe

RMODe command/query

The RMODe command is arun control command that specifiestherun
mode for logic analyzer and oscilloscope. It is at the same level in the
command tree as S$YSTem; therefore, it is not preceded by :SYSTem.

The query returns the current setting.

0 :' After specifying the run mode, use the STARt command to start the
Note J acquisition,

Command Syntax: :RMODe {SINGle REPetitive}
Example: ~ OUTPUT XXX;":RMODE SINGLE”
Query Syntax: :RMODe?
Retuned Format: [:RMODe] {SINGle |REPetitive} c NL>

Example: 10 DIM Mode$ [100)
20 OUTPUT XXX;":RMODE?"
30 ENTER XXX;Mode$
40 PRINT Mode$
50 END

HP 1652B/1653B System Commands
Programming Reference 6-35

SETup

SETup command/query

The SY Stem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller.

The SY Stem:SETup query returns a block of datathat contains the
current configuration to the controller.

There are three data sections which are always returned and a fourth
header when the oscilloscope is on and has acquired and stored waveform
data. These are the strings which would be included in the section header:

® "CONFIG "
® 1650 RS232"
® 1650 DISP *
® 1650 DISP2"
® ""SCOPECNF "

Additionally, the following sections may also be included, depending on
what's loaded:

"SYMBOLS A "
"SYMBOLS B "
"SPA DATA A"
"SPA DATA 8"
"INVASH A "
"INVASM g
"COMPARE "

System Commands HP 1652B/1653B
6-36 Programming Reference

SETup

Command syntax: :SYStem:SETup <blockdata>

where:
< block data > ;2= <block length specifier > <section > . . .
< block length specifier > = #8<length>
< length > :: = the total length of all sections in byte format (must be represented with 8 digits)
<section > ;i = ¢ section header > <section data>
<section header » 1 = 16 bytes in the following format:
10 bytes for the section name
1 byte reserved
1 byte for the module ID code (31 for the logic analyzer)
4 bytes for the length of the section data in bytes
<section data > :» = format depends on the type of data
12

Note 'J The total length of asection is 16 (for the section header) plus the length
of the section data. So when calculating the value for < length>, don’t
forget to include the length of the section headers.

Example: ouTPUT XXX USING "#,K";":SYSTEM:SETUP " <block data >
Query Syntax: :SYStem:SETup?
Retuned Format: [:SYStem:SETup] c block data> ¢ NL>

HP-IB Example: 10 DIM Block$[32000] tallocate enough mcmory for block data
20 DIM Specif ier$ [2]
30 OUTPUT XXX; *:SYSTEM:HEAD OFF”
40 OUTPUT XXX;":SYSTEM:SETUP?" I send setup query
50 ENTER XXX USING "#,2A";Specifier§!read in #8
60 ENTER XXX USING "#,80";Blocklength! read in block length
70 ENTER XXX USING "-K";Block$ | read in data
80 END

HP 1652B/1653B System Commands
Programming Reference 6-37

STARt

STARt command

The STARt command is a run control command that starts the logic
analyzer running in the specified run modc (see RMODe). The STARt
command is on the same level in the command tree as SYSTem; therefore,
itisnot preceded by :SYSTem.

The STARt command is an Overlapped Command. An Overlapped

Note Command is acommand that allows execution of subsequent commands
while the device operations initiated by the Overlapped Command are still

in progress.

Command Syntax: :STARt

Example: ouTPUT XXX:":START"

System Commands HP 1652B/1653B
6-38 Programming Reference

STOP

STOP command

The STOP command is a run control command that stops the logic
analyzer. The STOP command is on the same level in the command tree
as SYSTem; therefore, it is not preceded by :SYSTem.

||;' The STOP command is an Overlapped Command. An Overlapped
Note J Command is acommand that allows execution of subsequent commands
while the device operations initiated by the Overlapped Command are still
in progress.

Command Syntax: :STOP

Example: OUTPUT XXX;*:STOP

HP 1652B/16538 System Commands
Programming Reference 6-39

MMEMory Subsystem 7

Introduction MMEMory subsystem commands provide access to the disk drive. The
MMEMory subsystem commands are:

AUToload
CATalog
COPY
DOWNIoad
INITialize
LOAD
PACK
PURGe
REName
STORe
UPLoad

% If you are not going to Store information to the configuration disk, or if the

Note disk you are using contains information you need, it is advisable to write
protect your disk. This will protect the contents of the disk from
accidental damage due to incorrect commands, etc.

HP 1652B/1653B MMEMory Subsystem
Programming Reference 7-1

e 2
‘MMEMoTr y }——h@—J—DCAUTo | ood}——bf space

= AUToload? f
e~ CATalog? }

—><DOWNIood>—->{ space H name

° block_dato

= INITiglize }

—@ ={ space }—-b{ nome—}—b
(D

@{IASSemblerH space ’—>{ io_nome}-’@——-

space name [
space o] mame Fl ——s] mew nome ——
—P@ >{ spoce }-——{ name

(o —(conFig
UPLoad? space H nome}
01650502

Figure 7-1. MMEMory Subsystem Commands Syntax Diagram

MMEMory Subsystem HP 1652B/1653B
7-2 Programming Reference

auto-file = string of up to 10 alphanumeric characters representing a valid file name.
name = string of up to 10 alphanumeric characters representing a valid file name.
description = string of up to 32 alphanumeric characters.

type = integer, refer to table 7-1.

block-data = data in IEEE 488.2 #format.

ia_name = string of up to 10 alphanumeric characters representing a valid file name.
new-name = string of up to 10 alphanumeric characters representing a valid file name

Figure 7-1. MMEMory Subsystem Commands Syntax Diagram (continued)

Refer to “Disk Operations’ in chapter 5 of the HP 1652B/53B Logic
Note Analyzers Reference manual for a description of a valid file name.

HP 1652B/1653B MMEMory Subsystem

Programming Reference

7-3

AUToload

AUToload

Command Syntax:

where:

<auto-file >

Examples:

Query Command:

Returned Format:

Example:

MMEMory Subsystem
7-4

command/query

The AUToload command controls the autoload feature which designates
a configuration file to be loaded automaticaly the next time the

instrument is turned on. The OFF parameter (or 0) disables the autoload
feature. When a string parameter is specified it represents the desired
autoload file.

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled, the query returns a string parameter that
specifies the current autoload file.

:MMEMory:AUToload {{OFF(O) <auto_file >}

:: = string of up to 10 alphanumeric characters

OUTPUT XXX; ' :MMEMORY :AUTOLOAD OFF"

OUTPUT XXX;™: MMEMORY:AUTOLOAD 'FILEL’"
OUTPUT XXX;" :MMEMORY :AUTOLOAD "FILE,?""

:MMEMary:AUToload?
[:MMEMory:AUToload} {0} <auto_file>} <NL>

10 DIM Auto_status$ [100]

20 OUTPUT XXX;":MMEMORY:AUTOLOAD?"
30 ENTER XXX;Auto_status$

40 PRINT Auto_status$

50 END

HP 1652B/1653B
Programming Reference

CATalog

Query Syntax:
Returned Format:

where:

< block size >
<block data >

Example:

HP 1652B/1653B
Programming Reference

CATalog

query

The CATalog query returns the directory of the disk in block data format.
The directory consists of a S-character string for each file on the disk.
Each file entry is formatted as follows:

“NNNNNNNNNN TTTTTTT DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

where N is the filename, T is the file type (a number), and D is the file
description.

:MMEMory:CATalog?

[:MMEMory:CATalog] <block size> <block data>

1= #8dddddddd (#8 followed by an eightdigitnumber)
i1 = [<filename > <file type > <file description >]...

10D I M File$[51]
20 DIM Specifier${2]
30 OUTPUT XXX;":SYSTEM:HEAD OFF"

40 OUTPUT XXX;” :MMEMORY : CATALOG?" Isend catalog query

50 ENTER XXX USING "#,2A";Specifier$ lreadi n #8

60 ENTER XXX USING "#,8D";Length ‘read in length

70 FOR I=1 TO Length STEP 51 tread and print each file

80 ENTER XXX USING "#,51A";File$

20 PRINT File$

100 NEXT |

110 ENTER XXX USING "A";Specifier§ read in final line feed
120 END

MMEMory Subsystem
7-5

COPY

CopPY

Command Syntax:

where:

<name >

Example:

MMEMory Subsystem
7-6

command

The COPY command copies the contents of a file to a new file. The two
< name > parameters are the filenames. The first parameter specifies the
source file. The second specifies the destination file. An error is
generated if the source file doesn't exigt, if the destination file already
exists, or any other disc error is detected.

:MMEMory:COPY < name >,<name >

.o = string of up to 10 alphanumeric characters representing a valid file name
To copy the contents of "FILE1" to "FILE2":

OUTPUT XXX;":MMEMORY:COPY 'FILEl', 'FILE2'"

HP 1652B/1653B
Programming Reference

N
DOWNIload

Command Syntax:

where:

<name >
<description >
<type >

< block-data >

Example:

DOWNIload

command

The DOWNIoad command downloads a file to the disk. The < name >
parameter specifies the filename, the ¢ description > parameter specifies
the file description, and the < block-data > contains the contents of the
file to be downloaded.

Table 7- ligts the file types for the < type > parameter.

:MMEMory:DOWNIoad <name >, <description >, <type >, <block-data >

i1 = string of up to 10 alphanumeric characters representing a valid file name
= string of up to 32 alphanumeric characters
1 = integer (see Table 7-1)

= contents of file in block data format

OUTPUT XXX;":MMEMORY:DOWNLOAD "SETUP__";'FILE CREATED FROM SETUP
QUERY’ ,-16127,#800000643. . ."

Table 7-I. File Types

|
File File Type
HP 1652/3 SYSTEM -16383
1652/3 CONFIG -16096
AUTOLOAD TYPE -15615
INVERSE ASSEMBLER -15614
TEXT TYPE -15610

HP 1652B/1653B
Progmmming Reference

MMEMory Subsystem
7-7

INITialize

]
INITialize command

The INITialize command formats the disk.

@ Once executed, the initialize command formats the specified disk,
Note permanently erasing all existing information from the disk. After that,
there is no way to retrieve the origina information.

Command Syntax: :MMEMory:INTialize

Example: outPUT XXX;":MMEMORY: INITIALIZE"

MMEMory Subsystem HP 1652B/1653B
7-8 Programming Reference

LOAD

LOAD [:CONFig] command

The LOAD command loads a file from the disk into the analyzer. The
[:CONfig] specifier is optional and has no effect on the command. The
< name > parameter specifies the filename that will be loaded into the

logic analyzer.

ﬁ Any previous setups and data in the instrument are replaced by the
Note contents of the configuration file.

Command Syntax: :MMEMory:LOAD[:CONfig] < name >

where:

< name > ;2 = string of up to 10 alphanumeric characters representing a valid file name

Examples: OUTPUT XXX;":MMEMORY :LOAD:CONFIG ‘FILE-“’
OUTPUT XXX;":MMEMORY :LOAD ‘FILE-*’
OUTPUT XXX;":MMEM:LOAD:CONFIG ‘FILE-A™

HP 1652B/1653B MMEMory Subsystem
7-9

Programming Reference

LOAD

I
LOAD [:IASSembler] command

This variation of the LOAD command allows inverse assembler files to be
loaded into analyzer 1 or analyzer 2 of the HP 1652B/1653B. The

< IA_name > parameter specifies the inverse assembler filename. The
parameter after the ¢ IA-name > parameter specifies into which
machine the inverse assembler is loaded.

%J Inverse assembler files should only be loaded into the state analyzer. If an
Note inverse assembler file isloaded into the timing analyzer no error will be
generated; however, it will not be accessible.

Command Syntax: :MMEMory:LOAD:IASSembler < IA-name > { 1[2}

where:

<I|A name> .. = string of up to 10 alphanumeric characters representing a valid file name

Examples: output xxx;' :MMEMORY :LOAD: IASSEMBLER '168020_IP',1"
OUTPUT XXX;" :MMEM:LOAD:IASS '168020_IP'1"

MMEMory Subsystem HP 1652B/1653B
7-10 Programming Reference

PACK

PACK command

The PACK command packs the files on a disk in the disk drive.

Command Syntax: :MMEMory:PACK

Example: OUTPUT XXX;" :MMEMORY : PACK"

HP 1652B/1653B MMEMory Subsystem
Progmmming Reference 7-11

PURGe

]
PURGe command

The PURGe command deletes a file from the disk. The < name >
parameter specifies the filename to be deleted.

ﬁ Once executed, the purge command permanently erases al the existing
Note

information from the specified file. After that, there is no way to retrieve
the origina information.

Command Syntax: :MMEMory:PURGe < name >

where:

< name > :» = string of up to 10 alphanumeric characters representing a valid file name

Examples: OUTPUT XXX;":MMEMORY:PURGE "FILE1""

MMEMory Subsystem HP 1652B/1653B
7-12 Programming Reference

REName

REName command
The REName command renames a file on the disk. The < name >
parameter specifies the filename to be changed and the < new-name >
parameter specifies the new filename.

] ! You cannot rename a file to an aready existing filename.
Note

Command Syntax: :MMEMory:REName < name >, <new-name >

where:

<nhame > i1 = string of up to 10 alphanumeric characters representing a valid file name

<new-name > ;= string of up to 10 alphanumeric characters representing a valid file name

Examples. OUTPUT XXX; " :MMEMORY :RENAME 'OLDFILE ', "NEWFILE'"

HP 1652B/1653B MMEMory Subsystem
Programming Reference 7-13

STORe

I
STORe [:CONFig] command

The STORe command stores a configuration onto a disk. The [:CONFig]
specifier is optional and has no effect on the command. The < name >
parameter specifies the file to be stored to the disk. The ¢ description >
parameter specifies the file description.

Command Syntax: :MMEMory:STORe [:CONfig] < name >, <description >

where:
< name > = string of up to 10 alphanumeric characters representing a valid file name
< description > i = string of up to 32 alphanumeric characters

Example: ~ OUTPUT XXX;":MMEM:STORE ‘DEFAULTS','DEFAULT SETUPS™

MMEMory Subsystem HP 1652B/1653B
7-14 Progmmming Reference

UPLoad

I
UPLoad query

The UPLoad query uploads a file. The < name > parameter specifies the
file to be uploaded from the disk. The contents of the file are sent out of
the instrument in block data form.

QuerySyntax: :MMEMory:UPLoad? <name >

where:

<name> . = string of up to 10 alphanumeric characters representing a valid file name

Returned Format: [:MMEMory:UPLoad] <block_data> <NL>

Example: 10 DIM Block$[32000] tallocate enough memory for block data
20 DIM Specifier$[2]
30 OUTPUT XXX;":SYSTEM HEAD OFF"
40 OUTPUT XXX;":MMEMORY:UPLOAD? 'FILE1'" !send upload query

50 ENTER XXX USING "#,2A";Specifier$ read in #8
60 ENTER XXX USING "#,80";Length 'read in block length
70 ENTER XXX USING "-K";Block$ tread in file
80 END
HP 1652B/1653B MMEMory Subsystem

Programming Reference 7-15

DLISt Subsystem 8

Introduction The DLISt (dual list) subsystem contains the commands in the dual state
listing menu. These commands are:

¢ COLumn
o LINE

(‘@‘ ™
.
(oers e - Te(cotum)] spoce |l cotonum |,)

O e -

—-’(COLumn?H space H col_num }
LINE spoce HI ine_num_mid_screen °
) J

col_num = integer from 110 8

label-name = a string of up to 6 alphanumeric characters

base = {BINary| HEXacecimal OCTal|DECimal|ASCii|SYMBol}
mach_num = {I |2}

line_pum_mid_screen = integer from -1023 to + 1023

Figure 8-1. DLISt Subsystem Syntax Diagram

HP 1652B/1653B DLISt Subsystem
Programming Reference 8-1

DLISt

DLISt selector

The DLISt selector (dua list) is used as part of a compound header to
access those settings normally found in the Dud State Listing menu. The
dua list displays data when two state analyzers are run simultaneously.

Command Syntax: :DLISt

Example: OUTPUT XXX;":DLIST:LINE 0.1"

DLISt Subsystem HP 1652B/1653B
8-2 Programming Reference

COLumn

Command Syntax:

where:
< col_num>
<label-name »

<base >
<mach_num >

Example:

HP 1652B/1653B

Programming Reference

COLumn

command/query

The COLumn command alows you to configure the state analyzer list
display by assigning a label name and base to one of eight vertical columns
in the menu. The machine number parameter is required since the same
label name can occur in both state machines at once. A column number

of 1 refers to the left-most column. When a label is assigned to a column
it replaces the origing label in that column. The label origindly in the
specified column is placed in the column the specified label is moved from.

When “TAGS’ is the label name, the TAGS column is assumed and the
next parameter must specify RELative or ABSolute. The machine
number should be 1.

The COLumn query returns the column number, label name, and base for
the specified column.

:DLISt:COLumn <col_num > {"TAGS",{RELative | ABSolute}|
<label-name >, < base > }, < mach_num >

= {1]2|3]|4|5|6]7|8}

;. = a string of up to 6 alphanumeric characters

:: = {BINary | HEXadecimal | OCTal | DECimal | ASCii | SYMBol}
= {112)

OUTPUT XXX;": DLIST:COLUMN 4, 'DATA',HEXADECIMAL,1"

DLISt Subsystem
8-3

COLumn

Query Syntax: :DLISLCOLumn? <col_num >

Returned Format: [pustcoLumn] < col_num >, c label-name >, <base > <mach_num > <NL >

Example: 10 pim ¢1$[100)
20 OUTPUT XXX;":DLIST:COLUMN? 4
30 ENTER XXX;C1$
40 PRINT C1$
50 END

DLISt Subsystem HP 1652B/1653B
8-4 Programming Reference

LINE

Command Syntax:

where:

< line-num-mid-screen >
< mach_num>

Example:

LINE

command/query

The LINE command allows you to scroll the state analyzer listing
vertically. The command specifies the state line number relative to the
trigger that the specified analyzer will highlight at center screen.

The LINE query returns the line number for the state currently in the box
at center screen and the machine number to which it belongs.

:DLISt:.LINE < line-num-mid-screen >, < mach_num >

:: = integer from -1023 tO + 1023

= {112}

OUTPUT XXX;“:DLIST:LINE 511.1"

Query Syntax: :DLISt:LINE?

Returned Format:

Example:

HP 1652B/1653B

Programming Reference

[DLISt:LINE] < line-num-mid-screen >, < mach_num > < NL>

10 DIM Ln$[100]

2 0 QUTPUT XXX;":DLIST:LINE?"
30 ENTER XXX;Ln$

40 PRINT Ln$

50 END

DLISt Subsystem
8-5

WLISt Subsystem 9

Introduction Two commands in the WLISt subsystem control the X and 0 marker
placement on the waveforms portion of the Timing/State mixed mode
display. These commands are XTIMe and OTIMe. The XSTate and
OSTate queries return what states the X and 0 markers are on. Since the
markers can only be placed on the timing waveforms, the queries return
what state (state acquisition memory location) the marked pattern is
stored in.

ﬁ In order to have mixed mode, one machine must be a timing analyzer and
Note the other must be a state analyzer with time tagging on (use
MACHine < N > :STRace:TAG TIME).

I -
—*@Tj@—b{spoce time_value }
- 0TIMe? }
space I—Pmme_value }

—o{ XTIMe? } J
18510/8X03

time-value = real number

Figure 91. WLISt Subsystem Syntax Diagram

HP 1652B/1653B WLISt Subsystem
Progmmming Reference 91

WLISt

WLISt selector

The WLISt (Waveforms/listing) selector is used as a part of a compound
header to access the settings normally found in the Mixed Mode menu.
Since the WLISt command isaroot level command, it will always appear
as the first element of a compound header.

|:' The WLISt Subsystem is only available when one state analyzer (with time
Note 9 tagging on) and one timing analyzer are specified.

Command Syntax: :WLISt

Example: OUTPUT XXX;":WLIST:XTIME 40.0E-6"

WLISt Subsystem HP 1652B/1653B
9-2 Programming Reference

OSTate

I
OSTate query

The OSTate query returns the state where the 0 Marker is positioned. |If
data is not valid, the query returns 32767.

Query Syntax: :WLISt:0STate?
Returned Format: [:WLISt:OSTate] <state_num > <NL>

where:

<state num> = integer

Example: 10 OIM So${100]
20 OUTPUT XXX;":WLIST:OSTATE?"
30 ENTER XXX;So0$
40 PRINT So$
50 END

HP 1652B/1653B WLISt Subsystem
Programming Reference 93

XSTate

|
XSTate query

The XSTate query returns the state where the X Marker is positioned. If
data is not valid, the query returns 32767.

Query Syntax: :WLISt:XSTate?
Example: OUTPUT XXX,":WLIST:XSTATE?
Returned Format: [:WLISt:XSTate] < state-num ><NL>

where:

< state-num » = integer

Example: 10 pim Sx$[100]
20 OUTPUT XXX;™:WLIST:XSTATE?"
30 ENTER XXX;Sx$
40 PRINT Sx$
50 END

WLISt Subsystem HP 1652B/1653B
9-4 Programming Reference

OTIMe

OTIMe command/query

The OTIMe command positions the 0 Marker on the timing waveforms in
the mixed mode display. If the data is not valid, the command performs
no action.

The OTIMe query returns the O Marker position in time. If data is not
valid, the query returns 9.9E37.

Command Syntax: :WLISt:OTIMe <time-value >
where:
<time value > = real number

Example: ouTPUT XXX,":WLIST:OTIME 40.0e-6"

Query Syntax: :WLISt:0TIMe?

Returned Format: [:WLISt:OTIMe] <time-value> ¢ NL>

Example: 10 DIM To$[100]
20 OUTPUT XXX;™:WLIST:OTIME?"
30 ENTER XXX;To$
40 PRINT To$
50 END

HP 1652B/1653B WLISt Subsystem
Programming Reference 8-5

XTIMe

XTIMe

Command Syntax:

where:

< time value >

Example:
Query Syntax:
Returned Format:

Example:

WLISt Subsystem
9-6

command/query

The XTIMe command positions the X Marker on the timing waveforms in
the mixed mode display. If the data is not valid, the command performs
no action.

The XTIMe query returns the X Marker position in time. If data is not
valid, the query returns 9.9E37.

‘WLISt:XTIMe <time-value >

. = real number
OUTPUT XXX,":WLIST:XTIME 40.0E-6"

:WLISE:XTIMe?
[:WLISt:XTIMe] < time-value > < NL>

10 DIM Tx$[100]

20 OUTPUT XXX;":WLIST:XTIME?"
30 ENTER XXX;Tx$

40 PRINT Tx$

50 END

HP 1652B/1653B
Programming Reference

MACHIine Subsystem

10

Introduction The MACHine subsystem contains the commands available for the
State/Timing Configuration menu. These commands are:

ARM
ASSign

NAME
TYPE

AUToscale (Timing Anayzer only)

There are actually hvo MACHine subsystems: MACHinel and
MACHine2. Unless noted, they are identical. In the syntax definitions
you will see MACHine{ 1|2} anytime the subject is applicable to both

subsystems.

Additionaly, the following subsystems are a part of the MACHine
subsystem. Each is explained in a separate chapter.

SFORmat subsystem
STRace subsystem
SLISt subsystem
SWAVeform subsystem
SCHart subsystem
COMPare subsystem
TFORmat subsystem
TTRace subsystem
TWAVeform subsystem
SYMBol subsystem

HP 1652B/1653B
Programming Reference

(chapter

MACHine Subsystem
lo-1

|

‘MACH ine ﬂ . spcce H arm_source j—————
D

__.(—.\ T
ASSlqn)————]spacerod list : »
e={ ASSIGN? }

— AUToscale »

spoce H machine_name I—’
NAME ? >

TYPE?
16510/5X02

arm-source = {RUN | MACHine {| | 2}}

pod-list = (NONE | <pod_num > [, <pod_num >)...}
pod-num = {1{2 3|4 {5}

machine-name = gring of up to 10 alphanumeric characters

Figure 10-I. Machine Subsystem Syntax Diagram

MACHine Subsystem HP 1652B/1653B
10-2 Programming Reference

MACHine

Command Syntax:

where:

<N>

Example:

HP 1652B/1653B
Programming Reference

MACHine

selector

The MACHine ¢ N > selector specifies which of the two analyzers
(machines) available in the HP 1652B/53B the commands or queries
following will refer to. Since the MACHine < N > command is a root

level command, it will normally appear as the first element of a compound
header.

:MACHine <N >

= {1]2} (the number of the machine)

OUTPUT XXX; " :MACHINE1:NAME ‘DRAMTEST'”

MACHine Subsystem
10-3

ARM

ARM

Command Syntax:

where:

<arm source >

Example:
Query Syntax:
Returned Format:

Example:

MACHine Subsystem
10-4

command/query

The ARM command specifies the arming source of the specified analyzer
(machine).

The ARM query returns the source that the current analyzer (machine)
will be armed by.

:MACHine{1|2}:ARM < arm-source >

= {RUN|MACHine{1|2} |[BNC|SCOPe}
OUTPUT XXX ;" :MACHINE1:ARM MACHINE2"
:MACHine {1 |2}:ARM?

[:MACHine { 1 | 2}:ARM] <arm_source > <NL>

10 DIM String$ [100]

20 OUTPUT XXX *:MACHINE1:ARM?"
30 ENTER XXX; String$

40 PRINT String$

SO END

HP 1652B/1653B
Programming Reference

ASSign

Command Syntax:

where:

< pod-list >
<pod #>

Example:
Query Syntax:

Returned Format;

Example:

HP 1652B/1653B

Programming Reference

ASSign

command/query

The ASSign command assigns pods to a particular analyzer (machine).

The ASSign query returns which pods are assigned to the current anayzer
(machine).

:MACHine{1 |2}:ASSign <pod_list>

= {NONE| <pod #>[, <pod #>}..}
= {11213|45}

OUTPUT XXX;":MACHINE1:ASSIGN 5. 2, 1"
:MACHine { 1 | 2}:ASSign?
[MACHINE { 1 |2}:A88ign] <pod-list > < NL>

10 DIM String$ [100)

20 OUTPUT XXX;" :MACHINEL:ASSIGN?"
30 ENTER XXX;String$

40 PRINT String$

50 END

MACHine Subsystem
10-5

AUToscale

—
AUToscale command

The AUToscale command causes the current analyzer (machine) to
autoscale if the current machine is a timing analyzer. If the current
machine is not a timing analyzer, the AUToscale command is ignored.

AUToscale is an Overlapped Command. Overlapped Commands alow
execution of subsequent commands while the logic analyzer operations
initiated by the Overlapped Command are till in progress. Command
overlapping can be avoided by using the *OPC and *WAI commands in
conjunction with AUToscale (See chapter 5, “Common Commands.”)

.|:| When the AUToscale command is issued, existing timing analyzer
Note J configurations are erased and the other analyzer is turned off.

Command Syntax: :MACHine{1]|2}:AUToscale

Example: OUTPUT XXX;" :MACHINE1:AUTOSCALE™

MACHine Subsystem HP 1652B/1653B
10-6 Progmmming Reference

NAME

NAME command/query

The NAME command allows you to assign a name of up to 10 characters
to a paticular analyzer (machine) for easier identification.

The NAME query returns the current analyzer name as an ASCII string.

Command Syntax: :MACHine{1{2}:NAME < machine-name >

where:

< machine name > ;= string of up to 10 alphanumeric characters
Example: OUTPUT XXX;":MACHINE1:NAME *DRAMTEST*"
QuerySyntax: :MACHine{1|2}:NAME?
Returned Format: [MACHine{1|2}:NAME] < machine name > < NL>

Example: 10 DIM String$ {100]
20 OUTPUT XXX;":MACHINEL:NAME?"
30 ENTER XXX;String$
40 PRINT String$
50 END

HP 1652B/1653B MACHine Subsystem
Programming Reference 10-7

TYPE

TYPE

1
Note %

Command Syntax:

where:

< analyzer type >

Example:
Query Syntax:
Returned Format:

Example:

MACHine Subsystem
10-8

command/query

The TYPE command specifies what type a specified analyzer (machine)
will be. The analyzer types are state or timing. The TYPE command aso
alows you to turn off a particular machine.

Only one of the two analyzers can be specified as a timing analyzer at one
time.

The TYPE query returns the current analyzer type for the specified
analyzer.

:MACHine{1|2}:TYPE <analyzer type >

::= {OFF|STATe|TIMing}

OUTPUT XXX:™': MACHINE1:TYPE STATE™
:MACHine{ 1{2}.TYPE?

[:MACHine{1|2}:TYPE] <analyzer type > <NL>

10 DIM String$ [100]

20 OUTPUT XXX;":MACHINEL1:TYPE?"
30 ENTER XXX;String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

SFORmat Subsystem 11

Introduction The SFORmat subsystem contains the commands available for the State
Format menu in the HP 1652B/53B logic analyzer. These commands are;

CLOCk
CPERiod
LABel
MASTer
REMove
SLAVe
THReshold

—) 'S
A

~e{ CLOCKk<N>? } L
CPER|od LT

- CPERi0d? }

polority

. pod.specification '

LABe!? m name
[

‘ 16510614

Figure 1 I4. SFORmat Subsystem Syntax Diagram

HP 1652B/1653B SFORmat Subsystem
Programming Reference 11

\

/
-—’QAAST&D—D* space H clock-id ‘
»—-’QAASTer"}'-! space H clock-id]| }

- REMOvVe y—’! space ALL }
e
«>(SLAVe H space)—-»‘ clock.id) clock_spec)—J-

'—DCSLA\/e?H space H clock-id : -

,-—(THResho i d<N>>—'—J space

value g

—
THResho | d<N>7
—— 16510807

<N>={l |23 |4]5}

GT = Greater Than 60 ns

LT =LessThan 60 ns

name = string of up to 6 alphanumeric characters

polarity = {POSitive NEGative}

pod-specification = format (integer from 0 to 65535) for apod (pods are assigned in decreasing order)
clock id= {J| K |L|M|N}

clock-spec = {OFF RISing FALLing | BOTH | LOW HIGH}

value = voltage (real number) -9.9 to + 9.9

Figure 1 I4. SFORmat Subsystem Syntax Diagram (continued)

HP 1652B/1653B

SFORmat Subsystem
Programming Reference

11-2

SFORmMat

R
SFORmat selector

The SFORmat (State Format) selector is used as a part of a compound
header to access the settings in the State Format menu. It always follows
the MACHine selector because it selects a branch directly below the
MACHine level in the command tree.

Command Syntax: :MACHine{1|2}:SFORmat

Example: ~ OUTPUT XXX;":MACHINEZ:SFORMAT:MASTER J, RISING”

HP 1652B/1653B SFORmat Subsystem
Progmmming Reference 11-3

CLOCKk

CLOCKk

Command Syntax:

where:

<N>

< clock mode >
Example:

Query Syntax:

Returned Format:

Example:

SFORmat Subsystem
11-4

command/query

The CLOCKk command sel ects the clocking mode for a given pod when the
pod is assigned to the state analyzer. When the NORMal option is
specified, the pod will sasmple all 16 channels on the master clock. When
the MIXed option is specified, the upper 8 bits will be sampled by the
master clock and the lower 8 bits will be sampled by the slave clock.
When the DEMultiplex option is specified, the lower 8 bitswill be
sampled on the slave clock and then sampled again on the master clock.
The master clock always follows the slave clock when both are used.

The CLOCK query returns the current clocking mode for a given pod.

<clock-mode >

:MACHine{ 1 |2}:SFORmat:CLOCk <N >

= Pod {I |2|3]4(5}
:: = {NORMal MiXed DEMultiplex}

OUTPUT XXX;":MACHINE]:SFORMAT:CLOCK2 NORMAL”

‘MACHine{1 |2}:SFORmat:CLOCk <N >?

[:MACHine{l |2}:SFORmat:CLOCK<N>] <clock-mode> <NL>

10 DIM String$[100]

20 OUTPUT XXX; ":MACHINEL:SFORMAT:CLOCK27"
30 ENTER XXX; String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

CPERIiod

Command Syntax:

where:

GT
LT

Example:
Query Syntax:

Returned Format:

Example:

HP 1652B/1653B
Programming Reference

CPERiod

command/query

The CPERiod command alows you to set the state analyzer for input
clock periods of grester than or less than 60 ns. Either LT or GT can be
specified. LT signifies a state input clock period of less than 60 ns, and
GT signifies a period of greater than 60 ns.

Because count tagging requires aminimum clock period of 60 ns, the
CPERiod and TAG commands are interrelated (the TAG command is in
the STRace subsystem). When the clock period is set to Less Than, count
tagging is turned off. When count tagging is set to ether state or time, the
clock period is automatically set to Greater Than.

The CPERiod query returns the current setting of clock period.

:MACHine{l |2}:SFORmat:CPERiod {LT|GT}

.. = greater than 60 ns
:= less than 60 ns

OUTPUT XxX;" :MACHINE2:SFORMAT:CPERIOD GT

:MACHine{ 1]2}:SFORmat: CPERiod?

{:MACHine{1 |2}:SFORmat:CPERiod] {GT|LT}c NL>

10 DIM String$[100]

20 OUTPUT XXX;":MACHINEZ2:SFORMAT:CPERIOD?
30 ENTER XXX; String$

40 PRINT String$

50 END

SFORmat Subsystem
11-5

LABel

LABel

SFORmat Subsystem
11-6

command/query

The LABel command allows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an
existing label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest-numbered pod assigned to the machine
you’re using. Each pod specification after that is assigned to the
next-highest-numbered pod. This way they match the left-to-right
descending order of the pods you see on the Format display. Not

including enough pod specifications results in the lowest-numbered

pod(s) being assigned a value of zero (all channels excluded). If you
include more pod specifications than there are pods for that machine, the
extra ones will be ignored. However, an error is reported anytime more
than five pod specifications are listed.

The polarity can be specified at any point after the label name.

Since pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (21€-1). When giving the pod assignment in binary
(base 2), each bit will correspond to asingle channel. A “1” in abit
position means the associated channel in that pod is assigned to that pod
and bit. A “0” in abit position means the associated channel in that pod is
excluded from the label. For example, assigning #B1111001100 is
equivalent to entering " ¥ wx ok wox " through the front-panel user
interface.

A label can not have atotal of more than 32 channels assigned to it.

The LABel query returns the current specification for the selected (by
name) label. If the label does not exist, nothing is returned. The polarity
is always returned as the first parameter. Numbers are always returned in
decimal format.

HP 1652B/1653B
Programming Reference

LABel

Command Syntax:

where:

<name >
< polarity >
< assignment >

Examples:

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Retference

:MACHine{1 |2}:SFORmat:LABel <name > [, {< polarity> | <assignment>)]...

.. = string of up to 6 alphanumeric characters
i = {POSitive | NEGative}

.. = format (integer from 0 to 66636) for a pod (pods are assigned in decreasing order)

OUTPUT XXX;":MACHINEZ2:SFORMAT:LABEL ‘STAT', POSITIVE. 65535,127,40312"
OUTPUT XXX;":MACHINE2:SFORMAT:LABEL ‘SIG L', 64, 12, 0, 20, NEGATIVE"
OUTPUT XXX;":MACHINEL:SFORMAT:LABEL *AOOR*, NEG, #B0011110010101010"

:MACHine{1|2}:SFORmat:LABel? <name >
[:MACHine{1}2}:SFORmat:LABel] <name> ,<polarity> [, <assignment>]... <NL>

10 DIM String$[100]

20 OUTPUT XXX;" :MACHINEZ:SFORMAT:LABEL? T“DATA™
30 ENTER XXX String$

40 PRINT String$

50 END

SFORmat Subsystem
11-7

MASTer

MASTer

1
Note 4

Command Syntax:

where:

< clock id >
< clock-spec >

Example:
Query Syntax:
Returned Format:

Example:

SFORmat Subsystem
11-8

command/query

The MASTer clock command allows you to specify a master clock for a
given machine. The master clock is used in al clocking modes (Normal,
Mixed, and Demultiplexed). Each command deds with only one clock

(3, K,L,M,N); therefore, a complete clock specification requires five
commands, one for each clock. Edge specifications (RISing, FALLing, or
BOTH) are ORed. Level specifications (LOW or HIGH) are ANDed.

At least one clock edge must be specified.

The MASTer query returns the clock specification for the specified clock.

:MACHine{1|2}:SFORmat:MASTer < clock-id >, < clock-spec >

ti= {JIKILIMIN}
1= {OFF | RISing | FALLing | BOTH | LOW) HIGH}

OUTPUT XXX ; " :MACHINE2:SFORMAT :MASTER J, RISING”
:MACHine{1 |2}:SFORmat:MASTer? <clock_id>

[:MACHine{1|2}:SFORmat:MASTer] <clock_id >, <clock_spec > < NL>

10 DIM String$[100]

20 OUTPUT XXX;":MACHINE2:SFORMAT :MASTER?<c Tock_id>"
30 ENTER XXX String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

REMove

I
REMove command

The REMove command allows you to delete all labels or any one label for
a given machine.

Command Syntax: :MACHine{t |2}:SFORmat:REMove {<name> |ALL}

where;

c name > .. = string of up to 6 alphanumeric characters

Examples: ouTPUT XXX;":MACHINE2:SFORMAT :REMOVE "A"*
OUTPUT XXX;" :MACHINEZ : SFORMAT :REMOVE ALL"

HP 1652B/1853B SFORmat Subsystem
Programming Reference 11-9

SLAVe

SLAVe

]
Note 3

Command Syntax:

where:

<clock_id >
< clock-spec >

Example:
Query Syntax:
Returned Format:

Example:

SFORmat Subsystem
11-10

command/query

The SLAVe clock command allows you to specify a dave clock for a given
machine. The dave clock is only used in the Mixed and Demultiplexed
clocking modes. Each command deals with only one clock (J,K,L,M,N);
therefore, a complete clock specification requires five commands, one for
each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.
Level specifications (LOW or HIGH) are ANDed.

The dlave clock must have at least one edge specified.

The SLAVe query returns the clock specification for the specified clock.

:MACHine{ 1|2}:SFORmat:SLAVe <clock-id >, <clock_spec>

sz {JIKILIMIN}
::= {OFF| RISing | FALLing | BOTH | LOW | HIGH)

OUTPUT XXX;":MACHINEZ2:SFORMAT:SLAVE J, RISING”
:MACHine{ 1 |2}:SFORmat:SLAVe? <clock-id >
[:MACHine{1|2}:SFORmat:SLAVe] <clock-id >, <clock_spec > < NL>

10 DIM String$[100]

20 OUTPUT XXX;' :MACHINEZ :SFORMAT:SLAVE? <clock_id>"
30 ENTER XXX String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

THReshold

Note #

Command Syntax:

where;

<N>
<vdue >
TTL
ECL

Example:
Query Syntax:

Returned Format:

Example:

HP 1652B/1653B
Progmmming Reference

THReshold

command/query

The THReshold command allows you to set the voltage threshold for a
given pod to ECL, TTL, or a specific voltage from -9.9V to + 99V in 0.1
volt increments.

On the HP 1652B, the pod thresholds of pods 1,2 and 3 can be set
independently. The pod thresholds of pods 4 and 5 are daved together;
therefore, when you set the threshold on either pod 4 or 5, both thresholds
will be changed to the specified vaue. On the HP 1653B, pods 1 and 2 can
be set independently.

The THReshold query returns the current threshold for a given pod.

:MACHine{1]2}:SFORmat: THReshold <N> {TTL|ECL| <value>}

v= pod number {1 |2|3|4|5}

;= voltage (real number) -9.9 to +9.9
.. = default value of + 1.6V

:: = default value of -1.3V

OUTPUT XXX;":MACHINEL: SFORMAT : THRESHOLD1 4.0~
:MACHine{1|2}:SFORmat: THReshold <N >?

[:MACHine{1|2}:SFORmat:THReshold< N>] <value> <NL>

10 DIM Value$ [100]

20 OUTPUT XXX;":MACHINE1:SFORMAT:THRESHOLD4?"
30 ENTER XXX;Value$

40 PRINT Value$

50 END

SFORmat Subsystem
11-11

STRace Subsystem 12

Introduction The STRace subsystem contains the commands available for the State
Trace menu in the HP 1652B/53B logic analyzer. The STRace subsystem

commands are;

BRANCch
FIND
PREStore
RANGe
RESTart
SEQuence
STORe
TAG
TERM

—O —

SE{D—.@— *KBRANch<N>>—Dijpoce }——P{ branch_qualifier '
(o= BRANch<N>? }
space }——lproceed-qucl ifier °

= PREStor e }—sl space OFF
prestore_quaiifier F—j

|—#~{ PREStore? } -
——(@——{spoce H label_nome

Figure 12-l. STRace Subsystem Syntax Diagram

HP 1652B/1653B STRace Subsystem
Programming Reference 12-1

Y |

= RANGe? }

—b&RESTor t)—’{ space

PERLevel
restart_qualifier P

|- RESTart? }
-—><SEOuence }——-—{ space }—-b{ num_of_leve!s . lev_of_trig

SEQuence? >
{STORe(N)}—D{ space H store_quatifier -
STORe<N>?7<N>? ¥ >
I TAG space v@

— -
state_tag_qual rfler)/'
cpoee Feltermia () o
\’(TERM?H space }—-—I term_id }——@—@ —

Figure 12-1. STRace Subsystem Syntax Diagram (continued)

STRace Subsystem HP 1652B/16538

12-2 Programming Reference

branch-qualifier = < qualifier >

to_lev_num = integer from 1 to trigger level when <N > is less than or equal to the trigger level, or
from (trigger level + 1) to <num_of levels > when <N > is greater than the trigger level

proceed-qualifier = < qualifier >

occurrence = number from 1 to 65535

prestore_qual = < qualifier >

label_name = string of up to 6 alphanumeric characters

start_pattern = "{#B{0|1} . . .|
#0Q1{0)1(2]|3|4]5|617}...1
#H{0|1|2|3|4|5|6]|7|8|9|4|B|C|D|E|F}. ..
{01|2]3(4|5]6/7]|8|9}...}"

stop_pattern = "{#B{0| 1}. ..
#0Q{0|1]|2]3]4|5|6|7}... |
#H{0|1|2|314)5]6|7|8|9|4|B|C|D\E|F}.. .|
{011]12)13(4]5]16|7|8|9}. .. }"

restart-qualifier = < qualifier >

num_of_levels = integer from 2 to 8 when ARM is RUN or from 2 to 7 otherwise

lev_of_trig = integer from 1 to (number of existing sequence levels - 1)

store_qualifier = < qualifier >

state-tagqualifier = < qualifier >

teem-id = {4|B|C|D|E|F|G|H}

pattern = "{#B{0|1|X}. . .
#0Q{0|1|12]|3]|4|5|6|7|X}.. .|
#H{0|1|2314]5|6|7|8|914|B|C|D|E|FiX}.. .|
{0)1|2]13]4|51617|8]9}...}"

qualifier = { ANYState | NOSTate | <any term > | (expression1{{AND | OR} <expression2>])|

(expression2{{AND | OR} <expression Z >])}
any-term ={<or_terml>|< and_term1>|< or_term2 > | and_term2}
expressionl = { <or_term1> [OR <or_term1> |...| <and_term1> [AND <and_term1>]...}
expression2 = { < or_term2 > [OR < or_term2 > ... < and_term2>[AND <and_term2>]...}
or_terml = {A|B|C|D|INRange| OUTRange}
and_terml = {NOTA|NOTB|NOTC|NOTD |INRange| OUTRange}
or-term2 = {E|F|G|H}
andterm2 = (NOTE|NOTF|NOTG |NOTH}

Figure 12-I. STRace Subsystem Syntax Diagram (continued)

HP 1652B/16538 STRace Subsystem

Programming Reference

12-3

STRace
]
STRace selector

The STRace (State Trace) selector is used as a part of acompound
header to access the settings found in the State Trace menu. It always
follows the MACHine selector because it selects a branch directly below
the MACHine level in the command tree.

Command Syntax: :MACHine{ 1|2}:STRace

Example: OUTPUT XXX;":MACHINE1:STRACE:TAG TIME"

STRace Subsystem HP 1652B/1653B
124 Programming Reference

I
BRANCch

i
Note %

Note %

HP 1652B/1653B
Progmmming Reference

BRANch

command/query

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matched, it will cause the sequencer
to jump to the specified sequence level.

“RESTART PERLEVEL" must have been invoked for this command to
have an effect (see RESTart command).

The terms used by the branch qualifter (A through H) are defined by the
TERM command. The meaning of INRange and OUTRange is
determined by the RANGe command.

Within the limitations shown by the syntax definitions, complex
expressions may be formed using the AND and OR operators.
Expressions are limited to what you could manually enter through the
front panel. Regarding parentheses, the syntax definitions on the next
page show only the required ones. Additional parentheses are allowed as
long as the meaning of the expression is not changed. For example, the
following two statements are both correct and have the same meaning.
Notice that the conventional rulesfor precedence are not followed.

OUTPUT XXX;": MACHINE]:STRACE :BRANCH1 {(C OR D ANO F OR G), 1"
OUTPUT XXX;*:MACHINE1:STRACE:BRANCHI ((C OR D) AND (F OR G)), 1"

Fiie 12-2 shows a complex expression as seen on the Format display.

Branching across the trigger level is not allowed. Therefore, the values for
<N>and<to level num > must both be either on or before the trigger
level, or they must both be after the trigger level. Thetrigger level is
determined through the SEQuence command.

The BRANCch query returns the current branch qualifier specification for
a given sequence level.

STRace Subsystem
12-5

BRANch

Command Syntax:

where:

<N>
< to-level-number >

< number of levels>
<branch-qualifier >

<any_term>

< expressionl >
< expression2 »
<or_term1>
<and terml >

<or term2>
< and term2 >

Examples:

Query Syntax

Returned Format:

Example:

STRace Subsystem
12-6

:MACHine{1 2}:STRace:BRANch <N>

: = an integer from 1 to <number_of_ levels>

<branch-qualifier >, c to-level-number >

;1 = integer from 1 to trigger level, when <N > is less than or equal to the trigger level
or from (trigger level + 1) to <number-of-levels >, when <N > is greater than the

trigger level

0 = integer from 2 to the number of existing sequence levels (maximum 8)

: = { ANYState | NOSTate | <any-term > |

(<expression 1 > [{AND | OR} < expression2 >])
(<expression2> [{AND|OR} <expressionl >]) }

o= {<or_term1>| <and_term1> c or-term2 > | < and-term:! >}
i1 = {<or_term1>[OR <or_term1>]... | <and_term1 > {AND <and_term1>]...}
= {<or_term2> [OR <or_term2>]...| <and_term2> [AND <and_term2>]..}

::= {A|B|C|D|INRange|OUTRange}

= { NOTA|NOTB NOTC |NOTD INRange OUTRange}

.= {EIF|GIH}
= = {NOTE | NOTF NOTG (NOTH}

OUTPUT XXX;":MACHINEL:STRACE:BRANCHL ANYSTATE, 3"

OUTPUT XXX:":MACHINE2:STRACE:BRANCHZ A. 7~

OUTPUT XXX;":MACHINE1:STRACE :BRANCH3 ((A OR B) OR NOTG). 1"

:MACHine{1/2}:STRace:BRANch <N>?

[:MACHine{1|2}:8TRace:BRANch < N> }< branch_qualifier >, <to_level_num> <NL>

10 DIM String$ [100]

20 OUTPUT XXX;”:MACHINE1:STRACE :BRANCH3?"
30 ENTER XXX;String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

BRANch

Note ﬁ

HP 1652B/1653B
Programming Reference

[FACHINE 1 - stota Trace Specificetion
Trace mode [_SToale_J

lLauslo

g' Full qualifier Specification

Figure 12-2. Complex qualifier

Fiie 12-2 is a front panel representation of the complex qualifier
(a Orb) And (e And #h). The following example would be used to
specify this complex qudlifier.

OUTPUT XXX;™ :MACHINEL:STRACE:BRANCHL ((A OR B) AND (NOTE AND NDTH)), 2"

Terms A through D and RANGE must be grouped together and terms
E through H must be grouped together. In the first level, terms from
one group may not be mixed with terms from the other. For example, the
expression ((A OR INRANGE) AND (C OR H)) is not alowed because
the term C cannot be specified in the E through H group.

Keep in mind that, at the first level, the operator you use determines
which terms are available. When AND is chosen, only the NOT terms
may be used. Either AND or OR may be used at the second level to join
the two groups together. It is acceptable for a group to consist of a single
term. Thus, an expression like (B AND G) is legd, since the two
operands are both simple terms from separate groups.

STRace Subsystem
12-7

FIND

FIND command/query

The FIND command defines the proceed qualifier for a given sequence
level. The qualifier tells the state analyzer when to proceed to the next
sequence level. When this proceed qualifier is matched the specified
number of times, the sequencer will proceed to the next sequence level.
The state that causes the sequencer to switch levels is automatically stored
in memory whether it matches the associated store qualifier or not. In the
sequence level where the trigger is specified, the FIND command
specifies the trigger qualifier (see SEQuence command).

The terms A through H are defined by the TERM command. The
meaning of INRange and OUTRange is determined by the RANGe
command. Expressions are limited to what you could manualy enter
through the Format menu. Regarding parentheses, the syntax definitions
below show only the required ones. Additional parentheses are allowed
as long as the meaning of the expression is not changed. See figure 6-2 for
a detailed example.

The FIND query returns the current proceed qualifier specification for a
given sequence level.

Command Syntax: :MACHine{1|2}:STRace:FIND<N> < proceed-qualifier >, c ooourrenoe >

where:
<N> ;. = integer from 1 to the number of existing sequence levels (maximum 8)
<occurrence> = integer from 1 to 65535
< proceed-qualifier > = { ANYState | NOSTate | <any-term > |
(<expressionl > [{AND]|OR} <expression2>}) |
(< expression2 > [{AND | OR} < expression 1>]}}
<any term> ::= {<or_term1> | <and_termi> | <or_term2> | <and_term2>}

< expression 15 { <or_term1 > [OR <or_term1>]..| <and_term1> [AND <and_term1>}...}

< expression2 > {<or_term2> [OR <or_term2>}.. <and_term2> [AND <and_term2>]...}

<or_term1> = {A|B|C|D]|INRange| OUTRange}
<andterm 1> 1= { NOTA|NOTB |[NOTC|NOTD |INRange | OUTRange}
<or_term2> = {E|F|G|H}
< and-term2 > = {NOTE | NOTF | NOTG | NOTH}
STRace Subsystem HP 1652B/1653B

12-8 Programming Reference

FIND

Examples: output xxx ;":MACHINE1:STRACE:FIND1 ANYSTATE. 1
OUTPUT XxX;" :MACHINEL:STRACE:FIND2 A, 512"
OUTPUT XXX;":MACHINE1:STRACE:FIND3 ((NOTA AND NDTB) OR G), 1"

Query Syntax: :MACHine{1|2}:STRace:FIND4?
Returned Format: [:MACHine{1 }2}:STRace:FIND<N>] <proceed_qualifier >, <occurrence> <NL>

Example: 10 DIM String$ [100]
20 OUTPUT XXX;" :MACHINE1:STRACE:FIND<N>?"
30 ENTER XXX;String$
40 PRINT String$
50 END

HP 1652B/1653B STRace Subsystem
Programming Reference 12-9

PREStore
I

PREStore command/query

The PREStore command turns the prestore feature on and off. It also
defines the qualifier required to prestore only selected states. The terms
A through H are defmed by the TERM command. The meaning of
INRange and QUTRange is determined by the RANGe command.

Expressions are limited to what you could manualy enter through the
Format menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are alowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 12-2.
The PREStore query returns the current prestore specification.

Command Syntax: :MACHine{1|2}:STRace:PREStore {OFF <« prestore-qualifier > }

where:
< prestore-qualifier > = = { ANYState | NOSTate <any-term >
(<expression 1 > [{AND |OR} <expression2 >1J)
{<expression2> [{AND|OR} <expressiont >1}) }
<any-term > = = { <or_term1 > | <and_term1 > <or_term2> | <and_term2>}
<expression 1 > = { <or_termi> [OR <or_termi], | <and_term1> [AND <and_term1>]..}
<expression2» = { <or_term2>[OR <or_term2>].. <and_term2>[AND <and_term2>]...}
<or termi> ::= {A|B|C|D{INRange|OUTRange}
<and-term 1 > = {NOTA|NOTB |NOTC | NOTD|INRange | OUTRange}
<or term2> ::= {E|F|G|H}
<and-term2> ::= {NOTE|NOTF|NOTG|NQTH}
STRace Subsystem HP 1652B/1653B

12-10 Programming Reference

PREStore

Examples:

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

OUTPUT XXX;":MACHINE1:STRACE :PRESTORE OFF"
OUTPUT XXX;'' :MACHINE]:STRACE:PRESTORE ANYSTATE"

OUTPUT XXX; ' :MACHINE1:STRACE:PRESTORE (E)"
OUTPUT XXX;":MACHINEL:STRACE:PRESTORE (A OR B OR D OR F OR H)"

:MACHine{1|2}:STRace:PREStore?
(:MACHine{1|2}:STRace:PREStore] {Off | < prestore_qualifier > } < NL >

10 DIM String${100]

20 OUTPUT XXX;":MACHINEL:STRACE:PRESTORE?"
30 ENTER XXX;String$

40 PRINT String$

50 END

STRace Subsystem

12-11

RANGe

RANGe command/query

The RANGe command allows you to specify arange recognizer termin
the specified machine. Since arange can only be defined across one label
and, since alabel must contain 32 or less bits, the value of the start pattern
or stop pattern will be between (232)-1 and 0.

@ Since alabel can only be defined across a maximum of two pods, arange
Note term isonly available across asingle |abel; therefore, the end points of the
range cannot be split between labels.

When these values are expressed in binary, they represent the bit values
for the label at one of the range recognizers’ end points. Don'’t cares are
not allowed in the end point pattern specifications. Since only one range
recognizer exists, it is always used by the first state machine defmed.

The RANGe query returns the range recognizer end point specifications
for therange.

ﬁ When two state analyzers are on, the RANGe term is not available in the
Note second state analyzer assigned and there are only 4 pattern recognizers
per analyzer.

STRace Subsystem HP 1652B/1653B
12-12 Programming Reference

RANGe

Command Syntax: :MACHine{1|2}:STRace:RANGE <label_name >, <start_pattern >, <stop_pattern >

where:

<label-name > = string of up to 6 alphanumeric characters

< start pattern> = *{#B{0]1}...|
#Q{0/1/2]3|4|5|6]7} .. . |
#H{0|1|2|3|4|5/6/7|8|9]A|B|C|D|E|F}.. .|
{0[1]2(3{4|5/6]7(8{8} ... }*

<stop_pattern> : : = “{#B{0|1}.
#Q{0|1]2|3|4|5]6]7}.. . |
#H{0|1]2/3|4/5|6|7|8|9|A|B|C|DIE|F}. ..
{011]2|3}4|5]6]7(8]8} .. .}"

Examples: ~ OUTPUT XXX;':MACHINE1:STRACE:RANGE "DATA*, '127', "255" "
OUTPUT XXX;":MACHINEL:STRACE:RANGE “ABC™, '#B00001111'", "#HCF""

QuerySyntax: :MACHine{1|2}:STRace:RANGe?

Returned Format: [:MACHine{1}2}:STRAce:RANGe]
< label-name > , ¢ start_pattern >, < stop_pattern > < NL >

Example: 10 DIM String$ [100]
20 OUTPUT XXX;":MACHINEL1:STRACE:RANGE?"
30 ENTER XXX;String$
40 PRINT String$
50 END

HP 1652B/1653B STRace Subsystem
Programming Reference 12-13

RESTart
I

RESTart command/query

The RESTart command selects the type of restart to be enabled during
the trace sequence. It also defines the global restart qualifier that restarts
the sequence in global restart mode. The qualifier may be a single term or
a complex expression. The terms A through H are defined by the TERM
command. The meaning of INRange and OUTRange is determined by
the RANGe command.

Expressions are limited to what you could manualy enter through the
Format menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additiona parentheses are alowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 12-2.
The RESTart query returns the current restart specification.

Command Syntax: :MACHine{1 |2}:STRace:RESTart {OFF | PERLevel <restart_qualifier>}

where:
<restart_qualifier> 1 = { ANYState | NOSTate | <any_term >
(< expressionl > [{AND | OR} ¢ expression2 >])|
(<expression2> [{AND|OR} <expression1 >]) }
<any-term > 1 = { <or_termi > | <and_term1 > | <or_term2> <and_term2>}
<expression 1> 1 = {<or_term1> [OR <or_term1>].. <and_term1> [AND <and_term1>]...}
< expression2 > = {<or_term2>[OR <or_term2>]... | <and_term2>[AND <and_term2>]..}
<or_termi> = {A|B|C|D|INRange | OUTRange}
<andterml > : = { NOTA |NOTB [NOTC |NOTD | INRange | OUTRange}
<or term2> 1= {E|F|G|H}
<andterm2 > ::= {NOTE|NOTF|NOTG|NOTH}

Examples: ouTPUT XXX;' :MACHINE1:STRACE :RESTART OFF"
OUTPUT XXX;" :MACHINE1:STRACE:RESTART PERLEVEL"

OUTPUT XXX;":MACHINEL:STRACE:RESTART (NOTA ano NOTB anp INRANGE)"
OUTPUT XXX;":MACHINEL:STRACE:RESTART (B OR (NOTE AND NOTF))"

STRace Subsystem HP 1652B/1653B
12-14 Programming Reference

RESTart

Query Syntax: :MACHine{1|2}:STRace:RESTart?
Returned Format: [:MACHine{1|2}:STRace:RESTart] {OFF | PERLevel | <restart-qualifier>) <NL>

Example: 10 DIm String$[100]
20 OUTPUT XxX;™ :MACHINE1:STRACE:RESTART?"
30 ENTER XXX;String$
40 PRINT String$
50 END

HP 1652B/1653B STRace Subsystem
Progmmming Reference 12-15

SEQuence

SEQuence

Command Syntax:

where:

<number of levels>
<level _of_ trigger>

Example:
Query Syntax:

Returned Format:

Example:

STRace Subsystem
12-16

command/query

The SEQuence command redefines the state analyzer trace sequence.
Fist, it deletes the current trace sequence. Then it inserts the number of
levels specified, with default settings, and assigns the trigger to be at a
specified sequence level. The number of levels can be between 2 and 8
when the analyzer is armed by the RUN key, When armed by the BNC or
the other machine, a level is used by the arm in; therefore, only seven
levels are available in the sequence.

The SEQuence query returns the current sequence specification.

:MACHine{ 1|2}:STRace:SEQuence < number-of-levels > , <level-of-trigger >

i = integer from 2 to 8 when ARM is RUN or from 2 to 7 otherwise
it = integer from 1 to (number of existing sequence levels » 1)

OUTPUT XXX;” :MACHINE1 : STRACE : SEQUENCE 4.3~
:MACHine{1|2}:STRace:SEQuence?

[:MACHine{ 1|2}:STRace: SEQuence]
< number of levels >, <level of trigger > < NL >

10 DIM String$[100)

20 OUTPUT XXX;":MACHINE1:STRACE:SEQUENCE?"
30 ENTER XXX;String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

STORe

STORe command/query

The STORe command defines the store qualifier for a given sequence
level. Any data matching the STORe qualifier will actualy be stored in
memory as part of the current trace data. The qudifier may be a single
term or a complex expression. The terms A through H are defined by the
TERM command. The meaning of INRange and OUTRange is
determined by the RANGe command.

Expressions are limited to what you could manualy enter through the
Forma menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are alowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 12-2.

The STORe query returns the current store qualifier specification for a
given sequence level <N >

Command Syntax: :MACHine{ 1]2):STRace:STORe <N > <store-qualifier >

where:
<N> = an integer from 1 to the number of existing sequence levels (maximum 8)
< store-qualifier > = { ANYState | NOSTate | <any_term > |
(< expression 1 > [{AND | OR} <expression2 > J} |
(< expression2 > [{AND | OR} < expression 1>])}
<any term> = { <or_term1> <and_term1 > | <or_term2 > | <and_term2> }
<expression 1 > = {<or_term1> [OR <or_term1>]...| <and_term1> [AND <and_term1>]..}
<expression2 > = {<or_term2>[OR <or_term2>1]... | <and_term2>[AND <and_term2>}...}
<orterml> = {A|B|C|D|INRange|OUTRange}
<andterm 1> = { NOTA|NOTB |NOTC |NOTD{ INRange OUTRange}
<or term2> = {E|F|G|H}
<and_term2> ::= {NOTE|NOTF|NOTG|NOTH}
HP 1652B/1653B STRace Subsystem

Progmmming Reference 12-17

STORe

Examples: oUTPUT XxX;'* :MACHINEL:STRACE:STORE ANYSTATE"
OUTPUT XXX; " :MACHINEL:STRACE :STORE2 OUTRANGE"
OUTPUT XXX;":MACHINEL:STRACE:STORE3 (NOTC AND NOTD AND NOTH)"

QuerySyntax: :MACHine{1]2}:STRace:STORe <N>?
Returned Format: [:MACHine{1|2}:5TRace:STORec N >] <store-qualifier > ¢ NL>

Example: 10 Dim String$ [100]
20 OUTPUT XXX: ' :MACHINE1:STRACE:STORE4?"
30 ENTER XXX;String$
40 PRINT String$
50 END

STRace Subsystem HP 1652B/1653B
12-18 Programming Reference

TAG

TAG command/query

The TAG command selects the type of count tagging (state or time) to be
performed during data acquisition. State tagging is indicated when the
parameter is the state tag qualifier, which will be counted in the qualified
state mode. The qualifier may be a single term or a complex expression.
The terms A through H are defined by the TERM command. The terms
INRange and OUTRange are defined by the RANGe command.

Expressions are limited to what you could manualy enter through the
Format menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additiona parentheses are dlowed as long as the
meaning of the expression is not changed. A detailed example is provided
in figure 12-2.

Because count tagging requires aminimum clock period of 60 ns, the
CPERiod and TAG commands are interrelated (the CPERiod command
is in the SFORmat subsystem). When the clock period is set to Less
Than count tagging is turned off. When count tagging is set to either state
or time, the clock period is automatically set to Greater Than.

The TAG query returns the current count tag specification.

Command Syntax: :MACHine{1 |2}:STRace:TAG {OFF | TIME | <state-tag-qualifier>)

where:

<state-tag-qualifier > 1 = { ANYState | NOSTate -zany-term > |
{<expression1 > [{AND|OR} <expression2>])|
(<expression2> [{AND|OR} <expression1 >]) }

c any-term > { <or_term1 > <and_term1> | <or_term2> <and_term2 > }

<expression 1 > ={<or_term1> [OR <or_term1>]...| <and_term1>[AND <and_term1>]...}
C expression2 > = { <or_term2> [OR <or_term2>].. <and_term2> [AND <and_term2>]...}
<or_termi1> ;= {A|B|C|D|INRange |OUTRange}
<and-term 1 > = { NOTA|NOTB NOTC NOTD |INRange | OUTRange}
<or_term2> = {E|F|G|H}
<and term2 > 1= {NOTE|NOTF{NOTG|NOTH}
HP 1652B/1653B STRace Subsystem

Programming Reference 12-19

TAG

Examples: OUTPUT XXX;™:MACHINE1:STRACE:TAG OFF"
OUTPUT XXX:*:MACHINE1:STRACE:TAG TINE"
OUTPUT XXX;":MACHINE1:STRACE:TAG (INRANGE OR NOTF)"
OUTPUT XXX;":MACHINE1:STRACE:TAG ((INRANGE OR A) AND E)"

QuerySyntax: :MACHine{1|2} :STRace:TAG?

Returned Format: :MACHine{1]|2}:STRace:TAG] {OFF|TIME| <state_tag_qualifier>} <NL>

Example: 10 pIm String$[100]
20 OUTPUT XXX;":MACHINE1:STRACE:TAG?"

30 ENTER XXX;String$
40 PRINT String$
50 END

HP 1652B/1653B

STRace Subsystem
Programming Reference

12-20

TERM

TERM command/query

The TERM command alows you to a specify a pattern recognizer term in
the specified machine. Each command deals with only one label in the
given term; therefore, a complete specification could require severd
commands, Since a label can contain 32 or less hits, the range of the
pattern value will be between 232. 1 and 0. When the value of a paiter is
expressed in binary, it represents the it values for the label inside the
pattern recognizer term. Since the pattern parameter may contain don’t
cares and be represented in severa bases, it is handled as a string of
characters rather than a number.

When a single state machine is on, al eight terms (A through H) are
available in that machine. When two state machines are on, terms A
through D are used by the first state machine defmed, and terms E
through H are used by the second state machine defined.

The TERM query returns the specification of the term specified by term
identification and label name.

Command Syntax: :MACHine{1|2}:STRace:TERM <term_id >, c label-name >, <pattern >

where:
<termid > ::= {A|B|C|D|E|F|G|H}
< label-name > :: = string of up to 6 alphanumeric characters
< pattern > : =‘{#B{0| 1 |X} .]

#Q{0]1(2|3|4]5(6(7|X} .. .|
#H{0[1]2|3|4|5|6/7|8|9|A|B|C|DIE[F|X} . ..
{011]2/3]4|5/6|7|8]9} .. . }*

Example: OUTPUT XXX;":MACHINE1:STRACE:TERM A,'DATA','255" "
OUTPUT XXX;":MACHINE1:STRACE:TERM B, "ABC', '#BXXXX1101'"

HP 1652B/1653B STRace Subsystem
Programming Reference 12-21

TERM

Query Syntax: :MACHine{1]|2}:STRace:TERM? <term-id >, < label-name >
Retuned Format: [:MACHine{1}2}:STRAce:TERM] <term_id >, <label-name >, <pattern > < NL>

Example: 10 pIM String$[100]
20 OUTPUT XXX;":MACHINE1:STRACE:TERM? B, ‘DATA' "

30 ENTER XXX;String$
40 PRINT String$
50 END

STRace Subsystem HP 1652B/1653B
12-22 Programming Reference

SLISt Subsystem 13

Introduction The SLISt subsystem contains the commands available for the State
Listing menu in the HP 1652B/53B logic analyzer. These commands are:

COLumn
DATA
LINE
MMODe
OPATtern
OSEarch
OSTate
OTAG
RUNTIl
TAVerage
TMAXimum
TMINimum
VRUNs
XOTag
XPATtern
XSEarch
XSTate
XTAG

HP 1652B/1653B SLIST Subsystem
Programming Reference 13-

-
y
——(c

COLumn? space col_num |
—~(COLum 7)} spoce [+ |

——(oATA?H space H line-number | °

label_name

1
L INE space }—D‘ | ine_num_mid_screeni

»{ LINE? }

o= MMODe?)
—{OPATteranpcce }—P{ labe | _name
—DCOPATternD——D‘ space H tabel _name }

L}

tabe !l _pattern

—b(OSEorchH space H occurrence

—a={ OSEarch? »

SLIST Subsystem
13-2

‘—H 0STate?

01850510 [

Figure 13-1. SLISt Subsystem Syntax Diagram

HP 1652B/1653B
Programming Reference

HP 1652B/1653B
Programming Reference

1

space time_value I

state_value

OTAG?

by

--—QRUNTi IH space Hiun_unti l_sp;}*

RUNT1? -

TAVerage?

TMAX i mum? -

T

TMINimum? o

Lo 2}
VRUNs?)

—e={ XOTag? »
—DCXF’ATteM space H label _name ° label_pattern

—-—CXPATtern?H spcc?H |<:bel_name‘]l
—D@orc@——’{ spoceHoccurrence

XSEarch?

I

XSTate?
time_value I

space
= XTAG? }
18510/8X06

Figure 13-l. SLISt Subsystem Syntax Diagram (continued)

SLIST Subsystem

13-3

module-num = {7]2(3]4|5}

mach_num = { 7|2}

col num = {1{2|3{4{5|6|7|8}

line-number = integer from -1023 to + 1023

label-name = a string of up to 6 alphanumeric characters

base = { BINary| HEXadecimal | OCTal| DECimal| ASCii| SYMBol | LASSembler} for labels or
{ABSolute| RELative Jfor tags

line_num_mid_screen = integer from -1023 to + 1023

label_pattern = "{ #B{0|1|X}. . .|
#0(0[112|314|5|6(7|X} .. .|
#H{0|1|2|3|4|56]|7|8(9|4|B|C|D|E|F|X}. . .
{011]1213|4]5/6]718]9}.. . }"

occurrence = integer from -1023 to + 1023

time-value = real number

state-value = real number

run_until_spec = (OFF LT, <value>|GT, < value>| INRange, < value >, < value > |
OUTRange, < value >, < value >}

value = real number

Figure 13-1. SLISt Subsystem Syntax Diagram (continued)

SUST Subsystem HP 16528/1653B
13-4 Programming Reference

SLISt

SLISt selector

The SLISt selector is used as part of a compound header to access those
settings normally found in the State Listing menu. It always follows the
MACHine selector because it selects a branch directly below the
MACHine level in the command tree.

Command Syntax: :MACHine{1|2}:SLISt

Example: OUTPUT XXX;" :MACHINE1:SLIST:LINE 256"

HP 18528/1653B SLIST Subsystem
Programming Reference 185

COLumn
[

COLumn command/query

The COLumn command allows you to configure the state analyzer

list display by assigning a label name and base to one of the eight vertical
columnsin the menu. A column number of 1 refersto the left most
column. When alabel is assigned to a column it replaces the original 1abel
in that column. The label originally in the specified column is placed in
the column the specified label is moved from.

When the label nameis“TAGS,” the TAGS column is assumed and the
next parameter must specify REL ative or ABSolute.

The optional machine number specifies the machine number of another
time-correlated machine. If the machine number is not specified, the
selected machine is assumed.

The COLumn query returns the column number, label name, and base for
the specified column.

Command Syntax: :MACHine{ 1 |2}:SLISt:COLumn <col_num >[,MACHine{1]2}],
¢ label name >, < base >

where:
<col_num> = {1|2]3]4|5|6|7|8}
<module-num > ::= {1]2|3)4]5}
<label-name > :: = a string of up to 6 alphanumeric characters
<base > ::={BINary|HEXadecimal OCTal DECimal|ASCii SYMBo! IASSembler} for labels

or
:: = {ABSolute | RELative} for tags

@ A label for tags must be assigned in order to use ABSolute or REL ative
Note state tagging.

Examples: OUTPUT XXX;":MACHINEL:SLIST:COLUMN 4,2,MACHINEL, ‘A" HEX"
OUTPUT = XXX;":MACHINE1:SLIST:COLUMN 1,2,MACHINEL, 'TAGS', ABSOLUTE"

SLIST Subsystem HP 1652B/1653B
13-6 Programming Reference

COLumn

Query Syntax: :MACHine{1|2}:SLISt:COLumn? < col_num>

Returned Format: [:MACHine{ 1 |2}:SLISt:COLumn] <col_num > ,MACHine{ 1|2},
<label-name >, < base » < NL>

Example: 10 DM C1${100]
20 OUTPUT XXX;” :MACHINEL:SLIST:COLUMNT? 4 ~
30 ENTER XXX:C1$
40 PRINT C1$
50 END

HP 1652B/1653B SLIST Subsystem
13-7

Programming Reference

DATA

DATA query

The DATA query returns the value at a specified line number for agiven
label. The format will be the same as the one shown in the Listing display

except for ASCII, Symbols, or Inverse Assembly which will be returned in
HEX.

Query Syntax: :MACHine{1]|2}:SLISt:DATA? <ine-number >, <labelname >

Returned Format: [:MACHine{1|2}:SLISt:DATA]

<line-number >, « label-name > <pattern-string > < NL >

where:
<line number > :» = integer from -1023 to + 1023
< {abel name > :» = string of up to 6 alphanumeric characters
<pattern-string > no= "{#B{0| 1 |X} .

#Q{0(1]2|3]4]5|6|7|X} ...
#H{0|1|2/3|4|5|6|7|8|9|A|B|C|D[E[F|X} . .
{01 2]3|4|5|6(7|8|8}. - }'

Example: 10 pIm 5d$[100]
20 OUTPUT XXX;':MACHINE1:SLIST:DATA? 512. ‘RAS™
30 ENTER XXX;Sd$
40 PRINT Sd$
50 END

SLIST Subsystem

HP 1652B/1653B
13-8

Programming Reference

LINE

Command Syntax:

where:

<line pum mid screen >
Example:

Query Syntax:
Returned Format:

Example:

HP 16528/1653B
Programming Reference

LINE

command/query

The LINE command allows you to scroll the state analyzer listing
verticaly. The command specifies the state line number relative to the
trigger that the analyzer will be highlighted a center screen.

The LINE query returns the line number for the state currently in the
box at center screen.

:MACHine{1|2}:SLISLLINE ¢ line-num-mid-screen >

o = integer from -1023 to + 1023

OUTPUT XXX;":MACHINE1:SLIST:LINE 0"
:MACHine{1]2}:SLISt:LINE?
[:MACHine{1 |2}:SLISt:LINE] <line_num_mid_screen> <NL>

10 DIM Ln$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:LINE?"
30 ENTER XXX:Ln$

40 PRINT Ln$

50 END

SLIST Subsystem
13-9

MMODe

MMODe

Command Syntax:

where:

<marker mode>
Example:

Query Syntax:
Returned Format:

Example:

SLIST Subsystem
13-10

command/query

The MMODe command (Marker Mode) selects the mode controlling the
marker movement and the display of marker readouts. When PATTern is
selected, the markers will be placed on patterns. When STATe is selected
and dtate tagging is on, the markers move on qualified states counted
between normally stored states. When TIME is selected and time tagging
is enabled, the markers move on time between stored states. When
MSTats is selected and time tagging is on, the markers are placed on
patterns, but the readouts will be time dtatistics.

The MMODe query returns the current marker mode selected.

:MACHine{1 |2}:SLISt:MMODe <marker_mode >

;1= {OFF) PATTern | STATe | TIME) MSTats}

OUTPUT XXX;":MACHINE1:SLIST:MMODE TIME"
:MACHine{1 |2}:5LISt: MMODe?

[:MACHine{ 1}2}:SLISt:MMODe] < marker-mode > < NL>

10 DIM Mn$ [100)

20 OUTPUT XXX;™:MACHINEL1:SLIST:MMODE?"
30 ENTER XXX;Mn$

40 PRINT Mn$

50 END

HP 1652B/1653B
Programming Reference

OPATtern

OPATtern

Command Syntax:

where:

¢ label-name >
< labelgattern >

Examples:

HP 1652B/1653B

Programming Reference

command/query

The OPATtern command allows you to construct a pattern recognizer
term for the O Marker which is then used with the OSEarch criteriawhen
moving the marker on patterns. Since this command deals with only one
label at atime, a complete specification could require several invocations.

When the value of a pattern is expressed in biiary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base
is used, the value must be between 0 and 2 2. 1, since alabel may not have
more than 32 bits. Because the c labelgattern > parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

The OPATtern query returns the pattern specification for a given label
name.

:MACHine{ 1|2}:SLISt: OPATtern <label-name >, < labelgattern >

2 = string of up to 6 alphanumeric characters

2= #BO[LX)
#Q{0|1]2|3|4}5|6|7|X} . . .
#H{0|1|2|3/4|5|6/7|8|9|A|B|C|D|E|F|X} .. .
{0[1|2/3/4/5|6|7|8]9} .. .}"

OUTPUT XXX;":MACHINE1:SLIST:OPATTERN 'DATA’, 255" "
OUTPUT XXX;":MACHINE1:SLIST:OPATTERN 'ABC', '#BXXXX1101'"

SLIST Subsystem
13-11

OPATtern

Query Syntax: :MACHine{1]2}:SLISt:OPATtern? < label-name >
Returned Format: [:MACHine{1}2}:SLISt:OPATtern] < label-name >, < label-pattern > < NL>

Example: 10 piv 0p${100]
20 OUTPUT XXX;" :MACHINE1:SLIST:OPATTERN? -A""
30 ENTER XXX;0p$
40 PRINT Op$
50 END

SLIST Subsystem HP 1652B/1653B
13-12 Programming Reference

OSEarch

Command Syntax:

where:

<occurrence >
<origin >

Example:
Query Syntax:

Returned Format:

Example:

HP 1652B/1653B
Programming Reference

OSEarch

command/query

The OSEarch command defines the search criteria for the 0 marker,
which is then used with associated OPATtem recognizer

specification when moving the markers on patterns. The origin parameter
tells the marker to begin a search with the trigger, the start of data, or with
the X marker. The actua occurrence the marker searches for is
determined by the occurrence parameter of the OPATtem

recognizer specification, relative to the origin. An occurrence of 0 places
the marker on the selected origin. With a negative occurrence, the marker
searches before the origin. With a positive occurrence, the marker
searches after the origin.

The OSEarch query returns the search criteria for the 0 marker.

:MACHine{ 1|2}:SLISt:OSEarch <occurrence >, < origin >

= integer from -1023 to + 1023
:: = {TRIGger | STARt | XMARker}

OUTPUT XXX;":MACHINE1:SLIST:0SEARCH +10, TRIGGER"
:MACHine{ 1|2}:SLISt:OSEarch?

[:MACHine{ 1)|2}:SLISt:OSEarch] <occurrence >, <origin > < NL>

10 OIM 0s${100]

20 OUTPUT XXX;“:MACHINEL:SLIST:0SEARCH?"
30 ENTER XXX;O0s$

40 PRINT Ds$

50 END

SLIST Subsystem
13-13

OSTate

OSTate query

The OSTate query returns the line number in the listing where the 0

marker resides (-1023 to + 1023). If data is not valid, the query returns
32767.

Query Syntax: :MACHine{1}2}:SLISt:OSTate?

Returned Format: [:MACHine{1 |2}:SLISt:0STate] <state_num > <NL>

where:

« state-num > = an integer from -1023 to + 1023, or 32767

Example: 10 oim 0s$[100]
*20 OUTPUT XXX;":MACHINE1:SLIST:OSTATE?"
30 ENTER XXX;0s$
40 PRINT 0s$
50 END

SLIST Subsystem HP 1652B/1653B
13-14 Programming Reference

OTAG

Command Syntax:

where:

< time value 7
< state-value >

Example:
Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Progmmming Reference

OTAG

command/query

The OTAG command specifies the tag value on which the 0 Marker
should be placed. The tag value is time when time tagging is on or states
when dtate tagging is on. If the data is not vaid tagged data, no action is
performed.

The OTAG query returns the O Marker position in time when time
tagging is on or in states when state tagging is on, regardless of whether
the marker was positioned in time or through a pattern search. If data is
not valid, the query returns 9.9E37 for time tagging, 32767 for state

tagging.
:MACHine{1|2}:SLISt:OTAG { <time_value> | estate-value 7)

:OUTPUT XXX;" :MACHINEL:SLIST:0TAG 40.0E-6"
‘MACHine{1}2}:SLISt.OTAG?
[:MACHine{1|2}:SLISOTAG] {dime-value.7 | <state-value >} <NL>

10 DIM 0t$(100]

20 OUTPUT XXX;":MACHINE1:SLIST:0TAG?"
30 ENTER XXX;0t$

40 PRINT Ot$

50 END

SLIST Subsystem
13-15

RUNTII

I
RUNTII command/query

The RUNTIl (run until) command alows you to defme a stop condition
when the trace mode is repetitive. Specifying OFF causes the analyzer to
make runs until either the display’s STOP field is touched or the STOP
command is issued.

There are four conditions based on the time between the X and 0

markers. Using this difference in the condition is effective only when time
tags have been turned on (see the TAG command in the STRace
subsystem). These four conditions are as follows:

The difference is less than (LT) some value.

The difference is greater than (GT) some value.
The difference is inside some range (INRange).
The difference is outside some range (OUTRange).

e © o ©

End points for the INRange and OUTRange should be at least 10 ns apart
since this is the minimum time resolution of the time tag counter.

There are two conditions which are based on a comparison of the
acquired state data and the compare data image. You can run until one of
the following conditions is true:

o Compare Equal (EQUal) . Every channel of every label has the
same value.

+ Compare not equal (NEQual) - Any channel of any label has a
different value.

The RUNTIl query returns the current stop criteria

] The RUNTIl instruction (for state analysis) is available in both the SLISt
Note 3 and COMPare subsystems.

SLIST Subsystem HP 1652B/1653B
13-16 Programming Reference

RUNTIl

Command Syntax: :MACHine{1|2}:SLIStRUNTil <run_until_spec>

where:
c run-until-spec > :: = {OFF| LT, <value >|GT, <value > INRange, <value >, <value >
|OUTRange, <value >, <value > | EQUal |NEQual}
<value> :: =real number from -9E9 to +8E9

Example: OUTPUT XXX;":MACHINE1:SLIST:RUNTIL GT,800.0E-6"
QuerySyntax: :MACHine{1|2}:SLISt:RUNTiI?
Returned Format: {:MACHine{1|2}:SLISt:RUNTIl] <run_until_spec> < NL>

Example: 10 pIv Ru$[100]
20 OUTPUT XXX;":MACHINE1:SLIST:RUNTIL?"
30 ENTER XXX;Ru$
40 PRINT Ru$
50 END

HP 1652B/1653B SLIST Subsystem
Programming Reference 13-17

TAVerage
|

TAVerage query

The TAVerage query returns the value of the average time between the X
and 0 Markers. If the number of valid runs is zero, the query returns
9.9E37. Valid runs are those where the pattern search for both the X and
0 markers was successful, resulting in valid deltatime measurements.

Query Syntax: :MACHine{1}2}:SLISt:TAVerage?
Returned Format: [:MACHine{1|2}:SLISt:TAVerage] < time-value > < NL>

where:

< time value > o = real number

Example: 10 DIM Tv§[100]
20 OUTPUT XXX;":MACHINE1:SLIST: TAVERAGE?"
30 ENTER X00GTv$
40 PRINT Tv$
50 END

SLIST Subsystem HP 1652B/1653B
13-18 Programming Reference

TMAXimum

I
TMAXimum query

The TMAXimum query returns the value of the maximum time between
the X and O Markers. If data is not valid, the query returns 9.9E37.

Query Syntax: :MACHine{1|2}:SLISt:TMAXimum?
Retuned Format: [:MACHine{1|2}:SLISt TMAXimum] <time_value> <NL>

where:

< time-value > . = real number

Example: 10 DIM Tx$[100]
20 OUTPUT XXX;":MACHINE1:SLIST:TMAXIMUM?"
30 ENTER XXX;Tx$
40 PRINT Tx$
50 END

HP 1652B/1653B SLIST Subsystem
Programming Reference 13-19

TMINimum
]
TMINimum query

The TMINimum query returns the value of the minimum time between
the X and 0 Markers. If dataisnot valid, the query returns9.9E37.

QuerySyntax: :MACHine{1|2}:SLISt: TMINimum?
Returned Format: [:MACHine{1}2}:SLISt: TMINimum] <time_value > <NL>

where:

&« time value > o = real number

Example: 10 DIM Tm$ [100]
20 OUTPUT XXX;":MACHINEL:SLIST: TMINIMUM?"
30 ENTER XXX;Ti$
40 PRINT Tm$
50 END

SLIST Subsystem HP 1652B/1653B
13-20 Programming Reference

VRUNSs

VRUNS query

The VRUNSs query returns the number of valid runs and total number of
runs made. Valid runs are those where the pattern search for both the X
and 0 markers was successful resulting in valid delta time measurements.

Query Syntax: :MACHine{1}2}:SLISt:VRUNs?

Returned Format: [:MACHine{1|2}:SLISt:VRUNS] <valid_runs>, <total-runs> ¢ NL>

where:
<valid runs > :: = zero or positive integer
<total runs > i1 = zero or positive integer

Example: 10 v Vr$[100]
20 OUTPUT XXX;":MACHINE1:SLIST:VRUNS?"
30 ENTER XXX;Vr$
40 PRINT Vr$
50 END

HP 1652B/1653B SLIST Subsystem
Programming Reference 13-21

XOTag

XOTag

Query Syntax:
Returned Format:

where:

<XOtime >
< XO_states >

Example:

SLIST Subsystem
13-22

query

The XOTag query returns the time from the X to 0 markers when the
marker mode is time or number of states from the X to O markers when
the marker mode is state. If there is no data in the time mode the query
returns 9.9E37. If there is no datain the state mode, the query returns
32767.

:MACHine{1|2}:SLISt:XOTag?

[:MACHine{1 |2}:SLISt:XOTag] { <XO_time> | <XO_states>} <NL>

. = real number
o = integer

10 DIM Xot$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:XOTAG?"
30 ENTER XXX;Xot$

40 PRINT Xot$

50 END

HP 1652B/1653B
Programming Reference

I
XPATtern

Command Syntax:

where:

¢ label-name >
< labelgattern >

Examples:

HP 1652B/1653B

Programming Reference

XPATtern

command/query

The XPATtem command alows you to construct a pattern recognizer
term for the X Marker which is then used with the XSEarch criteria when
moving the marker on patterns. Since this command deals with only one
label at a time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizcr term. In whatever base
is used, the value must be between 0 and 2. 1, since a label may not have
more than 32 hits. Because the < labelgattem > parameter may contain
don't cares, it is handled as a string of characters rather than a number.

The XPATtem query returns the pattern specification for a given label
name.

:MACHine{1}2}:SLISt:XPATtern < label-name >, < label_pattern >

:: = string of up to 6 alphanumeric characters

= {#B{0]1|X}. ..
#Q{0]1]2)3)4]5/6)7IX} .. .|
#H{0|1|2(3]|4|5|6]7]|8|9|A|BIC|D|E|F|X} .. .
{011]2(3]45]6(7(8]9} - . . }'

ouTPUT xxx; " :MACHINE1:SLIST:XPATTERN "DATA’, 255" "
OUTPUT XXX;™ :MACHINEL:SLIST:XPATTERN °ABC’,’#BXXXX1101" *

SLIST Subsystem
13-23

XPATtern

QuerySyntax: :MACHine{t |2}:SLIStXPATtern? <iabet_name>
Returned Format: [:MACHine{1|2}:SLISt:XPATtern] <label-name >, < |abel_pattern > < NL>

Example: 10 DM Xp$[100]
20 OUTPUT XXX;":MACHINEL:SLIST:XPATTERN? ‘A
30 ENTER XXX;Xp$
40 PRINT Xp$
50 END

SLIST Subsystem HP 1652B/1653B
13-24 Programming Reference

XSEarch

]
XSEarch command/query

The XSEarch command defines the search criteria for the X Marker,
which is then with associated XPATtern recognizer specification when
moving the markers on patterns. The origin parameter tells the Marker
to begin a search with the trigger or with the start of data. The
occurrence parameter determines which occurrence of the XPATtem
recognizer Specification, relaive to the origin, the marker actualy
searches for. An occurrence of 0 places a marker on the selected origin.

The XSEarch query returns the search criteria for the X marker.

Command Syntax: :MACHine{1|2}:SLISt:XSEarch <occurrence > , <origin >

where:
< oceurrence > ;1= integer from -1023 to + 1023
<origin > :: ={TRIGger | STARt}

Example: OUTPUT XXX;":MACHINE1:SLIST:XSEARCH +10,TRIGGER"
Query Syntax: :MACHine{1|2}:SLISt:XSEarch?
Returned Format: [:MACHine{ 1|2}:SLISt:XSEarch] <occurrence >, <origin > ¢ NL>

Example: 10 DIM Xs$[100]
20 OUTPUT XXX;":MACHINEL1:SLIST:XSEARCH?"
30 ENTER XXX;Xs$
40 PRINT Xs$
50 END

HP 1652B/1653B SLIST Subsystem
Programming Reference 13-25

XSTate

XSTate

Query Syntax:

Returned Format:

where:

<state num 7

Example:

SLIST Subsystem
13-26

query

The XSTate query returns the line number in the listing where the X
marker resides (-1023 to + 1023). If data is not valid, the query returns
32767.

:MACHine{1]2}:SUSt:XSTate?

[:MACHine{1]2}:SLISt:XSTate] < state-num ><NL7

. = an integer from -1023 to + 1023, or 32767

10 DIM Xs$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:XSTATE?"
30 ENTER XXX;Xs$

40 PRINT Xs$

50 END

HP 1652B/1653B
Programming Reference

XTAG

Command Syntax:

where:

< time value >
<state-value >

Example:
Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

XTAG

command/query

The XTAG command specifies the tag value on which the X Marker
should be placed. The tag value is time when time tagging is on or states
when state tagging is on. If the data is not valid tagged data, no action is
performed.

The XTAG query returns the X Marker position in time when time
tagging is on or in states when state tagging is on, regardiess of whether
the marker was positioned in time or through a pattern search. If data is
not valid tagged data, the query returns 9.9E37 for time tagging, 32767 for
dtate tagging.

:MACHine{1|2}:SLISt:XTAG { <time-value > | < state-value >}

:» = real number
;1 = integer

:QUTPUT XXX;':MACHINEL:SLIST:XTAG 40.0E-8"
:MACHine{1]2}:SLISt:XTAG?
[:MACHine{1 |2}:SLISt:XTAG] { <time_value > | <state_value >} <NL>

10 DIM Xt$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:XTAG?"
30 ENTER XXX:Xt$

40 PRINT Xt$

50 END

SLIST Subsystem
13-27

SWAVeform Subsystem 14

Introduction

HP 1652B/1653B
Programming Reference

The commands in the State Waveform subsystem alow you to configure
the display so that you can view state data as waveforms on up to 24
channels identified by label name and bit number. The five commands are
analogous to their counterparts in the Tii Waveform subsystem.
However, in this subsystem the x-axis is restricted to representing only
samples (states), regardless of whether time tagging is on or off. As a
result, the only commands which can be used for scaling are DELay and
RANGge.

The way to manipulate the X and 0 markers on the Waveform display is
through the State Listing (SLISt) subsystem. Using the marker commands
from the SLISt subsystem will affect the markers on the Waveform display.

The commands in the SWAVeform subsystem are:

ACCumulate
DELay
INSert
RANGe
REMove

SWAVeform Subsystem
14-1

= 1

(:SWAVeform >——>®———<ACCumu I cteH space ’——@J‘

= ACCumulate? F
space }-————1 number_of_samples ‘——————-ﬁ
space }—’L'Iabel-name
space }-—b{ number_of_sampies %&

(REMOV6> 1551055

number_of_samples = integer from -1023 to + 1024
label-name = string of up to 6 alphanumeric characters
bit-id = {OVERIay | < bit-num >}

bit-num = integer representing a label bit from 0 to 31

Figure 14-1. SWAVeform Subsystem Syntax Diagram

SWAVeform Subsystem HP 1652B/1653B
14-2 Programming Reference

SWAVeform

Command Syntax:

Example:

HP 1652B/1653B
Programming Reference

SWAVeform

selector

The SWAVeform (State Waveform) selector is used as part of a
compound header to access the settings in the State Waveform menu. It
aways follows the MACHine selector because it selects a branch directly
below the MACHine level in the command tree.

:MACHine{ 1|2}:SWAVeform

OUTPUT XXX :MACHINE2:SWAVEFORM:RANGE 4"

SWAVeform Subsystem
14-3

ACCumulate

R
ACCumulate command/query

The ACCumulate command alows you to control whether the waveform
display gets erased between individua runs or whether subsequent
waveforms are alowed to be displayed over the previous waveforms.

The ACCumulate query returns the current setting. The query aways
shows the setting as the character "0" (off) or “1" (on).

Command Syntax: :MACHine{1]|2}:SWAVeform:ACCumulate {{ON 1}|{OFF 0)}
Example: OUTPUT XXX;”:MACHINE1:SWAVEFORM:ACCUMULATE ON”
QuerySyntax: MACHine{1|2}:SWAVeform:ACCumulate?
Returned Format: [MACHine{ 1]2}:SWAVeform:ACCumulate] {0 1} <NL>

Example: 10 DIM $tring$[100]
20 OUTPUT XXX;":MACHINE1:SWAVEFORM: ACCUMULATE?"
30 ENTER XXX; String$
40 PRINT String$
50 END

SWAVetorm Subsystem HP 1652B/1653B
144 Programming Reference

DELay

DELay command/query

The DEL ay command allows you to specify the number of samples
between the timing trigger and the horizontal center of the screen for the
waveform display. The allowed number of samplesisfrom -1023 to
+1024.

The DELay query returns the current sample offset value.

Command Syntax: :MACHine{l |2}:SWAVeform:DELay <number-of-samples>

where:

<number_of_samples> o = integer from -1023 to + 1024

Example: ~ OUTPUT XXX;":MACHINE2:SWAVEFORM:DELAY 127"
Query Syntax; MACHine{1|2}:SWAVeform:DELay?
Returned Format: [MACHine{ 1|2}:SWAVeform:DELay] <number-of-samples> <NL>

Example: 10 Dim String$[100]
20 OUTPUT XXX;":MACHINEL:SWAVEFORM:DELAY?"
30 ENTER XXX;String$
40 PRINT String$
50 END

HP 1652B/1653B SWAVeform Subsystem
Programming Reference 14-5

INSert

INSert command

The INSert command allows you to add waveforms to the state waveform
display. Waveforms are added from top to bottom on the screen. When
24 waveforms are present, inserting additional waveforms replaces the last
waveform. Bit numbers are zero based, so a label with 8 bits is referenced
as bits O-7. Specifying OVERIay causes a composite waveform display of
al bits or channels for the specified label.

Command Syntax: MACHine{1]|2}:SWAVeform:INSert <label-name >, < bitid >

where:
< label-name > ::= string of up to 6 alphanumeric characters
<bit_id > = {OVERiay < bit-num >}
<bit num> = integer representing a label bit from 0 to 31

Examples: OUTPUT XXX;":MACHINEL:SWAVEFORM: INSERT ‘WAVE’, 19”
OUTPUT XXX ;" :MACHINEL:SWAVEFORM: INSERT ‘ABC’, OVERLAY”
OUTPUT XXX;":MACH1:SWAV:INSERT 'POD1', #B1001"

SWAVeform Subsystem HP 1652B/1653B
14-6 Programming Reference

RANGe

RANGe command/query

The RANGe command allows you to specify the number of samples
across the screen on the State Waveform display. It is equivalent to ten
times the states per division setting (st/Div) on the front panel. A number
between 10 and 1040 may be entered.

The RANGe query returns the current range value.

Command Syntax: MACHine{ 1|2}:SWAVeform:RANGe <number _of_samples >

where:

<number_of_samples> = integer from 10 to 1040

Example: output XXX;":MACHINEZ: SWAVEFORM:RANGE 80"
Query Syntax: MACHine{1]2}:SWAVeform:RANGe?

Returned Format: [MACHine{1|2}:SWAVeform:RANGe] c number-of-samples > <NL>

Example: 10 DIM String$[100]
20 OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE?"
30 ENTER XXX; String$
40 PRINT String$
50 END

HP 1652B/1653B SWAVeform Subsystem
Programming Reference 14-7

REMove
]
REMove command

The REMove command allows you to clear the waveform display before
building a new display.

Command Syntax: :MACHine{1|2}:SWAVeform:REMove

Example: OUTPUT XXX;':MACHINE1:SWAVEFORM:REMOVE"

SWAVeform Subsystem HP 1652B/1653B
14-8 Programming Reference

SCHart Subsystem 15

Introduction The State Chart subsystem provides the commands necessary for
programming the HP 1652B/53B’s Chart display. The commands allow
you to build charts of label activity, using data normally found in the
Listing display. The chart's y-axis is used to show data values for the label
of your choice. The x-axis can be used in two different ways. In one, the
X-axis represents states (shown as rows in the State Listing display). In the
other, the x-axis represents the data values for another label. When states
are plotted along the x-axis, X and 0 markers are available. Since the
State Chart display is simply an alternative way of looking at the datain
the State Listing, the X and O markers can be manipulated through the
SLISt subsystem. In fact, because the programming commands do not
force the menus to switch, you can position the markers in the SLISt
subsystem and see the effects in the State Chart display.

The commands in the SCHart subsystem are:

e ACCumulate
o HAXis
VAXis

HP 16528116538 SCHart Subsystem
Programming Reference 15-1

—

;-
:SCHor})—p\i:)__ JCCumulotCH space ‘—E@.N——j
(oFF)

—

ACCumuiate?

»{ HAXis }————D‘ space

STAtes)— state_low_value

state_high_value

fabel_low_value

label_name

o
»{ HAX 57 }

—ﬂVAXis H space !—.{ labe | _name , high_volue J
~-{ VAXIS"\

18518503

state-low-value = integer from -1023 to + 1024
state-high-value = integer from < state low value > to + 1024
label-name = a string of up to 6 alphanumeric characters
label low-value = string from 0O to P (#HFFFFFFFF{
label_high value = string from_< label-low-value > t0°
low-value = stringfrom 0 to 232 .] (#HFFEFFFFF)
high-value = string from < low-value > to 22, (#HFFFFFFFF)

2 . | (#HFFFFFFFF)

Figure 151. SCHart Subsystem Syntax Diagram

SCHart Subsystem HP 1652B/1653B
16-2 Programming Reference

SCHart

SCHart

selector

The SCHart selector is used as part of a compound header to access the
settings found in the State Chart menu. It dways follows the MACHine

selector because it selects a branch below the MACHine level in the
command tree.

Command Syntax: :MACHine{1|2}:SCHart

Example: OUTPUT XXX;":MACHINE1:SCHART:VAXIS 'A’, ‘0', '9'"

HP 1652B/1653B
Programming Reference

SCHart Subsystem
153

ACCumulate
I

ACCumulate command/query

The Accumulate command alows you to control whether the chart
display gets erased between each individual run or whether subsequent
waveforms are alowed to be displayed over the previous waveforms.

The ACCumulate query returns the current setting. The query aways
shows the setting as the character "0" (off) or “1” (on).

Command Syntax: MACHine{1]|2}:SCHart:ACCumulate {{ON 1) |{OFF | 0}}
Example: ouTPUT XXX;":MACHINEL:SCHART:ACCUMULATE oFF"
QuerySyntax: MACHine{1|2}:SCHart:ACCumulate?
Returned Format: [MACHine{ 1 |2}:SCHart:ACCumulate} {0 | 1} < NL>

Example: 10 DIM String$[100]
20 OUTPUT XXX;":MACHINE1:SCHART:ACCUMULATE?"
30 ENTER XXX; String$
40 PRINT String$
50 END

SCHart Subsystem HP 1652B/1653B
15-4 Programming Reference

HAXis

HAXis command/query

The HAXis command allows you to select whether states or alabel’s
values will be plotted on the horizontal axis of the chart. The axisis scaled
by specifying the high and low values.

The shortform for STATES is STA. Thisis an intentional deviation from
Note 3 the normal trunctation rules.

The HAXis query returns the current horizontal axis |abel assignment and
scaling.

Command Syntax: MACHine{1|2}:SCHart:HAXis {STATES, <state_low_value >, <state-high-value > |
<label-name > , <« label-low-value >, <label-high-value > }

where:
< state-low value > 1 = integer from -1023 to 1024
< state high-value > ;o = Integer from <state-low-value > to + 1024
<iabel name > ;> = a string of up to 6 alphanumeric characters
< label-low value > :: = string from 0 to 2%%-1 (#HFFFFFFFF)
<label-high-value > @ = string from < label-low-value > to 2%2-1 (#HFFFFFFFF)

Examples: ouTPUT XXX;":MACHINEL:SCHART:HAXIS STATES, -100, 100"
OUTPUT XXX;":MACHINEL:SCHART:HAXIS ‘DATA’, ‘-511'. ‘511"

HP 1652B/1653B SCHart Subsystem
Programming Reference 155

HAXis

Query Syntax:

Returned Format:

Example:

SCHart Subsystem
16-6

MACHine{1|2}:8CHart:HAXis?

[MACHine{ 1|2}:SCHart:HAXis] {STATES, < state-low-value >, < state-high-value >
¢ label-name >, «label-low-value >, <label-high-value >}

10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:SCHART:HAXIS?"
30 ENTER XXX; String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

VAXis

VAXis command/query

The VAXis command allows you to choose which label will be plotted on
the vertical axis of the chart and scale the vertical axis by specifying the
high value and low value.

The VAXis query returns the current vertical axis label assignment and
scding.

Command Syntax: MACHine{1|2}:SCHart:VAXis < label-name >, <low-value >, c high-value >

where:
< label-name > ;1 = a string of up to 6 alphanumeric characters
<low-value » :: = string from 0 to 2824 (#HFFFFFFFF)
<high-value > i = string from <low-value > to 2%, (#HFFFFFFFF)

Examples: outpuT xxx | ":MACHINEZ:SCHART:VAXIS 'SUM1’,'0",* 99 "~
OUTPUT XXX ; " :MACHINEL :SCHART:VAXIS ‘B U S, "#HOOFF', '#H0500'"

QuerySyntax: MACHine{1)2}:SCHart:VAXis?
Returned Format: [MACHine{ 1 |2};SCHart:VAXis] < label-name > < low-value >, < high-value > < NL>

Example: 10 DIM String$[100]
20 OUTPUT XXX;' :MACHINE1:SCHART:VAXIS?"

30 ENTER XXX; String$
40 PRINT String$
50 END

HP 1652B/1653B SCHart Subsystem
Programming Reference 157

COMPare Subsystem 16

Introduction Commands in the state COMPare subsystem provide the abiity to do a
bit-by-bit comparison between the acquired state data listing and a
compare data image. The commands are:

COPY
DATA
CMASk
RANGe
RUNTil
FIND

HP 1652B/1653B COMPare Subsystem
Programming Reference 161

o

:COMPO’D-F(?_)———»(CMASkH spoce }——b’ label-nom

—{CMASk?}—»{ space }——.‘ {abe | _name

[care_spec

J—
DATA space labe i _name

[}-—Pl data_pattern J

Ol

+(DATA?H5puce }———' iabe (_name }——(,)——{ line_num |

—’(FXND’}—»{ space H difference_occurrence I

FULL }

ol RANGe’
—><RUNTM space EQUuI
T
RUNT i 17 2} }

label-name = sting of up to 6 characters

care_spec = string of characters "{*|.}..."

¥ = care

.=don’t care

line-num = integer from -1023 to + 1023

data_pattern = "{#B{0|1|X}.. . |
#0{0|1|2|3]4|5|6(7|X}. . |

#H{0|1|2|3|4|5|6|7)8|9)4|B|C|D|E|F}X} ...

{011|21314]516/7)819}...}"
difference_occurence = integer from 1 to 1024
start-line = integerfrom -1023 to + 1023
stop-line = integerfrom <start-line > to + 1023

18518502

Figure 161. COMPare Subsystem Syntax Diagram

COMPare Subsystem
16-2

HP 1652B/1653B
Programming Reference

COMPare

I
COMPare selector

The COMPare selector is used as part of a compound header to access
the settings found in the Compare menu. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in
the command tree.

Command Syntax: :MACHine{1|2}:COMPare

Example: OUTPUT XXX; " :MACHINE1:COMPARE:FIND? 819"

HP 1652B/1653B COMPare Subsystem
Programming Reference 16-3

CMASK

CMASK

Command Syntax:

where:

<label-name >
< care-spec >

Example:
Query Syntax:
Returned Format:

Example:

COMPare Subsystem
16-4

command/query

The CMASK (Compare Mask) command allows you to set the bits in the
channel mask for a given label in the compare listing image to “compares’
or “don’'t compares.”

The CMASK query returns the state of the bits in the channel mask for a
given label in the compare listing image.

MACHine{1 |2}:COMPare:CMASk < label-name >, < care-spec >

.o = a string of up to 6 alphanumeric characters

it = string of characters "{* .}..." (32 characters maximum)
1= care

::=don't care

tk kX Kk o0

OUTPUT XXX;":MACHINE2:COMPARE :CMASK *STAT®,
MACHine{1|2}:COMPare:CMASk? < label-name >
[MACHine{ 1 [2}:COMPare:CMASK] < label-name >, <care-spec > <NL >

10 DIM String$[100]

20 OUTPUT XXX;":MACHINEZ:COMPARE :CMASK? 'POD5'"
30 ENTER XXX; String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

COPY

COPY command

The COPY command copies the current acquired State Listing for the
specified machine into the Compare Listing template. It does not affect
the compare range or channel mask settings.

Command Syntax: MACHine{1|2}:COMPare:COPY

Example: OUTPUT XXX;":MACHINEZ:COMPARE:COPY"

HP 1652B/1653B COMPare Subsystem
Programming Reference 165

DATA

DATA

Command Syntax:

where:

< label-name >
¢ line-num >
< data_pattern>

command/query

The DATA command allows you to edit the compare listing image for a
given label and state row. When DATA is sent to an instrument where no
compare image is defmed (such as at power-up) al other datain the
image is set to don't cares.

No
pat
pat

t specifying the < label-name > parameter allows you to write data
terns to more than one label for the given line number. The first
tern is placed in the left-most |abel, with the following patterns being

placed in aleft-to-right fashion (as seen on the Compare display).
Specifying more patterns than there are labels simply results in the extra

pat

terns being ignored.

Because don’t cares (Xs) are allowed in the data pattern, it must always
be expressed as a string. Y ou may still use different bases, though don’t
cares cannot be used in a decimal number.

The DATA query returns the value of the compare listing image for a
given label and state row.

MACHine{1]|2}:COMPare:DATA { <label-name >, < line-num >, <data_pattern> |

<line_num >, <data-pattern > [, <data_pattern>]...}

a string of up 6 alphanumeric characters

integer from -1023 to + 1023

“{#B{O}1|X}. ..

#Q{011|2/3]4|5/6|7|X} . . |
#H{0|1|2|3|4/5/6]7/|8|9(A|B|C|DIE|F|X}... |
{011]2|3]45(6/7(8|9} .. . }"

Examples: ouTPUT xxx:**:MACHINEZ:COMPARE:DATA ~cLock®, 42, '#B011X101X""

OUTPUT XXX;":MACHINEZ:COMPARE:DATA "OUT3", 0, "#HFF40’"

OUTPUT XXX;":MACHINEL:COMPARE:DATA 129, '#BXX00', ‘#81101', "#B1OXX'"
OUTPUT XXX;™:MACHZ2:COMPARE:DATA -511, ‘4',6 '64', '16°, 25", '8, "16""

COMPare Subsystem

166

HP 16628116638
Programming Reference

DATA

Query Syntax:

Returned Format:

Example:

HP 1652B/16538
Programming Reference

MACHine{ 1{2}:COMPare:DATA? <label-name > , < line-num >

[MACHine{1]2}:COMPare:DATA]
< label-name >, <line-num >, < data_pattern > < NL >

10 DIM Labe1$ {6], Response$ [80]
15 PRINT "This program shows the values for a signal®s Compare listing”

20 INPUT “Enter signal label: ", Label$

25 OUTPUT XXX;":SYSTEM:HEADER OFF" 'Turn headers off (from responses)
30 OUTPUT XXX;":MACHINEZ:COMPARE :RANGE?"

35 ENTER XXX; First, Last fRead in the range"s end-points
40 PRINT "LINE #", "VALUE of "; Label$

45 FOR State = First TO Last !Print compare value for each state

50 OUTPUT XXX;'":MACH2:COMPARE:DATA? '" & Label$ § "*." & VAL$(State)
55 ENTER XXX; Response$

60 PRINT State, Response$

65 NEXT State

70 END

COMPare Subsystem
16-7

FIND

FIND query

The FIND query is used to get the line number of a specified difference
occurence (first, second, third, etc) within the current compare range, as
dictated by the RANGe command (see RANGe). A difference is counted
for each line where at least one of the current labels has a discrepancy
between its acquired state data listing and its compare data image.

Invoking the FIND query updates both the Listing and Compare displays
so that the line number returned is in the center of the screen.

Query Syntax: MACHine{1|2}:COMPare:FIND? <difference-occurrence >
Returned Format: [MACHine{ 1]2}:COMPafe:F|ND] <difference-occurrence >, < line-number > < NL>

where:

<difference occurrence >
< line-number >

integer from 0 to 1024
integer from -1023 to + 1023

Example: 10 pim String$[100]
20 OUTPUT XXX;” :MACHINEZ:COMPARE :FIND? 26~
3 0 ENTER-XXX; String$
40 PRINT String$
50 END

COMPare Subsystem HP 1652B/1653B
16-8 Programming Reference

RANGe

Command Syntax:

where:

<start line>
<stop-line >

RANGe

command/query

The RANGe command allows you to define the boundaries for the
comparison. The range entered must be a subset of the lines in the
aquisition memory.

The RANGe query returns the current boundaries for the comparison.

MACHine{ 1|2}:COMPare:RANGe (FULL | PARTial, <start_line >, < stop-line >}

= integer from -1023 to +1023
i = integer from « start-line > to + 1023

Examples: output xxx;' :MACHINE2:COMPARE :RANGE PARTIAL, -511, 5127

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B

Programming Reference

OUTPUT XXX:™:MACHINEZ :COMPARE :RANGE FULL”

MACHine{ 1|2}:COMPare:RANGe?

{MACHine{1 |2}:COMPare:RANGe] { F U L L | PARTial, <start_line>,
<stop_line>} <NL>

10 DIM String$ [100]
20 OUTPUT XXX;”:MACHINE4:COMPARE :RANGE?"

30 ENTER XXX; String$

40 REM See if substring "FULL" occurs in response string:
50 PRINT "Range is ";

3

60 IF POS{String$,”FULL") > O THEN PRINT “Full" ELSE PRINT "Partial”
70 END

COMPare Subsystem
169

RUNTil

RUNTIl

Note ﬁ

COMPare Subsystem

1610

command/query

The RUNTIl (run until) command allows you to define a stop condition
when the trace mode is repetitive. Specifying OFF causes the analyzer to
make runs until either the display’s STOP field is touched or the STOP
command is issued.

There are four conditions based on the time between the X and 0

markers. Using this difference in the condition is effective only when time
tags have been turned on (see the TAG command in the STRace
subsystem). These four conditions are as follows:

The differenceis less than (LT) some value.

The difference is greater than (GT) some vaue.
The difference is inside some range (INRange).
The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 10 ns apart.

There are two conditions which are based on a comparison of the
acquired state data and the compare data image. Y ou can run until one of
the following conditions is true:

o Compare equal (EQUal)« Every channel of every label hasthe
same value.

o Compare not equal (NEQual) « Any channel of any label has a
different value.

The RUNTIl query returns the current stop criteria for the comparison
when running in repetitive trace mode.

The RUNTIl instruction (for state analysis) is available in both the SLISt
and COMPare subsystems.

HP 1652B/1653B
Programming Reference

RUNTII

Command Syntax: MACHine{1 |2}:COMPare:RUNTIil {OFF|LT,<value> |GT,<value> |
INRange, <value >, <value >|OUTRange, <value >, <value >|EQUal |NEQual}

Example: ouTPUT Xxx;" :MACHINE2:COMPARE :RUNTIL EQUAL"
QuerySyntax: MACHine{1|2}:COMPare:RUNTil?

Retuned Format: [MACHine{1 |2}:COMPare:RUNTIl} {OFF |LT,<value> |GT,<value> |
INRange, <valie >, <valie >| OUTRange, <vaiue > <value >|EQUal NEQual} < NL>

Example: 10 piv String$[100]
20 OUTPUT XXX;":MACHINE?Z:COMPARE:RUNTIL?"
30 ENTER XXX; String$
40 PRINT String$
50 END

HP 1652B/1653B COMPare Subsystem
Programming Reference 16-11

TFORmat Subsystem 17

Introduction The TFORmat subsystem contains the commands available for the Tiig
Format menu in the HP 1652B/53B logic analyzer. These commands are:
e LABel
REMove
e THReshold
—O -
<:@——\D———H LABe |)—’{ space o pod_specificaotion
H
——-b(LABeI@—-{ space H nome }
.
(a0)
——(THRasnoud<N>)——{ space } (T7L)
(ect)
[volue |
= THResho | d<N>? }

<N>={I12]3]4]5}

name = string of up to 6 alphanumeric characters

polarity = {POSitive | NEGative}

pod-specification = format (integer from 0 to 65535) for a pod (pods are assigned in &creasing order)
value =voltage (real number) -9.9 to + 9.9

Figure 17-1. TFORmat Subsystem Syntax Diagram

HP 1652B/1653B TFORmat Subsystem
Progmmming Reference 17-1

TFORmMat
|

TFORmMat selector

The TFORmat selector is used as part of a compound header to access
those settings normally found in the Timing Format menu. It always
follows the MACHine selector because it selects a branch directly below
the MACHine level in the language tree.

Command Syntax: :MACHine{ 1|2}:TFORmat

Example: OUTPUT XXX;":MACHINEL:TFORMAT :LABEL?"

TFORmat Subsystem HP 1652B/1653B
17-2 Programming Reference

LABel

HP 1852B/1653B
Programming Reference

LABel

command/query

The LABel command allows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an
existing label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest-numbered pod assigned to the machine
you're using. Each pod specification after that is assigned to the
next-highest-numbered pod. This way they match the left-to-right
descending order of the pods you see on the Format display. Not
including enough pod specifications results in the lowest-numbered
pod(s) being assigned a value of zero (al channels excluded). If you
include more pod specifications than there are pods for that machine, the
extra ones will be ignored. However, an error is reported anytime more
than five pod specifications are listed.

The polarity can be specified at any point after the label name.

Since pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (2°-1). When giving the pod assignment in binary
(base 2), each bit will correspond to a single channdl. A “1” in a bit
postion means the associated channel in that pod is assigned to that pod
and bit. A "0""in a bit position means the associated channdl in that pod is
excluded from the label. For example, assigning #B1111001100 is
equivalent to entering” ¥xkx »x "through the front-panel user
interface.

A label can not have atotal of more than 32 channels assigned to it.

The LABd query returns the current specification for the selected (by
name) label. If the label does not exist, nothing is returned. Numbers are
always returned in decimal format.

TFORmat Subsystem
17-3

LABel

Command Syntax:

where:

<name >
< polarity >
< assignment >

Examples:

Query Syntax:
Returned Format:

Example:

TFORmat Subsystem

17-4

:MACHine{1 |2}:TFORmat:LABel <name> [, {<polarity> <assignment>}]..

2 = string of up to 6 alphanumeric characters
: 1 = {POSitive | NEGative }
:» = format (integer from 0 to 65535) for a pod (pods are assigned in decreasing order)

OUTPUT XXX;":MACHINE2:TFORMAT:LABEL ‘DATA’, POS, 65535. 127. 40312~
OUTPUT XXX ; ":MACHINE2:TFORMAT:LABEL ‘STAT’, 1, 6096, POSITIVE”
OUTPUT XXX;":MACHINEL:TFORMAT:LABEL 'ADDR’, NEGATIVE, #B11110010101010"

:MACHine{1]2}.TFORmat:LABel? < name >
[:MACHine{1 |2}:TFORmat:LABel} <name > [<assignment>]..., <polarity > < NL>

10 DIM String$[100]

20 OUTPUT XXX;":MACHINEZ:TFORMAT:LABEL? ‘DATA™
30 ENTER XXX String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

REMove

R
REMove command

The REMove command allows you to delete all labels or any one label
specified by name for a given machine.

Command Syntax: :MACHine{1 }2}:TFORmat:REMove {<name> |ALL}

where:

<name > :» = string of up to 6 alphanumeric characters

Examples: ouTPuT xxx;” :MACHINE1:TFORMAT :REMOVE <A™
OUTPUT XXX;':MACHINE]:TFORMAT:REMOVE ALL”

HP 1852B/1653B TFORmat Subsystem
Programming Reference 17-5

THReshold

THReshold

Note !!

Command Syntax:

where:

<N>
<value>

TTL
ECL

Example:

Query Syntax:

Returned Format;

Example:

TFORmat Subsystem
17-6

command/query

The THReshold command allows you to set the voltage threshold for a
given pod to ECL, TTL or aspecific voltagefrom -9.9V to + 99V in0.1
volt increments.

On the HP 1652B, the pod thresholds of podsl, 2, and 3 can be set
independently. The pod thresholds of pods 4 and 5 are slaved together;
therefore, when you set the threshold on pod 4 or 5, both thresholds will
be changed to the specified value. On the HP1653B, both pods 1 and 2
can be set independently.

The THReshold query returns the current threshold for a given pod.

:MACHine{ 1|2}: TFORmat:THReshold <N > (TTL |ECL | <value >}

= pod number {1/2|3|4|5}
;= voltage (real number) -9.9 to
. = default value of + 1,6V

:: = default value of -1.3V

+9.9

OUTPUT X0¢;*:MACHINE1: TFORMAT: THRESHOLD1 4.0"

:MACHine{ 1]2}:TFORmat: THReshold <N >?

[:MACHine{ 1)|2}: TFORmat:THReshold <N>] <value > <Nl >

10 DIM Value$ [100]
20 OUTPUT XXX;":MACHINEL:TFORMAT: THRESHOLD2?"

30 ENTER XXX;Value$
40 PRINT Value$

50 END

HP 1652B/1653B
Programming Reference

TTRace Subsystem 18

Introduction The TTRace subsystem contains the commands available for the Timing
Trace menu in the HP 1652B/53B logic analyzer. These commands are:

AMODe
DURation
EDGE
GLITch
PATTern

HP 1652B/1653B TTRace Subsystem
Programming Reference 18-1

{ -}

N

S y
TTRace }-——O— JAMDDe)——’ space h—-’(GLITch}

t—(TRANsitional }—-/J

] \

= AMODe?

D e * o

= DURotion”\,—
EDGE space Ir—h{ tabe | _name

(el

'—DCEDCE”j v{ space H labe [_name II

_{GLITCPH space H label-name

[glitch_spec

———CGLITCh’D—.’ space H label-name }

——(PATTerr\)———P‘ space H labet.name

f pattern_spec

\bﬁATTern?H spoce H labe |l _nome }

GT = greater than

LT = fess than

duration-value = real number

label-name = sting of up to 6 alphanumeric characters

edge_spec = sting of characters “{R F | T|X}..."

R = rising edge

F = falling edge

T = toggling or either edge

X = don’t care or ignore this channel

glitch-spec = string of characters “{*1}...”

* = search for a glitch on this channel

. = ignore this channel

pattern Spec = "{ #B{¢| Z IX}. . . |
#0Q{0]112|3|4|5|6]7|X}. ..
#H{0|1|2|3|4|5|617|8|9|A|B|C|D|E|F|X}...
{0|1|2)314|5]|6]7|8|9}...}"

16510/5%08

Figure 18-1. TTRace Subsystem Syntax Diagram

TTRace Subsystem
18-2

HP 1652B/1653B
Programming Reference

TTRace

Command Syntax:

Example:

HP 1652B/1653B
Programming Reference

TTRace

selector

The TTRace selector is used as part of a compound header to access the

settings found in the Timing Trace menu. It adways follows the MACHine
selector because it selects a branch directly below the MACHine level in

the language tree.

:MACHine{1}2}.TTRace

OUTPUT XXX;":MACHINEL:TTRACE:GLITCH =ABC*, '.. . ***xr=

TTRace Subsystem
18-3

AMODe

AMODe

Command Syntax:

where:

< acquisition-mode >

Example:

Query syntax:

Returned Format:

Example:

TTRace Subsystem
18-4

command/query

The AMODe command alows you to select the acquisition mode used for
a particular timing trace. The acquisition modes available are
TRANsitional and GLITch.

The AMODe query returns the current acquisition mode.

:MACHine{1|2}:TTRace:AMODe c acquisition-mode >

:: = {GLITeh | TRANsitional}

OUTPUT XXX; " :MACHINEL:TTRACE:AMODE GLITCH"
:MACHine 1:TTRace:AMODe?
[:MACHine1:TTRace:AMODe] {GLITCH|TRANSITIONAL}

10 DIM M$[100]

20 OUTPUT XXX; ":MACHINE1:TTRACE:AMODE?"
30 ENTER XXX;M$

40 PRINT M$

50 END

HP 16528116538
Programming Reference

DURation

I
DURation command/query

The DURation command allows you to specify the duration qudifier to be
used with the pattern recognizer term in generating the timing trigger.
The duration value can be specified in 10 ns increments within the
following ranges.

o Gregter than (GT) qualification - 30 ns to 10 ms
o Lessthan (LT) qualification - 40 ns t0 10 ms,

The DURation query returns the current pattern duration qualifier
specification.

Command Syntax: :MACHine{1 |2}:TTRace:DURation {GT|LT}, <duration_value >

where:
GT ;1 = greater than
LT ;2 = less than
¢ duration-value 7 ;2 = real number

Example: OUTPUT xxx; ":MACHINEL:TTRACE:DURATION G T, 40.0E-9"
QuerySyntax: :MACHine{1|2}:TTRace:DURation?
Returned Format: [:MACHine{1 |2}:TTRace:DURation] {GT|LT}, <duration value> <NL>

Example: 10 DIM D$[100]
20 OUTPUT XXX; ":MACHINEL:TTRACE:DURATION?"
30 ENTER XXX;D$
40 PRINT D$
50 END

HP 1652B/1653B TTRace Subsystem
Programming Reference 18-5

EDGE

EDGE command/query

The EDGE command allows you to specify the edge recognizer term for
the timing analyzer trigger on a per label basis. Each command deals with
only one label in the given edge specification; therefore, acomplete
specification could require several commands. The edge specification uses
the characters R, F, T, X to indicate the edges or don’t cares as follows:

R = rising edge

F = falling edge

T = toggling or either edge

X = don't care or ignore the channel

The position of these charactersin the string corresponds with the

position of the channels within the label. All channels without "X" are
ORed together to form the edge trigger specification.

The EDGE query returns the edge specification for the specified label.

Command Syntax: :MACHine{1|2}:TTRace:EDGE c label-name >,<edge_spec >

where:

<label-name >

> = string or up to 6 alphanumeric characters
< edge-spec >

i = string of characters "{R|F|T|X}..."

Example: OUTPUT XXX; ":MACHINE1:TTRACE:EDGE 'POD1’, XXXXXXXR'"

TTRace Subsystem

HP 1652B/1653B
16-6 Programming Reference

EDGE

Query Syntax: :MACHine{1)2}:TTRace:EDGE? <label-name>

Returned Format: [:MACHine{1(2}:TTRace:] <Ilabel_name >,<edge_spec> <NL>

Example: 10 pim E$[100]
20 OUTPUT xxX; ":MACHINE1:TTRACE:EDGE? 'POD1'"

30 ENTER XXX;E$
40 PRINT E$
50 END

HP 1652B/1653B TTRace Subsystem
Programming Reference 18-7

GLIiTch

GLITch

Command Syntax:

where:

< label name >
< glitch-spec >

Example:
Query Syntax:
Returned Format:

Example:

TTRace Subsystem
16-6

command/query

The GLITch command allows you to specify the glitchrecognizer term for
the timing analyzer trigger on a per label basis. Each command deals with
only one label in agiven glitchspecification, and, therefore a complete
specification could require several commands. The glitch specification
uses the characters"*" and "." asfollows:

"#" (asterisk) = search for a glitch on this channel

" (period) = ignore this channel

The position of these characters in the string corresponds with the
position of the channels within the label. All channels with the "*" are
ORed together to form the glitch trigger specification.

The GLITch query returns the glitch specification for the specified label.

:MACHine{1|2}:TTRace:GLITch < label-name >, <glitch_spec >

. = string of up to 6 alphanumeric characters
. = string of characters “{*.}.."

OUTPUT XXX; ":MACHINE1:TTRACE:GLITCH "POD1","**....... xon

:MACHine1:TTRace:GLITch? <label-name>
[:MACHine1:TTRace:GLITch] <label-name >, < glitch-spec > < NL>

10 DIM G${100]

20 OUTPUT XXX; " :MACHINE1:TTRACE:GLITCH? ‘POD1'"
30 ENTER XXX:G$

40 PRINT G$

50 END

HP 1652B/1653B
Programming Reference

PATTern

PATTern command/query

The PATTern command alows you to construct a pattern recognizer term
for the timing analyzer trigger on a per label basis. Each command deals
with only one label in the given pattern; therefore, a complete timing trace
specification could require several commands. Since a label can contain
up to 32 hits, the range of the pattern value will be between 0 and (232)-1.
The value may be expressed in binary (#B), octal (#Q), hexadecimal
(#H) or decimal (default). When the value of a pattern is expressed in
binary, it represents the hit vaues for the label inside the pattern
recognizer term. Since a pattern vaue can contain don't cares, the

pattern specification parameter is handled as a string of characters
instead of a number.

The PATTern query returns the pattern specification for the specified
label in the base previoudy defmed for the label.

Command Syntax: :MACHine{1|2}:TTRace:PATTern < label-name >, < pattern-spec >

where:
c label name > . = string of up to 6 alphanumeric characters
< pattern-spec > :: = “{#B{0] 1 |X} . .

#0{0|1]2]3]4|56/7(X} . . .
#H{0|1|2(3]4|5|6/7|8|9(A[B|C|D(E[F|X} ... |
{011]2|3]4|5/6{7|8{9} ... }"

Example: OUTPUT XXX; ":MACHINEL1:TTRACE:PATTERN ‘DATA", <255°"

HP 1652B/1653B TTRace Subsystem
Programming Reference 18-9

PATTern

Query Syntax: :MACHine{1]2}:TTRace:PATTern? < label-name >
Returned Format: [:MACHine{1|2}:TTRace:PATTern] <label-name >, < pattern_spec> ¢ NL>

Example: 10 DM P§[100]
20 OUTPUT XXX; ":MACHINEZ:TTRACE:PATTERN? ‘DATA™
30 ENTER XXX;P$
40 PRINT P§
50 END

TTRace Subsystem HP 1652B/1 6538
18-10 Programming Reference

TWAVeform Subsystem

19

Introduction

HP 1652B/1653B

Programming Reference

The TWAYV eform subsystem contains the commands available for the
Timing Waveforms menu in the HP 1652B/53B. These commands are:

ACCumulate
DELay
INSert
MMODe
OCON(dition
OPATtern
OSEarch
OTIMe
RANGe
REMove
RUNTI
SPERiod
TAVerage
TMAXimum
TMINimum
VRUNs
XCON(dition
XOTime
XPATtern
XSEarch
XTIMe

TWAVeform

Subsystem
19-1

|

—)

ON

-.(ACCumulote)—-{ space

Fe={ ACCumuiate? }

—D(DELcyH space I—Drdelny_voi ve }

~s=(DEL 0y? }

space

bil_idI

o

PATTern)—ﬁ

—D] MMODe ?

—’COCON:J it lonH space

ENTer ngj\f

o= OCONdition?)
——COPATternH space H iabei_nome

igbel_pattern

1
e={ OPATtern?)—D[space H labei_nome i
QSEarch)—F{ space Hoccurrence

-~ OSEcorch?

e

-—COTIMeD———D{ space H hme_valueJl
e OT IMe? ¥

)

01850809

Figure 19-I. TWAVeform Subsystem Syntax Diagram

TWAVetorm Subsystem
192

HP 1652B/1653B
Programming Reference

HANGeH space '—’{ t ime_rangej{

RANGe?

REMove

space)——Fun_unti |_spec } -

—o RUNT 17)

SPERi0d?

—w~{ TAVerage? } -

TMAX imum?

o= TMINimum?
(o)
——»(XCONGI I8 nonH space

ENTer ng}

| J

= XCONdition? }—
o= XOT ime? }
F"(XPAT terD——D(spoce "——ube\-name
%ATLern’Hspoce H Iobel_nam:lr

»—D@Ecrch)——-bi spoceJ—Diiccurrence ‘

XSEarch?

G

ST
XT1Me space H time-value -

XTIMe?

!

01650504

Figure 19-1. TWAVeform Subsystem Syntax Diagram (continued)

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 19-3

delay-value = real number between -2500 s and + 2509 s

module_spec = {1{2|3]4|5}

bit-id = integer from 0 to 31

waveform = string containing < acquisition-spec > {7 |2}

acquisition-spec ={A |B | C| D |E} (dot where acquisition card is located)

label-name = string of up to 6 alphanumeric characters

label_pattern = "{#B{0|1|X}. . .|
#0{0|1|2|3]4|516|7\X}... |
#H{0|1|2|3)|4|5|6|7|8|9|4|B|C|D|E|F|X}.. .
{0}1\2]3|4|5|6|7|8|9}.)

occurrence = integer

time-value = real number

label-id = sting of one alpha and one numeric character

module-num = slot number in which the timebase card is installed

time-range = real number between 100 ns and 10 ks

run_until_spec = (OFF | LT, <value >| GT, < value >| INRange < value >, c value >

OUTRange < value >, < value > }
GT = greater than
LT = less than
value = real number

Figure 191. TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem
19-4

HP 1652B/1653B
Programming Reference

TWAVeform

]
TWAVeform Selector

The TWAVeform selector is used as part of a compound header to access
the settings found in the Tiig Waveforms menu. It adways follows the
MACHine selector because it selects a branch below the MACHine level
in the command tree.

Command Syntax: :MACHine{ 1|2}:TWAVeform

Example: OUTPUT XXX;":MACHINEL:TWAVEFORM:DELAY 100E-9"

HP 1852B/1653B TWAVeform Subsystem
Programming Reference 19-5

ACCumulate

ACCumulate

Command Syntax:

where:

< setting >
Example:

Query Syntax:

Returned Format:

Example:

TWAVeform Subsystem

18-6

command/query

The Accumulate command allows you to control whether the chart
display gets erased between each individua run or whether subsequent
waveforms are allowed to be displayed over the previous ones.

The ACCumulate query returns the current setting. The query always
shows the setting as the character "0" (off) or “1” (on).

:MACHine{ 1}2}:TWAVeform:ACCumulate < setting >

::= {0|OFF} or {1(ON)
OUTPUT XXX;":MACHINEL:TWAVEFORM:ACCUMULATE ON”

:MACHine{1|2}:TWAVeform:ACCumulate?
[:MACHine{1]|2}: TWAVeform:ACCumulate] {0]1}<NL>

10 DIM p$ [100]

20 OUTPUT XXX;':MACHINE1:TWAVEFORM:ACCUMULATE?"
30 ENTER XXX; P$

40 PRINT P§

50 END

HP 1652B/1653B
Programming Reference

DELay

Command Syntax:

where:

< delay-value >
Example:

Query Syntax:

Returned Format:

DELay

command/query

The DELay command specifies the amount of time between the timing
trigger and the horizontal center of the the timing waveform display. The
alowable values for delay are -2500 s to + 2500 s. In glitch acquisition
mode, as delay becomes large in an absolute sense, the sample rate is
adjusted so that data will be acquired in the time window of interest. In
transitiona acquisition mode, data may not fal in the time window since
the sample period is fixed a 10 ns and the amount of time covered in
memory is dependent on how frequent the input signal transitions occur.

The DELay query returns the current time offset (delay) value from the
trigger.

:MACHine{ 1|2}:TWAVeform:DELay < delay-value >

> = real number between -2500 s and + 2500 8

OUTPUT XXX ; " :MACHINEL: TWAVEFORM: DELAY 100E-6"
:MACHine{ 1|2}.TWAVeform:DELay?

[:MACHine{ |2}: TWAVeform:DELay] <time-value > < NL >

Example: 10 D1M D1 [100]

HP 1652B/1653B
Programming Reference

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY?"
30 ENTER XXX; D1§

40 PRINT D1§

50 END

TWAVeform Subsystem
18-7

INSert

INSert command

The INSert command inserts waveforms in the timing waveform display.
The waveforms are added from top to bottom. When 24 waveforms are
present, inserting additional waveforms replaces the last waveform .

The first parameter specifies the label name that will be inserted. The
second parameter specifies the label bit number or overlay.

If OVERLAY is specified, al the bits of the label are displayed as a
composite overlaid waveform.

Command Syntax: :MACHine{ 1]|2}:TWAVeform:INSert < label-name > { < bitid > | OVERlay}

where:
< label name > = string of up to 6 alphanumeric characters
<bitid > = integer from 0 {0 31

Example: OUTPUT XXX;":MACHINEL:TWAVEFORM: INSERT "WAVE', 10"

TWAVeform Subsystem HP 1652B/1653B
19-8 Progmmming Reference

MMODe

MMODe command/query

The MMODe (Marker Mode) command selects the mode controlling
marker movement and the display of the marker readouts. When
PATTern is selected, the markers will be placed on patterns. When
TIME is selected, the markers move on time. In MSTats, the markers are
placed on patterns, but the readouts will be time satigtics.

The MMODe query returns the current marker mode.

Command Syntax: :MACHine{1|2}:TWAVeform:MMODe {OFF|PATTern |TIME|MSTats}
Example: OUTPUT XXX; ":MACHINEL:TWAVEFORM:MMODE TIME"
QuerySyntax: :MACHine{1|2}: TWAVeform:MMODe?
Returned Format: {:MACHine{ 1 |2}:TWAVeform:MMODe] < marker-mode > < NL.>

where:

<marker mode > = {OFF|PATTern|TIME|MSTats}

Example: 10 DM M$ [100]
20 OUTPUT XXX;":MACHINEL: TWAVEFORM:MMODE?"
30 ENTER XXX; M$
40 PRINT M§
50 END

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 19-9

OCONdition

&
OCONdition command/query

The OCON(dition command specifies where the 0O marker is placed. The
0 marker can be placed on theentry or exit point of the QPATtern when
in the PATTern marker mode.

The OCONCdition query returns the current setting.

Command Syntax: :MACHine{ t|2}:TWAVeform:OCONdition {ENTering|EXITing}
Example: OUTPUT XxXX; ":MACHINE1:TWAVEFORM:QCONDITION ENTERING”
QuerySyntax: :MACHine{1]2}:TWAVetorm:OCONdition?
Returned Format: [:MACHine{ 1|2} TWAVeform:OCONdition] {ENTering | EXITing} < NL>

Example: 10 DIM 0c$ [100]
20 OUTPUT XXX;”:MACHINEL:TWAVEFORM:OCONDITION?"
30 ENTER XXX; Oc$
40 PRINT Oc$
50 END

TWAVeform Subsystem HP 1652B/1653B
19-10 Programming Reference

OPATtern

I
OPATtern command/query

The OPATtem command allows you to construct a pattern recognizer
term for the O marker which is then used with the OSEarch criteria and
OCON(dition when moving the marker on patterns. Since this command
dealswith only onelabel at atime, a complete specification could require
several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern rcco%lizer term. In whatever base
is used, the value must be between 0 and 2 “* -1, since alabel may not have
more than 32 bits. Because the < label_pattern > parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

The OPATtem query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the O marker for a given label. If the O marker
is not placed on valid data, don’t cares (X X...X) are returned.

Command Syntax: :MACHine{1|2}: TWAVeform:OPATtern <label-name > , < label-pattern >

where:

<label-name > :: = string of up to 6 alphanumeric characters
< label-pattern > = "{#B{0{1|X}...
#Q{0|112(3|4|5|6(7|X} .. .
#H{0]1|2|3|4/5|6/7|8|9|A|B|C|D|EIF|X} . . .
{0[1]2]3]4/516]7]8]8} ... }"

Example: oUTPUT XxX: ":MACHINEL:TWAVEFQRM:OPATTERN 'A’,’'511""

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 19-11

OPATtern

Query Syntax: :MACHine{1 |2}:TWAVeform:OPATtern? <label-name >

Returned Format: [:MACHine{1|2}:TWAVeform:OPATtern] <label_name >, <label_pattern > c NL>

Example: 10 DIM 0p$ [loo]
20 OUTPUT XXX;":MACHINEL: TWAVEFORM:OPATTERN? “A"

30 ENTER XxX; Op$
40 PRINT Op$
50 END

TWAVetorm Subsystem HP 1652B/16538
19-12 Programming Reference

OSEarch

Command Syntax:

where:

< origin >
<occurrence >

Example:
Query Syntax:
Returned Format;

Example:

HP 1652B/1653B
Programming Reference

OSEarch

command/query

The OSEarch command defines the search criteria for the O marker
which is then used with the associated OPATtem recognizer Specification
and the OCON(dition when moving markers on patterns. The origin
parameter tells the marker to begin a search with the trigger or with the X
marker. The actual occurrence the marker searches for is determined by
the occurrence parameter of the OPATtem recognizer specification,
relative to the origin. An occurrence of 0 places a marker on the selected
origin. With a negative occurrence, the marker searches before the origin.
With a positive occurrence, the marker searches after the origin.

The OSEarch query returns the search criteria for the 0 marker.

‘MACHine{1|2}: TWAVeform:OSEarch <occurrence >, <origin >

i = {TRIGger | XMARKker}
;1 = integer from -9999 to +9999

OUTPUT XXX; ":MACHINEI:TWAVEFORM:0SEARCH +10,TRIGGER"
:MACHine{ 1|2}: TWAVeform:OSEarch?
[:MACHine{1{2}:TWAVeform:OSEarch] <occurrence >, <origin > c NL>

10 pim Qs§ [loo]

20 OUTPUT XXX;* :MACHINEL: TWAVEFORM:QSEARCH?"
30 ENTER XXX; 0s$

40 PRINT Os$

50 END

TWAVeform Subsystem
18-13

OTIMe

OTIMe command/query

The OTIMe command positions the 0 marker in time when the marker
mode is TIME. If data is not valid, the command performs no action.

The OTIMe query returns the O marker postion in time. If data is not
valid, the query returns 9.9E37.

Command Syntax: :MACHine{1]|2}:TWAVeform:0TIMe <time_value>

where:

< time-value » :: =real number -2.5Ks to +2.5Ks
Example: OUTPUT XXX; " :MACHINEL1:TWAVEFORM:OTIME 30.0£-6"

QuerySyntax: :MACHine{1|2}:TWAVeform:OTIMe?
Returned Format: [:MACHine{1|2}:TWAVeform:OTIMe] dime-value > c NL>

Example: 10 DIm Ot$ [100]
20 OUTPUT XXX;" :MACHINE1:TWAVEFORM:OTIME?"
30 ENTER XXX; Ot$
40 PRINT Ot$
50 END

TWAVeform Subsystem HP 1652B/1 6538
1914 Programming Reference

RANGe

RANGe command/query

The RANGe command specifies the full-screen time in the timing
waveform menu. It is equivalent to ten times the seconds-per-division
setting on the display. The alowable values for RANGe are from 100 ns
to 10 ks.

The RANGe query returns the current full-screen time.

Command Syntax: :MACHine{1 |2}:TWAVeform:RANGe <time_value>
where:

<time-range> : = real number between 100 ns and 10 ks

Example: OUTPUT XXX;" :MACHINE1:TWAVEFORM:RANGE 100E-9"
Query Syntax: :MACHine{1|2}:TWAVetorm:RANGe?
Returned Format: [:MACHine{1|2}:TWAVeform:RANGe] <time_value> <NL>

Example: 10 DIM Rg$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"
30 ENTER XXX; Rg$
40 PRINT Rg$
50 END

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 1915

REMove
=
REMove command

The REMove command deletes all waveforms from the display.

Command Syntax: :MACHine{1|2}:TWAVeform:REMove

Example: OUTPUT XxX;" :MACHINEL: TWAVEFORM:REMOVE™

TWAVeform Subsystem HP 1652B/1653B
1916 Programming Reference

RUNTI

Command Syntax:

where:
< run-until-spec >

<value>

Examples:

HP 1652B/1653B

Progmmming Reference

RUNTIl

command/query

The RUNTIl (run until) command defines stop criteria based on the time
between the X and 0 markers when the trace mode is in repetitive. When
OFF is selected, the analyzer will run until either the “STOP” touch screen
field is touched or the STOP command is sent. Run until the time

between X and O marker options are:

o Less Than (LT) a specified time value

o Greater Than (GT) a specified time value

+ Intherange (INRange) between two time values

+ Out of the range (OUTRange) between hvo time values

End points for the INRange and OUTRange should be at least 10 ns apart
since this is the minimum time at which data is sampled.

This command affects the timing analyzer only, and has no relation to the
RUNTIl commands in the SLISt and COMPare subsystems.

The RUNTIl query returns the current stop criteria

:MACHine{ 1|2}: TWAVeform:RUNTil < run-until-spec >

::= {OFF |LT,<value> | GT,<value> | INRange <value >, <value >
OUTRange < value >, <value >}
o = real number

OUTPUT XXX;" :MACHINEL: TWAVEFORM:RUNTIL GT, 800,0E-6"
OUTPUT XXX;":MACHINEL:TWAVEFORM:RUNTIL INRANGE, 4.5. 5.5”

TWAVeform Subsystem
18-17

RUNTIl

I
QuerySyntax: :MACHine{1|2}:TWAVeform:RUNTII?

Returned Format: [:MACHine{1|2}:TWAVeform:RUNTil] <run_until_spec> <NL>

Example: 10 DIm Ru$ [100]
20 OUTPUT XXX;":MACHINEL:TWAVEFORM:RUNTIL?"
30 ENTER XXX; Ru$
40 PRINT Ru$
50 END

TWAVeform Subsystem HP 1652B/1653B
1918 Programming Reference

SPERiod

|
SPERIod query

The SPERiod query returns the sample period of the last run.

QuerySyntax: :MACHine{1)2}:TWAVeform:SPERiod?

Returned Format: [:MACHine{1]2}:TWAVeform:SPERiod] <time_value> <NL>

where:

<time value > o = real number

Example: 10 o Sp$ [100]
20 OUTPUT XXX;':MACHINE1:TWAVEFORM:SPERIOD?"
30 ENTER XXX; Sp$
40 PRINT Sp$
50 END

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 19-19

TAVerage
R
TAVerage query

The TAVerage query returns the value of the average time between the X
and 0 markers. If there is no valid data, the query returns 9.9E37.

Query syntax: :MACHine{1|2}:TWAVeform:TAVerage?

Returned Format: [:MACHine{ 1}2}:TWAVeform:TAVerage] < time-value > < NL>

where:

< time value > = real number

Example: 10 pim Tv§ [100]
20 OUTPUT XXX:":MACHINE]:TWAVEFORM: TAVERAGE?"

30 ENTER XXX; Tv$
40 PRINT Tv$
50 END

TWAVeform Subsystem HP 1652B/1653B
19-20 Programming Reference

TMAXimum

I
TMAXimum query

The TMAXimum query returns the value of the maximum time between
the X and 0 markers. If there is no valid data, the query returns 9.9E37.

Query Syntax: :MACHine{ 1|2}:TWAVeform:TMAXimum?

Returned Format: (:MACHine{1|2}:TWAVeform:TMAXimum] c timevalue > ¢ NL>

where

¢ time value > ;o = real number

Example: 10 pIm Tx$ [100]
20 OUTPUT XXX;":MACHINEL:TWAVEFORM: THAXIMUM?"
30 ENTER XXX; Tx$
40 PRINT Tx$
50 END

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 19-21

TMINimum
[

TMINimum query

The TMINimum query returns the value of the minimum time between
the X and O markers. If there is no valid data, the query returns 9.9E37.

Query Syntax: :MACHine{1]2}:TWAVeform:TMINimum?

Returned Format: [:MACHine{1|2}:TWAVeform:TMINimum] <time-value > <NL>

where:

< time-value > i = real number

Example: 10DIM Tm$ [100]
20 OUTPUT XXX;":MACHINEL:TWAVEFORM: TMINIMUM?"
30 ENTER Xxx; Tm$
40 PRINT Tm$
50 END

TWAVeform Subsystem HP 1652B/1653B
19-22 Programming Reference

VRUNS

VRUNSs query

The VRUNSs query returns the number of valid runs and total number of
runs made. Valid runs are those where the pattern search for both the X
and 0 markers was successful resulting in valid delta time measurements.

QuerySyntax: :MACHine{1 |2}:TWAVeform:VRUNs?

Returned Format: [:MACHine{1|2}:TWAVeform:VRUNs] <valid_runs>, <total-runs> < NL>

where:
<valid runs > = zero or positive integer
<total runs> :: = zero or positive integer

Example: 10 om Vr$ [loo]
20 OUTPUT XXX;™:MACHINE1:TWAVEFORM:VRUNS?"
30 ENTER XXX; Vr$
40 PRINT Vr$
50 END

HP 1652B/1653B

TWAVeform Subsystem
Programming Reference

19-23

XCONdition
R

XCONdition command/query

The XCONdition command specifies where the X marker is placed. The
X marker can be placed on the entry or exit point of the XPATtern when
in the PATTern marker mode.

The XCONdition query returns the current setting.

Command Syntax: :MACHine{ 1{2}:TWAVeform:XCONdition {ENTering|EXITing}
Example: outPuT Xxxx; ":MACHINEL:TWAVEFORM:XCONDITION ENTERING"
QuerySyntax: :MACHine{1|2}:TWAVeform:XCONdition?
Returned Format: [:MACHine{ 1 |2}:TWAVeform:XCONGdition] {ENTering EXITing} < NL>

Example: 10 DIM Xc$ [100]
20 OUTPUT XXX;™ :MACHINE1:TWAVEFORM:XCONDITION?"
30 ENTER XXX; Xc$
40 PRINT Xc$
50 END

TWAVeform Subsystem HP 1652B/1653B
1S-24 Programming Reference

XOTime

XOTime query

The XOTime query returns the time from the X marker to the 0 marker.
If data is not valid, the query returns 9.9E37.

Query syntax: :MACHine{1]2}:TWAVeform:XOTime?
Returned Format: [:MACHine{1|2}: TWAVeform:XOTime] < time-value >c NL>

where:

<time-value > ;= real number

Example: 10 DIM Xot$ [100]
20 OUTPUT XXX;":MACHINEL:TWAVEFORM:XOTIME?"
30 ENTER XXX; Xot$
40 PRINT Xot$
50 END

HP 1652B/16853B TWAVetorm Subsystem
Programming Reference 19-25

XPATtern

XPATtern

Command Syntax:

where:

<iabel name>
<label_pattern >

Example:

TWAVeform Subsystem
19-26

command/query

The XPATtem command allows you to construct a pattern recognizer
term for the X marker which is then used with the XSEarch criteria and
XCONdition when moving the marker on patterns. Since this command
deals with only onelabel at atime, a complete specification could require
several invocations.

When the value of a pattern is expressed in binary, it represents the bit
valuesfor the label inside the pattern reco%lizer term. In whatever base
is used, the value must be between 0 and 2 °“ « 1, since alabel may not have
more than 32 bits. Because the < labelgattem > parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

The XPATtern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the X marker for a given label. If the X marker
is not placed on valid data, don’t cares (XX...X) are returned.

:MACHine{ 1|2}:TWAVeform:XPATtern <label-name >, < label-pattern >

= string of up to 6 alphanumeric characters

o= "{#B{0]1 |X} .
#Q{0[1]2|3|4|5{6|71X} . . |
#H{0|1]2/3]4|5|6|7(8|9|A|B|C|D|E[F|X} ...
{01112(3)41516|718]9} . . }*

OUTPUT XXX; " :MACHINE1:TWAVEFORM:XPATTERN °'A’,'511'"

HP 1652B/1653B
Programming Retference

XPATtern

Query Syntax: :MACHine{1]2}:TWAVeform:XPATtern? < label-name >

Returned Format: [:MACHine{ 1|2}:TWAVeform:XPATtern] < labelmame >, < label pattern > < NL>

Example: 10 DIM ¥p$ [100)
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:XPATTERN? "A™*
30 ENTER XXX; Xp$
40 PRINT Xp$
50 END

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 19-27

XSEarch

|
XSEarch command/query

The XSEarch command defines the search criteria for the X marker
which is then used with the associated XPATtern recognizer specification
and the XCONdition when moving markers on patterns. The origin
parameter tells the marker to begin a search with the trigger. The
occurrence parameter determines which occurrence of the XPATtern
recognizer specification, relative to the origin, the marker actually
searches for. An occurrence of O (zero) places a marker on the origin.

The X SEarch query returns the search criteria for the X marker.

Command Syntax: :MACHine{ 1]2}:TWAVeform:XSEarch <occurrence >, <origin >

where:
<origin> = = TRIGger
< occurrence > - = integer from 8999 to +9999

Example: OUTPUT xXxx; *":MACHINE1:TWAVEFORM:XSEARCH,+10,TRIGGER"
Query syntax: :MACHine{1|2}:TWAVeform:XSEarch? ¢ occurrence >, <origin >

Returned Format: [:MACHine{ 1]2}: TWAVeform:XSEarch] <occurrence >, <origin > < NL>

Example: 10 DIM Xs$ [100]
20 OUTPUT XXX;” :MACHINEL: TWAVEFORM: XSEARCH?"
30 ENTER XXX; Xs$
40 PRINT Xs$
50 END

TWAVeform Subsystem HP 1652B/1653B
19-28 Programming Reference

XTIMe

Command Syntax:

where:

< time-value >
Example:

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

XTIMe

command/query

The XTIMe command positions the X marker in time when the marker
mode is TIME. If data is not valid, the command performs no action.

The XTIMe query returns the X marker position in time. If data is not
valid, the query returns 9,9E37.

:MACHine{ 1 |2}:TWAVeform:XTIMe <time-value >

. = real number from —2.5Ks to +2.5Ks

OUTPUT XXX; *:MACHINE1: TWAVEFORM:XTIME 40.0E-5"
:MACHine{1]2}:TWAVeform:XTiMe?

[:MACHine{1|2}. TWAVeform:XTIMe] dime-value > < NL>

10 DIM Xt$ [loo]

20 OUTPUT XXX;*:MACHINE 1: TWAVEFORM:XTIME?"
30 ENTER)OO0 Xt$

40 PRINT Xt$

50 END

TWAVeform Subsystem
19-29

SYMBol Subsystem 20

Introduction The SYMBol subsystem contains the commands that allow you to define
symbols on the controller and download them to the HP 1652B/53B logic
analyzer. The commands in this subsystem are:

BASE
PATTern
RANGe
REMove
WIDTh

(‘@ .
('\SIMBOD—.@J space l»——{ tabe | _name

HEXadecimal

Tm'ernj—t space label-name S ,

O
RANGe space Hlobel_nome ‘

o O+ rimars

o(REMove)

\DCWIDThH space }—D@el_nume ° width_value
18510/8X10

Figure 20-I. SYMBol Subsystem Diagram

HP 1652B/1653B SYMBol Subsystem
Programming Reference 20-1

label-name == sting of up fe 6 alphanumeric characters

symbol-name = string of up to 16 alphanumeric characters

pattern-value = "{#B{0|1|X}. ..
#Q1{0]1]2|3]4|516|7\X}... |

#H{0|1|123]4|5|6|7/8|9|4|B|C|D|E|F|X}. . .|

{011{2|3|4|5|6|7]8]9}...}"

dart-value = "{#B{0|1}. . . |
#0{01112]314|516|7}. . .|
#H{OIj'|2|3|415|6|718|9!A|B|C|D|E|F}. ..
{01132l3|4|5|6|718|9}

stop-value = "{#B{0|1}. .
#Q{0|1|2|3!4|5|6|7}
#H{OI”2}3\4|5|6]7|8]9|A|B|ClDiE|F}
{01121314|5/6|718]9} ... }"

width-value = integer from | to 16

Figure 20-I. SYMBoI Subsystem Syntax Diagram (continued)

SYMBol Subsystem
20-2

HP 1652B/1653B
Programming Reference

SYMBol

T
SYMBoI selector

The SYMBol selector is used as a part of a compound header to access
the commands used to create symbols. It dways follows the MACHine
selector because it selects a branch directly below the MACHine level in
the command tree.

Command Syntax: :MACHine{1|2}:SYMBol!

Example: ouTpuT XXX;":MACHINEL:SYMBOL :BASE "DATA", BINARY"

HP 1652B/1653B SYMBol Subsystem
Programming Reference 20-3

BASE

BASE command

The BASE command sets the base in which symbols for the specified label
will be displayed in the symbol menu. It aso specifies the base in which
the symbol offsets are displayed when symbols are used.

@ BINary is not available for labels with more than 20 bits assigned. In this
Note case the base will default to HEXadecimal.

Command Syntax: :MACHine{1|2}:SYMBol:BASE <label-name >, < base-value >

where:
< label-name > :: = string of up to 6 alphanumeric characters
<base value > = {BINary | HEXadecimal { OCTal DECimal | ASCii}

Example: OUTPUT XXX;":MACHINE1:SYMBOL :BASE 'DATA®, HEXADECIMAL"

SYMBol Subsystem HP 1652B/16538
20-4 Programming Reference

PATTern

PATTern command

The PATTern command allows you to create a pattern symbol for the
specified label.

Because don't cares (X) are alowed in the pattern value, it must always be
expressed as a string. You may still use different bases, though don't cares
cannot be used in a decimal number.

Command Syntax: :MACHine{1 | 2}:SYMBol:PATTern< label-name >, < symbol-name >, <pattern-value >

where:
< label-name > i = string of up to 6 alphanumeric characters
< symbol-name > .. = string of up to 16 alphanumeric characters
< pattern value > == "{#B{0|1]X}. . .

#0{0/1)2(3]4|5/6|7|X} . . .|
#H{0|1(2/3]4/5|6{7|8{9]A|B|C|D|E[FIX} .. .|
{0]112/3]4/5|6(78]9} .. . }"

Example: OUTPUT XXX;":MACHINE1:SYMBOL:PATTERN "STAT*, 'MEM_RD','#HOIXX'"

HP 1652B/1653B SYMBol Subsystem
Programming Reference 20-5

RANGe

RANGe command

The RANGe command allows you to create a range symbol containing a
start value and a stop value for the specified label. The values may be in
binary (#B), octal (#Q), hexadecimal (#H) or decimal (default). You
may not use “don’t cares’ in any base.

Command Syntax: :MACHine{1]|2}:SYMBol:RANGe <label-name >, < symbol-name >, <start-value >,

<stop-value >

where:

<label-name > :: = string of up to 6 alphanumeric characters
< symbol-name > :» = string of up to 16 alphanumeric characters

<start_value> ::= "{#B{0|1}..
#Q{0]112]3/4|516/7} . . |
#H{0|1]2]3]4|5|6|7|8|91A|B|C|D|EIF}.. .
{o[1]213|4|5(6|7|8]9} ... }"

< stop value > ::= "{#B{0]1}.. .|
#Q{0(|1|2|3|4]516]7}.. .1
#H{0|1|2|3|4|5]6]7]8}9|A|B|C|D|E|F}.. .
{0]1]2|3]4|5]6]7|8]9} ... }'

Example: OUTPUT XXX;” :MACHINE1:SYMBOL :RANGE ‘STAT'. "I0_ACC','0", "#HOOOF'"

SYMBol Subsystem HP 1652B/1653B
20-6 Programming Reference

REMove

REMove command

The REMove command deletes all symbols from a specified machine.

Commend Syntax: :MACHine{1|2}:SYMBol:REMove

Example: ouTPUT XXX;":MACHINEL:SYMBOL :REMOVE"

HP 1652B/1653B SYMBol Subsystem
Programming Reference 20-7

WIDTh

WIDTh command

The WIDTh command specifiesthe width (number of characters) in
which the symbol names will be displayed when symbols are used.

] ! The WIDTh command does not affect the displayed length of the symbol
Note offset value.

Command Syntax: :MACHine{1]2}:SYMBol:WIDTh <label-name>, <width_value >

where:
< label-name > . = string of up to 6 alphanumeric characters
< width value > . = integer from 1 to 16

Example: OUTPUT XXX;" :MACHINEL:SYMBOL:WIDTH *DATA*,9 "

SYMBol Subsystem HP 1652B/1653B
20-8 Programming Reference

SCOPe Subsystem 21

Introduction The SCOPe subsystem provides access to the commands and the
oscilloscope subsystem commands that control the basic operation of the
oscilloscope. At the SCOPe subsystem level isacommand that turnsthe
oscilloscope on or off (SMODe) and the AUToscale command.

Additionally, the following subsystems are a part of the SCOPe subsystem.
Each is explained in a separate chapter.

CHANRel subsystem (Chapter 22)
TRIGger subsystem (chapter 23)
ACQuire subsystem (chapter 24)
TIMebase subsystem (chapter 25)
WAVeform subsystem (chapter 26)
MEASure subsystem (chapter 27)

Not all scope-related functions can be duplicated with programming
instructions. If you are unable to get a desired configuration strictly
through programming instruction, try the following steps:

1. Manually configure the HP 1652B/53B through the front panel.

2. Save configuration to adisk (through the front panel or through the
:MMEM:STORE "CONFIG","Setups™ ingruction).

Now you can use the command MMEM: LOAD “CONFIG" to load in the desired
configuration.

Tﬂ
T

01852509

AUToscale

Figure 21-1. SCOPe Subsystem Syntax Diagram

HP 1652B/1653B SCOPe Subsystem
Programming Reference 21-1

SCOPe

SCOPe selector

The SCOPe selector is used to indicate the beginning of acompound
command (or query) for a function within the SCOPe subsystem. Since

SCOPe is a root-level command, it will normally appear as the first
element of a compound header.

Command Syntax: :8COPe

Example: OUTPUT XXX; ":SCOPE:TRIGGER:SLOPE NEGATIVE"

SCOPe Subsystem HP 1652B/1653B
21-2 Programming Reference

AUToscale

Command Syntax:

Example:

HP 1652B/1653B
Programming Reference

AUToscale

command

The AUToscale command causes the oscilloscope to automatically select
the vertical sensitivity, vertical offset, trigger level and timebase settings

for optimum viewing of any input signals. The trigger source is the lowest
channel on which the trigger was found. If no trigger isfound, the
oscilloscope defaults to auto-trigger.

:8COPe:AUToscale

OUTPUT XXX;":SCOPE:AUTOSCALE"

SCOPe Subsystem
21-3

SMODe

SMODe command/query

The SMODe command allows the oscilloscope to be turned on or off over
the bus.

The SMODe query returns the current status of the oscillosocpe.

Command Syntax: :scope:sMoDe {ON|OFF}
Example: OUTPUT XXX;":SCOPe:SMODe ON'

Query Syntax: :sCOPe:SMODe?

Returned Format: [:SCOPe:SMODe] (ON |OFF} < NL>

Example: 10 DIM Sm$[100]
20 OUTPUT XXX;":SCOPE:SMODE?"
30 ENTER XXX;Sm$
40 PRINT Sm$
50 END

SCOPe Subsystem HP 1652B/1653B
21-4 Programming Reference

CHANnNel Subsystem 22

Introduction The CHANnRel subsystem commands control the channel display and the
vertical axis of the oscilloscope. Each channel must be programmed
independently for all offset, range and probe functions. The commands
are;

s CHANnNel
COUPling
OFFSet
PROBe
RANGe

HP 1652B/1653B CHANnel Subsystem
Programming Reference 22-1

&> .
@ANne 1 \H channe ! _number ‘PD@J—.(COUPI ing H space DC) -
—{OFFSeLH space H offset_arg }— >
L—b(PROBe)——D{ space }—D‘ probe_arg }—
——b(RANGeH spaceJ—b[range_arg }

01882502

channd-number = {I 2)

offset-arg = real number defining the voltage at the center of the display. The offset range depends on

the input impedance setting. The offset range for 1 M input is = 125V to + 125 V. The offset range for

50Qinputis -5Vto +5V.

probe-arg = integer from 1 through 1004, specifying the probe attenuation with respect to 1.

range_arg = real number specifying vertical sensitivity. The allowable range is 15 m} to 10 Vfor a
probe attenuation of 1. The specified range is equal to 4 times Volts/Div.

Figure 22-. CHANnel Subsystem Syntax Diagram

CHANnRel Subsystem HP 1652B/1653B
22-2 Programming Reference

CHANnNel

I
CHANnNel selector

The CHANnNel selector is used as part of a compound command header to
access the settings found in oscilloscope's CHANNnel menu. It aways
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command Syntax: :SCOPe:CHANnel < >

where:

<N> = {1]|2}

Example: OUTPUT XXX; ":SCOPE:CHANNEL2:QFFSET 2.5"

HP 1652B/1653B CHANnel Subsystem
Programming Reference 22-3

COUPIing

R
COUPIing command/query

The COUPling command sets the input impedance for the selected
channel. The choices are either IM Ohm (DC) or 50 Ohms (DCFifty).

The query returns the current input impedance for the specified channel.

Command Syntax: :SCOPe:CHANnel{1{2}:COUPling {DC) DCFifty}

Example: OUTPUT XXX ; “:SCOPE : CHANNEL1:COUPLING DC”
QuerySyntax: :SCOPe:CHANnel{ 1|2}:COUPling?
Returned Format: [:SCOPe:CHANnel{1 |2}:COUPling] {D C DCFifty} < NL>

Example: 10 DIMCc$[100]
20 OUTPUT XXX;":SCOPE:CHANNEL1:COUPLING?"
30 ENTER XXX;Cc$
40 PRINT Cc$
50 END

CHANnel Subsystem HP 1652B/1653B
22-4 Programming Reference

OFFSet

OFFSet

Command Syntax:

where:

< value >

Example:

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

command/query

The OFFSet command sets the voltage that is represented at center
screen for the selected channel. The allowable offsets for 1:1 probes are:

+ 2V < 50 mV/div

+ 10V a 100 mV/div and 200 mV/div
+ 50V at 50 mV/div and 1 VIdiv
+*250V 2 2 Vidiv

The allowable offset is+5 V for any vertical range when the input
impedance is set to 50 2.

The offset value is recompensated whenever the probe attenuation factor
is changed.

The query returns the current value for the selected channel.

:SCOPe:CHANnNel{1]2}:OFFSet <value >

= {—250Vto + 250Vmax.at 1 MQ | — 5Vto + 5Vat50Q2}
OUTPUT XXX;™:SCOP:CHAN1:OFFS 1.5"

:SCOPe:CHANnel{1]2}:OFFSet?
[:SCOPe:CHANnel{ 1 |2}.0FFSet] <value > < NL>

10 DIM €o$[100)]

20 OUTPUT XXX;":SCOPE:CHANNEL1:OFFSET?"
30 ENTER XXX;Co$

40 PRINT Co$

50 END

CHANnel Subsystem
22-5

PROBe

PROBe

Command Syntax:

where:

<atten>

Example:
Query Syntax:
Returned Format:

Example:

CHANnel Subsystem
22-6

command/query

The PROBe command specifies the atenuation factor for an external
probe connected to a channel. The command changes the channel voltage
references such as range, offset, trigger levels and automatic
measurements. The actual sensitivity is not changed at the channel input.
The dlowable probe attenuation factor is an integer from 1 to 1000,

The query returns the probe attenuation factor for the selected channel.

:SCOPe:CHANnel{1 |2}:PROBe <atten>

;. = integer from 1 to 1000

OUTPUT XXX;":SCOPe:CHAN1:PROB 10"
:SCOPe:CHANnei{1]2}:PROBe?
[:SCOPe:CHANnel{ 1 |2}:PROBe] <atten > <NL>

10 DIM Att$[100]

20 OUTPUT XXX;': SCOPE:CHANNEL1:PROBE?"
30 ENTER XXX;Att$

40 PRINT Att$

50 END

HP 1652B/1653B
Programming Reference

RANGe

Command Syntax:

where:

< range >

Example:

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B

Programming Reference

RANGe

command/query

The RANGe command defines the full-scale (4 x Volts/Div) verticd axis
of the selected channel. The vaues for the RANGe command are
dependent on the current probe attenuation factor for the selected
channel. The allowable range for a probe attenuation factor of 1:1 is

60 mV to 40 V. For a larger probe attenuation factor, multiply the range
limit by the probe atenuation factor.

The RANGe query returns the current range setting.

:SCOPe:CHANnei{1 [2}:RANGe <range>

;2 =60 mV to 40 V for a probe attenuation factor of 1: 1
QUTPUT XXX;":SCOPE:CHANNELL:RANGE 4.8"
:SCOPe:CHANnel{1]2}:RANGe?

[:SCOPe:CHANNel{1|2}:RANGe] <range:> < NL>

10 DIM pr§[100]

20 OUTPUT XXX;":SCOPE:CHANNELL:RANGE?"
30 ENTER XXX;Pr$

40 PRINT Pr$
50 END

CHANnel Subsystem
22-7

TRIGger Subsystem 23

Introduction

The Edge
Trigger Mode

‘The Immediate
Trigger Mode

HP 1652B/1653B
Programming Reference

The commands of the TRIGger subsystem allow you to set all the trigger
conditions necessary for generating atrigger. There are two trigger
modes: Edge and Immediate. If a command is valid for the chosen trigger
mode, then that setting will be accepted by the oscilloscope. However, if
the command is not valid for the trigger mode, an error will be generated.
None of the commands of this subsystem are used in conjunction with
Immediate trigger mode. See Figure 23-| for the TRIGger subsystem
syntax diagram.

In the Edge trigger mode, the oscilloscope triggers on an edge of a
waveform, specified by the SOURce, LEVel, and SLOPe commands. If a
source is not specified, then the current source is assumed.

In the Immediate trigger mode, the oscilloscope will trigger by itself when
the arming requirements are met.

TRIGger Subsystem
23-1

/N
-, A”{

Cfﬁlcqer }«-»@—J———{LEW H space H level_value],—

IMMediate

SLOPe space F’OSSUvef

NEGative

SLOPe? —
SOURce space CHANnet 1 e -
CHANne | 2

SOURce? F 01652511

level _value = trigger level in volts

Figure 23-. TRIGger Subsystem Syntax Diagram

TRIGger Subsystem HP 1652B/1653B
23-2 Programming Reference

TRIGger

L
TRIGger selector

The TRIGger selector is used as part of a compound command header to
access the settings found in oscilloscope’s Trigger menu. It aways follows
the SCOPe selector because it selects a branch below the SCOPe level in

the command tree.

Command Syntax: :SCOPe:TRIGger

Example: OUTPUT XXX; " :SCOPE:TRIGGER:CHANNEL1;LEVEL 2. 0"

HP 1652B/1653B TRIGger Subsystem
Programming Reference 23-3

LEVEL

LEVEL command/query

The LEVEL command sets the trigger level voltage for the selected
source or path. This command cannot be used in the IMMEDIATE
trigger mode.

The query returns the trigger level for the current path or source.

|¢| There is no shortform for LEVEL. This is an intentional deviation from
Note g the normal truncation rule.

Command Syntax: :8COPe:TRIGger:LEVEL <value >

where:

<value> :: = Trigger level in volts
Example: OUTPUT XXX;":SCOPE:TRIG:LEVEL 1.0"

Query Syntax: :SCOPe:TRIGger:LEVEL?

Returned Format: [:SCOPe:TRIGger:LEVEL] <value> <NL>

Example: 10 DIM E1$[100]
20 OUTPUT XXX:" :SCOPE:TRIGGER:SOURCE ~ CHANNELI1;LEVEL?"
30 ENTER XXX;E1$
40 PRINT E1$
50 END

TRiGger Subsystem HP 1652B/1653B
23-4 Programming Retference

MODE

MODE command/query

The MODE command allows you to select the trigger mode for the
oscilloscope. The EDGE mode will trigger the oscilloscope on an edge
whose slope is determined by the SLOPe command at a voltage set by the
LEVEL command. In the IMMediate trigger mode, the oscilloscope goes
to afreerun mode and does not wait for atrigger. The IMMediate modeis
used in armed-by other machine applications.

The query returns the current mode.

Command Syntax: :SCOPe:TRIGger:MODE {EDGE IMMediate}
Example: OUTPUT XXX;":SCOPE:TRIGGER:MOOE EDGE"
Query Syntax: :SCOPe:TRIGger:MODE?
Returned Format: [:SCOPe:TRIGger:MODE] {EDGE |IMMediate} <NL>

Example: 10 DIM Md$[100]
20 OUTPUT XXX;":SCOPE:TRIGGER:MODE?"
30 ENTER XXX;Md$
40 PRINT Md$
50 END

HP 1652B/1653B TRIGger Subsystem
Programming Reference 23-5

SLOPe

SLOPe command/query

The SLOPe command selects the trigger sope for the previously
specified trigger source. This command can only be used in the EDGE
trigger mode.

The query returns the slope of the current trigger source.

Command Syntax: :SCOPe:TRIGger:SLOPe {PQOSitive | NEGative}

Example: OUTPUT XXX;“:SCOP:TRIG:SOURCE ~CHAN1;SLOPE pOS”
Query Syntax. :SCOPe:TRIGger:SLOPe?
Returned Format: [:SCOPe:TRIGger:SLOPe] {POSitive |NEGative} <NL>

Example: 10 DIM Ts${100]
20 OUTPUT XXX;":SCOP:TRIG:SOUR CHAN1;SLOP?"
30 ENTER XXX;Ts$
40 PRINT Ts$
50 END

TRIGger Subsystem HP 1652B/1653B
23-6 Programming Reference

SOURce

SOURce command/query

The SOURce command is used to select the trigger source and is used for
any subsequent SLOPe and LEVEL commands. This command can only
be used in the EDGE trigger mode.

The query returns the current trigger source.

Command Syntax: :SCOPe:TRIGger:SOURce {CHANnel{1]2})
Example: ~ OUTPUT XXX;":SCOP:TRIG:SOUR CHAN1™

Query Syntax: :SCOPe:TRIGger:SOURce?
Returned Format: [:SCOPe:TRIGger:SOURce] {GHANnel{1|2}}<NL >

Example: 10 piv Tso$[100}
20 OUTPUT XXX;":SCOPE:TRIGGER:SOQURCE?"
30 ENTER XXX;Tso$
40 PRINT Tso$
50 END

HP 1652B/1653B TRIGger Subsystem
Programming Reference 23-7

ACQuire Subsystem 24

Introduction The ACQuire subsystem commands are used to select the type of

acquisition and the number of averages to be taken if the average type is
chosen. The commands are:

¢ COUNt
e TYPE
S ~
(@E@-@J—{COUNLH spaceH count_arg }
space NORMGD
H

01632510

count_arg = (2|4|8|16]32|64|128|256} An integer that specifies the number of averages to be taken of
each time point.

Figure 24-I. ACQuire Subsystem Syntax Diagram

HP 1652B/1653B ACQuire Subsystem
Programming Reference 24-1

Acquisition Type In the Norma mode, with the ACCumulate command OFF, the

Normal oscilloscope acquires waveform data and then displays the waveform.
When the oscilloscope makes a new acquisition, the previously acquired
waveform is erased from the display and replaced by the newly acquired
waveform.

When the ACCumulate command is ON, the oscilloscope displays al the
waveform acquisitions without erasing the previously acquired waveform.,

Acquisition Type In the Average mode, the oscilloscope averages the data points on the

Average waveform with previously acquired data Averaging helps eliminate
random noise from the displayed waveform. In this mode the
ACCumulate command is OFF. When Average mode is selected, the
number of averages must also be specified using the COUNt command.
Previoudy averaged waveform data is erased from the display and the
newly averaged waveform is displayed.

ACQuire Subsystem HP 1652B/1653B
24-2 Programming Reference

ACQuire

ACQuire

selector

The ACQuire selector is used as part of a compound command header to
access the settings found in oscilloscope’s Acquire menu. It always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command Syntax: :$COPe:ACQuire

Example: ouTPUT XXX: ":SCOPE:ACQUIRE:TYPE NORMAL"

HP 1652B/1653B
Programming Reference

ACQuire Subsystem
24-3

COUNt

COUNTt command/query

The COUNt command specifies the number of acquisitions for the
running weighted average. This command generates an error if Normal
acquisition mode is specified.

The query returns the last specified count.

Command Syntax: :SCOPe:ACQuire:COUNt <count >
where
<count> = {2|4|8/16]32|64 128|256}

Example OUTPUT XXX;":SCOPE:ACQUIRE:COUNT 16"

Query Syntax: :SCOPe:ACQuire:COUNt?
Returned Format [:SCOPe:ACQuire:COUNt] < count > < NL>

Example: 10 DIM Ac$[100]
20 OUTPUT XXX;':SCOPE:ACQ:COUN?"
30 ENTER XXX;Ac$
40 PRINT Ac$
50 END

ACQuire Subsystem HP 1652B/1653B
24-4 Programming Reference

TYPE

TYPE command/query

The TYPE command selects the type of acquisition that is to take place
when the STARt command is executed. One of three acquisition types
may be selected: the NORMal, AVERage, or Accumulate mode.

The query returns the last specified type.

Command Syntax :SCOPe:ACQuire:TYPE {NORMal AVERage ACCumulate}

Example: oUTPUT Xxxx;: SCOPE:ACQUIRE: TYPE NORMAL”

Query Syntax: :SCOPe:ACQuire:TYPE?
Returned Format: [:SCOPe:ACQuire:TYPE] {NORMal | AVERage} < NL>

Example: 10 DiM At$[100)
20 OUTPUT XXX;":SCOPE :ACQUIRE : TYPE?"
30 ENTER XXX;At$
40 PRINT At$
50 END

HP 1652B/1653B ACQuire Subsystem
Programming Reference 24-5

TiIMebase Subsystem 25

Introduction The commands of the TIMebase subsystem control the Tiiebase, Trigger
Delay Time, and the Timebase Mode. If TRIGGERED mode is to be
used, ensure that the trigger specifications of the TRIGger subsystem have
been set. Refer to Figure 25-1 for the TIMebase subsystem syntax diagram.

ISR |
(NS !

(1TIMebB"®J DELay space Hﬁeluy-arg_}
[—e={ DELay?)

TRIGGERED

-——Q’«’ANGeH space H rungc_ori} -

RANGe?

é

01852803

delay arg = delay time in seconds, from -2500 seconds through + 2500 seconds
range_arg = a real numberfrom 5 ns through I0s

Figure 25-1. TIMebase Subsystem Syntax Diagram

HP 1652B/1653B TiMebase Subsystem
Programming Reference 251

TiMebase

TIMebase

selector

The TIMebase selector is used as part of a compound command header to
access the settings found in oscilloscqe’s Timebase menu. It always

follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command Syntax: :SCOPe:TiMebase

Example: outpuT xxx; ":SCOPE:TIMEBASE:MODE AUTO"

TiMebase Subsystem HP 1652B/1653B
252 Programming Reference

DELAY

Note ﬂ

Command Syntax:

where:

< delay time >
Example:

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B

Programming Reference

DELAY

command/query

The DELAY command sets the time between the trigger and the center
of the screen if the trigger events count iszero. If the trigger eventscount
is non-zero, the center of the screen is the trigger events count plus the
delay time.

The query returns the current delay setting.

The DELAY command in the TIMebase subsystem has no shortform.
Thisis an intentional deviation from the normal truncation rules.

:SCOPe:TIMebase:DELAY < delay time >

:» = delay time in seconds

OUTPUT XXX:":SCOPe:TIMebase:DELAY 2US"

:SCOPe:TIMebase: DELAY?
[:SCOPe:TIMebase:DELAY] <value > <NL>

10 DIM Dt$[100]

20 OUTPUT XXX;":SCOPe:TIMebase:DELAY?"
30 ENTER XXX;Dt$

40 PRINT Dt$

50 END

TIMebase Subsystem
253

MODE

MODE

Note !!

Command Syntax:

Example:

TIMebase Subsystem
25-4

command/query

The MODE command sets the oscilloscope timebase to either Auto or
Triggered mode. When the AUTO mode is chosen, the oscilloscope waits
approximately one second for atrigger to occur. If atrigger is not
generated within that time, then auto trigger is executed. If asignal is not
applied to the input, a baseline is displayed. If there is a signal at the input
and the specified trigger conditions have not been met within one second,
the waveform display will not be synchronized to atrigger.

When the TRIGGERED mode is chosen, the oscilloscope waits until a
trigger is received before data is acquired. The TRIGGERED mode
should be used when the trigger source signal is less than at a 40 Hz
repetition rate.

The Auto-Trig On field in the trigger menu is the sasme asthe AUTO
mode over HP-IB or RS-232C. Setting the mode to TRIGgered is the
same as the Auto-Trig Off on the front panel.

The query returns the current TIMebase mode.

The TRIGGERED argument for MODE has no shortform. This is an
intentional deviation from the normal truncation rule.

:SCOPe:TIMebase:MODE {TRIGGERED |AUTO}

OUTPUT XXX;":SCOPE:TIME:MODE AUTO

HP 1652B/1653B
Programming Reference

MODE

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B
Programming Reference

:SCOPe:TiMebase:MODE?
[:SCOPe:TIMebase:MODE] {AUTO|TRIGGERED} <NL>

10 DIMTm$[100]

20 OUTPUT XXX;":SCOPe:TIMEBASE :MODE?"
30 ENTER XXX;Tm$

40 PRINT Tm$

50 END

TIMebase Subsystem
255

RANGe

RANGe command/query

The RANGE command sets the full-scale horizontal time in seconds. The
RANGE value is ten times the front panel field of s/div.

The query returns the current range.

Command syntax: :SCOPe:TiMebase:RANGe c range >

where:

<range > :: = time in seconds
Example: outPuT xxx;" :SCOPE:TIMEBASE :RANGE 2uUs™

QuerySyntax: :SCOPe:TIMebase:RANGe?
Returned Format: [:SCOPe:TIMebase:RANGe] <fange > < NL>

Example: 10 D Tr$[100]
20 OUTPUT XXX;™ :SCOPE:TIMEBASE :RANGE?"
30 ENTER XXX;Tr$
40 PRINT Tr$
50 END

TiMebase Subsystem HP 1652B/1653B
25-6 Progmmming Reference

WAVeform Subsystem 26

Introduction The commands of the WA Veform subsystem are used to transfer
waveform data from the oscilloscope to a controller. The commands are:

COUNt
DATA
FORMat
POINts
PREamble
RECord
SOURce
TYPe
VALid
XINCrement
XORigin
XREFerence
YINCrement
YORigin
YREFerence

HP 1652B/1653B WAVeform Subsystem
Programming Reference 26-1

&, ™
Lo DATA?)
—

FORMat? >

PREamb l 7 L

RECord

——-P(R-E_Corcﬂ
|—a{ SOURce)—P(spuceH channe|_# } -

XINCrement? -

-—»{ XORIgin?

YREFerence?)
—{ XREFerence?
o YINCrement” -

YORIgin?

G

YREFerence?

channel-# = {1]2}
Figure 26-1. WAVeform Subsystem Syntax Diagram

WAVeform Subsystem HP 1652B/1653B
262 Programming Reference

Waveform
Record

Data Acquisition
Types

Normal Mode

Average Mode

HP 1652B/1653B
Programming Reference

The waveform record is actually contained in two portions; the waveform
data and preamble. The waveform data is the actual data acquired for
each point. The preamble contains the information for interpreting
waveform data. Data in the preamble includes number of points acquired,
format of acquired data, average count and the type of acquired data.

The preamble also contains the X and Y increments, origins, and
references for the acquired data for translation to time and voltage values.

The values set in the preambl e are based on the settings of the variablesin
the ACQuire, WAVeform, CHANnel, and TIMebase subsystems. The
ACQuire subsystem determines the acquisition type and the average
count, the WAVeform subsystem sets the number of points and the format
mode for sending waveform data over the remote interface and the
CHANRel and TIMebase subsystems set all the X - Y parameters.

The two acquisition types that may be chosen are Normal and Average.

In the Normal mode, with Accumulate command QFF, the oscilloscope
acquires waveform data and then displays the waveform. When the
oscilloscope takes a new acquisition, the previously acquired waveform is
erased from the display and replaced by the newly acquired waveform.

When ACCumulate is set ON, the oscilloscope displays all the waveform
acquisitions without erasing the previously acquired waveform.

In the Average mode, the oscilloscope averages the data points on the
waveform with previously acquired data. Averaging helps eliminate
random noise from the displayed waveform. in this mode ACCumulate is
set to OFF. When Average mode is selected the number of averages must
also be specified using the COUNt command. Previously displayed
waveform datais erased from the display and the newly averaged
waveform is displayed.

WAVeform Subsystem
26-3

Format for Data There are three formats for transferring waveform data over the remote
Transfer interface. The formats are WORD, BYTE, and ASCII.

WORD and BYTE formatted waveform records are transmitted using the
arbitrary block program data format specified in IEEE-488.2. When you
use this format, the ASCII character string "#8< DDDDDDDD > " is sent
before the actual data. Each D represents an ASCII digit. The eight-digit
number represents the number of bytes to follow.

For example, if 2048 points of data are to be transmitted, the ASCII string
#800002048 would be sent.

BYTE Format In BYTE format, the six least significant bits represent the waveform data.
This means that the display is divided into 64 vertical increments. The
most significant bit is not used. The second most significant bit is the
overflow bit. If this bit is set to “1” and all data bits are set to “0” then the
waveform is clipped at the top of the screen. If al "(" are returned, then
the waveform is clipped on the bottom of the display (see figure 26-2).

NORMAL AND AVERAGE ACQUISITION TYPE

128 64 32 16 8 4 2 1

o3 B I O D

NOT
USED N DATA 4

OVERFLOW 16330/8L.20

Figure 262. Byte Date Structure

The data returned in BYTE format are the same for either Normal or
Average acquisition types. The data transfer rate in this format is faster
than the other two formats.

WAVeform Subsystem HP 1652B/1653B
264 Progmmming Reference

WORD Format Word data is two bytes wide with the most significant byte of each word
being transmitted first. Each 16-bit value effectively places a data point on
screen. The screen thereforeis divided into 16384 vertical increments. The
WORD data structure for normal and average acquisition types are shown
in figure 26-3.

The relationship between BY TE and WORD formats are similar. Byte
data values equal word data values divided by 256. This is the reason that

the least significant byte in the normal acquisition mode always contains
"0"s. In the average acquisition mode, the extra bits of resolution gained by
averaging occupy the least significant byte of the word. However, this is
only true when RECord type is set to WIND ow.

NORMAL ACQUISITION TYPE

MSB LSB
32768 16384 B192 4896 2048 1024 512 256 128 64 32 16 8 4 2 1

I L

USED A DATA ALL 05" wm—ree—

OVERF LOW

AVERAGE ACQUISITION TYPE

MSB LS8
32768 16384 8192 4896 @48 1824 512 256 128 64 32 16 3 | H 1
NOT
USED N DATA s N DATA {FRACTION) st
OVERFLOW 16530/8L 19

Figure 26-3. Word Data Structure

ASCIl Format ASCII formatted waveform records are transmitted one value at a time,
separated by acomma. The data values transmitted are the same as would
be sent in the WORD format except that they are converted to an integer
ASCII format (six or less characters) before being transmitted. The
header before the datais not included in this format.

HP 1652B/1653B WAVeform Subsystem
Programming Reference 26-5

Data Conversion

Conversion from Data
Value to Voltage

Conversion from Data
Value to Time

Conversion from Data
Value to Trigger Point

WAVetorm Subsystem
26-6

Data sent from the HP 1652B/53B is raw data and must be scaled for
useful interpretation. The values used to interpret the data are the X and
Y references, X and Y origins, and X and Y increments. These values are
read from the waveform preamble or by the queries of these values.

The formula to convert a data value returned by the instrument to a
voltage is.

voltage = [(data value = yreference) X yincrement] + yorigin

The time value of a data point can be determined by the postion of the
data point. As an example, the third data point sent with XORIGIN =
16ns, XREPERENCE = 0 and XINCREMENT = 2ns. Using the
formula:

time = [(data point number = xreference) X xincrement] + xorigin
would result in the following caculation:

time = [(3 « 0) x 2ns] + 16ns = 22ns.

The trigger data point can be determined by calculating the closest data
point to time O.

HP 1652B/1653B
Programming Reference

WAVeform

I
WAVeform selector

The WAVeform selector is used as part of a compound command header
to access the settings found in oscilloscope’s Waveform menu. It always
follows the SCQPe selector because it selects a branch below the SCOPe
level in the command tree.

Command Syntax: :SCOPe:WAVeform

Example: OUTPUT XXX; *:SCOPE:WAVEFORM:”

HP 1652B/1653B WAVeform Subsystem
Programming Reference 26-7

COUNt
COUNt

Query Syntax:

Returned Format:

where:

<count>

Example:

WAVeform Subsystem
28-8

query

The COUNt query returns the AVERage count that was last specified in
the Acquire subsystem. If the display mode is either NORMal or
Accumulate, a 1 is returned. If the display mode is AVERage, the
average number is returned.

:SCOPe:WAVeform:COUNt?

{:SCOPe:WAVetorm:COUNt] <count > <NL>

1= {2]4|8|16|32]64| 128|256}

10 DIM Ac$[100]

20 OUTPUT XXX;" :SCOPE:WAVEFORM COUNT?”
30 ENTER XXX;Ac$

40 PRINT Ac$

50 END

HP 1652B/1653B
Programming Reference

DATA

DATA query

The DATA query returns the waveform record stored in a specified
channel buffer. The SOURce command of this subsystem has to be used
to select the specified channel. The datais transferred based on the
FORMAT (BYTE, WORD or ASCII) chosen and the RECORD
specified (FULL or WINDOW). Since WAVeform:DATA is a query
only, it can not be used to send awaveform record back to the
oscilloscope from the controller. If awaveform record isto be saved for
later reloading into the oscilloscope, the SY STem:DATA command
should be used. See the DATA instruction in the SYSTem subsystem for
information concerning the < block data > parameter.

Query Syntax: :scope:wAVeform:[SOURce CHANnel{ 1 |2};]DATA?
Returned Format: [:SCOPe:WAVeform:DATA)#800004096 <block data > < NL>

The following example program moves data from the HP 1652B/53B to a
controller.

Example: 100 CLEAR XXX
110 OUTPUT XXX;":SYSTEM:HEADER OFF"
120 OUTPUT XXX;":SCOPE:ACQUIRE:TYPE NORMAL"
130 OUTPUT XXX;'":SCOPE:WAVEFORM:SOURCE ~ CHANNELI™
140 OUTPUT XXX;":SCOPE:WAVEFORM: FORMAT BYTE™
150 OUTPUT XXX;™:SCOPE:WAVEFORM:RECORO FULL"
160 OUTPUT XXX;':SCOPE:AUTOSCALE"
170 DIM Header$[20]
180 Length=4096
190 ALLOCATE INTEGER WAVEFORM(1:Length)
200 OUTPUT XXX;":SCOPE:WAVEFORM:DATA?"
210 ENTER XXX USING “#10A™;Header$
220 ENTER XXX USING "#,B":Waveform(*)
230 ENTER XXX USING “#,B";Lastchar
240 END

HP 1652B/1653B WAVeform Subsystem
Programming Reference 26-9

FORMat
|

FORMat command/query

The FORMat command specifies the data transmission mode of
waveform data over the remote interface.

The query returns the currently specified format.

Command Syntax: :SCOPe:WAVeform:FORMat {BYTE|WORD|ASCii}
Example: oUTPUT XXX;":SCOPE:WAV:FORMAT"
Query Syntax: :SCOPe:WAVeform:FORMat?"
Returned Format: [:SCOPe:WAVeform:FORMat] {BYTE|WORD|ASCii} <NL>

Example: 10 o Fo$[100]
20 OUTPUT XXX;':SCOPE:WAVEFORM:FORMAT?"
30 ENTER XXX;Fo$
40 PRINT Fo$
50 END

WAVeform Subsystem HP 1652B/1653B
26-10 Programming Reference

POINts

A
POINts query

When WAVeform RECord is set to PULL, the POINts query always
returns a value of 2048 points. When WA Veform RECord is set to
WINDow, then the query returns the number of points displayed on
screen.

Query Syntax: :SCOPe:WAVeform:POINts?

Returned Format: {:SCOPe:WAVetorm:POINts] <points> <NL>

where:

<points > i = number of points depending on setting of WAVetorm RECord command

Example: 10 DIM Po$[100]
20 OUTPUT XXX;":SCOPE :WAVEFORM:POINTS?"
30 ENTER XXX;Po$
40 PRINT Po$
50 END

HP 1652B/1653B WAVeform Subsystem
Programming Reference 26-11

PREAmMble

PREAmble

]
Note %

Query Syntax:

Returned Format:

Example:

WAVeform Subsystem
26-12

query

The PREAmble query returns the preamble of the specified channel. The
channel is specified using the SOURce command.

The short form for PREAMBLE is PREAmble. This is an intentional
deviation from the norma truncation rule.

:SCOPe:WAVeform:[SOURce CHANnsi{1|2};]JPREAmble?

[:SCOPe:WAVeform:PREAmbie]

< format >,

<type>,

< points >,

<count>,

< Xincrement >,

< Xorigin >,

< Xreference >,
<Yincrement>

< Yorigin >,

< Yreference > <NL >

10 DIM Pr$[300]

20 OUTPUT XXX; '™ :SCOPE :WAVEFORM: PREAMBLE?"
30 ENTER XXX;Pr$

40 PRINT Pr$

50 END

HP 1652B/1653B
Programming Reference

RECord

Command Syntax:
Example:
Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

RECord

command/query

The RECord command specifies the data you want to receive over the
bus. The choices are FULL or WINDOW. When FULL is chosen the
entire 2048 point record of the specified channel is transmitted over the
bus. In WINDOW maode, only the data displayed on screen will be
returned. Use the SOURce command to select the channel of interest.
The query returns the present mode chosen.

:SCOPe:WAVeform:RECord {FULL | WINDow}
OUTPUT XXX;':SCOPE:WAV:SOUR CHANL:REC FULL"
:SCOPe:WAVeform:RECord?

[:SCOPe:WAVeform:RECord] {FULL|WINDow} <NL>

10 pim Wr${100]
20 OUTPUT XXX;'':SCOPE:WAVEFORM:SOURCE CHANNEL!:RECORD?"

30 ENTER XXX;Wr$
40 PRINT Wr$
50 END

WAVetform Subsystem
2813

SOURce

I
SOURce command/query

The SOURce command specifies the channel that is to be used for al
subsequent waveform commands.

The query returns the presently selected channel.

Commend Syntax: :SCOPe:WAVeform:SOURce CHANnel{1}2}
Example: oUTPUT xxX;" : SCOPE:WAVEFORM: SOURCE CHANNEL1"
QuerySyntax: :SCOPe:WAVeform:SOURce?

Returned Format: [:SCOPe:WAVetorm:SOURce] CHANnel<N><NL>

Example: 10 DIM Ws$[100]
20 OUTPUT XXX;" :SCOPE:WAVEFORM:SOURCE?"
30 ENTER XXX:Ws$
40 PRINT Ws$
50 END

WAVeform Subsystem HP 1652B/1653B
26-14 Programming Reference

TYPE

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

TYPE

query

The TYPE query returns the present acquisition type which was specified
in the ACQuire subsystem.

:SCOPe:WAVeform: TYPE?

[:SCOPe:WAVeform: TYPE]){NORmal | AVERage | ACCumulate} < NL>

10 DIM Wt$[100)

20 OUTPUT XXX;™ :SCOPE:WAVEFORM: TYPE?"
30 ENTER XXX;Wt$

40 PRINT Wt$

50 END

WAVeform Subsystem
2815

VALid

VALid query

The VALid query checks the oscilloscope for acquired data. If a
measurement is completed, and data has been acquired by al channels,

then the query reports a 1. A 0 is reported if no data has been acquired for
the last acquisition.

Query Syntax: :SCOPe:WAVeform:VALid?

Returned Format: [:SCOPe:WAVeform:VALId] {0 1} <NL>

where:

0 = No data acquired
1 . = Data has been acquired

Example: 10 DIM Da$[100]
20 OUTPUT XXX;":SCOPE :WAVEFORM:VALID?"
30 ENTER XXX;Da$
40 PRINT Da$
50 END

WAVeform Subsystem HP 1652B/1653B
26-16 Programming Reference

XINCrement

XINCrement query

The XINCrement query returns the X-increment currently in the
preamble. Thisvalue isthe time between the consecutive data points.

Query Syntax: :SCOPe:WAVeform:XINCrement?
Returned Format: [:SCOPe:WAVeform:XINCrement] < value > < NL>

where:

<value > o = X-increment value currently in preamble

Example: 10 om Xi$[100]
20 OUTPUT XXX;":SCOPE:WAVEFORM:XINCREMENT?"
30 ENTER XXX;Xi$
40 PRINT Xi$
50 END

HP 1652B/1653B WAVeform Subsystem
Programming Reference 2617

XORigin

XORigin

Query Syntax:
Returned Format:

where:

<value >

Example:

WAVeform Subsystem
2618

query

The XORigin query returns the X-origin value currently in the preamble.
The value represents the time of the first data point in memory with
respect to the trigger point.

:SCOPe:WAVeform:XORigin?

[:SCOPe:WAVeform:XORigin] <value> < NL>

. = X-origin value currently in preamble

10 DIM Xo$[100]
20 OUTPUT XXX;':SCOPE:WAVEFORM:XORigin?"

30 ENTER XXX;Xo$
40 PRINT Xo$
50 END

HP 1652B/1653B
Programming Reference

XREFerence

XREFerence query

The XREFerence query returns the X-reference value in the preamble.
The value specifies the first data point in memory and is always 0.

Query Syntax: :SCOPe:WAVeform:XREFerence?
Retumed Format: [:SCOPe:WAVeform:XREFerence] <value > <NL>

where:

<value > 1 = X-reference value in preamble

Example: 10 DIM Xo$[100]
20 OUTPUT XXX;":SCOPE:WAVEFORM:XREFerence?”
30 ENTER XXX;Xo$
40 PRINT Xo$
50 END

HP 1652B/1653B WAVeform Subsystem
Programming Reference 2619

YINCrement
|

YINCrement query

The YINCrement query returns the Y -increment currently in the
preamble. Thisvalue isthe voltage difference between consecutive data
values.

Query Syntax: :SCOPe:WAVeform:YINCrement?
Returned Format: [:SCOPe:WAVeform:YINCrement] <value > c NL>

where:

cvalue » = Y-increment value currently in preamble

Example: 10 o Yi$[100]
20 OUTPUT XXX;":SCOPE:WAVEFORM:YINCREMENT?"
30 ENTER XXX;Yi$
40 PRINT Yi$
50 END

WAVeform Subsystem HP 1652B/16538
26-20 Programming Reference

YORIigin

Query Syntax:

Returned Format:

where:

< value >

Example:

HP 1652B/1653B
Programming Reference

YORIgin

query

The YORIgin query returns the Y-origin vaue currently in the preamble.

This value is the voltage at the center of the screen.

:8COPe:WAVeform:YORigin?

[:SCOPe:WAVeform:YORigin] <value > < NL>

= Y-origin value currently in preamble

lo pim Yo$[100]

20 OUTPUT XXX;":SCOPE:WAVEFORM:YORigin?"
30 ENTER XXX;Yo$

40 PRINT Yo}

50 END

WAVeform Subsystem

26-21

YREFerence
|
YREFerence

query

The YREFerence query returns the Y-reference value in the preamble.
The value specifies the data value at center screen where Y-origin occurs.

Query Syntax: :SCOPe:WAVeform:YREFerence?

Returned Format: [:SCOPe:WAVeform:YREFerenoe] < value > < NL>

where:

<value > . = Y-reference value in preamble

Example: 10 om Yo$[100]
20 OUTPUT XXX ;' - SCOPE :WAVEFORM: YREFerence?""

30 ENTER XXX;Yo$
40 PRINT Yo$
50 END

HP 1652B/1653B

WAVetform Subsystem
Programming Reference

2622

MEASure Subsystem 27

Introduction Theinstructions in the MEA Sure subsystem are used to make automatic
parametric measurements on displayed waveforms. The instructions are:

ALL
FALLTime
FREQuency
NWIDth
OVERShoot
PERiod
PRESHoot
PWIDth
RISETime
SOURce
VAMPlitude
VBASe
VMAX
VMIN
VPP
VTOP

Before using any of the MEASure subsystem queries, be sure that you
have used to SOURce command to specify which channel is to be used.
All subsequent measurements will be made from that channel’ s waveform.

If awaveform characteristic cannot be measured, the instrument responds
with9.9E + 37.

HP 1652B/1653B MEASure Subsystem
Programming Reference 271

Frequency

Period

Peak-to-Peak

Positive Pulse Width
Negative Pulse Width

Risetime

Falltime

Preshoot and
Overshoot
Preshoot

Overshoot

MEASure Subsystem

27-2

The following characteristics can be measured:

The frequency of the first complete cycle displayed is measured using the
50% level.

The period of thefirst displayed waveform is measured at the 50% level.

The absolute minimum and the maximum voltages for the selected source
are measured.

Pulse width is measured at the 50% level of the first displayed pulse.
Pulse width is measured at the 50% level of thefirst displayed pulse.

The risetime of the first displayed rising edge is measured. To obtain the
best possible measurement accuracy, select the fastest sweep speed while
keeping the rising edge on the display. The risetime is determined by
measuring time at the 10% and the 90% voltage points of the rising edge.

Falltime is measured between the 10% and the 90% points of the first
displayed falling edge. To obtain the best possible measurement accuracy,
select the fastest sweep speed possible while keeping the falling edge on

the display.

Preshoot and overshoot measure the perturbation on awaveform above or
below the top and base voltages.

isaperturbation before arising or afalling edge and measured as a
percentage of the top-base voltage.

isaperturbation after arising or falling edge and is measured as a
percentage of the top-base voltage.

For complete details of the measurement algorithms, refer to the
Front-panel Operating Reference Manual.

Refer to figure 27-1 for the MEASure subsystem syntax diagram.

HP 1652B/1653B
Programming Reference

(‘.‘MEA&ure‘)—@—‘ ALL?

FALLTime? } \

FREQuency?

NWIDth? gt

vERSHaat o)
—e={ OVERShoot? } -

PERiod?)

I
—m(PRESHO01? }
)

RISET ime?

—%SOURceH space H channei_# i‘ ~~

VAMP [i tude? }

~——\yBASe?‘

!

@

@

|

VMAX?

VMIN?

vPp? -

Bu(

VTOR?

16530502

channel-# = an integer { 1 2).

Figure 27-. MEASure Subsystem Syntax Diagram

HP 1652B/1653B MEASure Subsystem
Programming Reference 27-3

MEASure
I

MEASure selector

The MEASure selector is used as part of acompound command header
to access the settings found in oscilloscope’s Measure menu. It always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command Syntax: :SCOPe:MEASure

Example: OUTPUT XXX; ":SCOPE:MEASURE:SOURCE CHAN2"

||:| All queriesin this subsystem return the measurement results of the last
Note J channel specified by the SOURce command. If you want measurement
results from the other channel, you must use the SOURce command
before using any of the queries.

MEASure Subsystem HP 1652B/1653B
27-4 Programming Reference

ALL

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B
Programming Reference

ALL

query

The ALL query makes a set of measurements on the displayed waveform
using the selected source.

:SCOPe:MEASure:[SOURce CHANnel{1|2};]JALL?

[:SCOPe:MEASure:ALL PERiod] <real number > ;
{RISETime] <real number > ;

[FALLTime] <real number > ;

{FREQuency] <real number > ;

[PWIDtH] c real number >

[NWIDtH] <real number > ;

[VPP] c real number > ;

[VAMPIlitude] < real number > ;

[PRESHoot] <real number > :

[OVERShoot] < real number > < NL>

10 DIM Query$[300]

20 !'PRINTER IS 701 !THIS LINE SENDS RESULTS TO PRINTER
30 OUTPUT XXX;” :SCOPE:MEASURE:SOUR CHAN1"
40 OUTPUT XXX;”:SCOPE:MEASURE:ALL?"

50 ENTER XXX;Query$

60 Query$=Query${POS(Query$,";")+1]

70 LOOP

80 I=POS(Query$,";")

90 EXIT IF NOT I

100 PRINT Query$ [1, I-1]

110 Query$=Query$ [1+1]

120 END LOOP

130 PRINT Query$

140 PRINTER IS 1

150 END

MEASure Subsystem
27-5

FALLTime

FALLTime

]
o
Note é
Query Syntax:

Returned Format:

where:

<value >

Example:

MEASure Subsystem
27-6

query

The FALLTime query makes a fall time measurement on the selected
channel. The measurement is made between the 90% to the 10% voltage
point of the first falling edge displayed on screen.

The short form of FALLTIME isFALLTime. Thisis an intentional
deviation of the normal truncation rule.

:SCOPe:MEASure:[SOURce CHANNe!{1]2};]FALLTime?

[:SCOPe:MEASure:FALLTime] <vajue > < NL>

;= time in seconds between 10% and 90% voltage points

10 DIM Ft${100]

20 OUTPUT XXX;™":SCOPE:MEASURE :SOURCE CHANNEL2;FALLTIME?™
30 ENTER XXX;Ft$

40 PRINT Ft$

50 END

HP 1652B/1653B
Programming Reference

FREQuency

I
FREQuency query

The FREQency query makes a frequency measurement on the selected
channel. The measurement is made using the first complete displayed
cycle at the 50% voltage level.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{1|2};]FREQuency?
Returned Format: [:MEAsure:FREQuency] <value> <NL>

where:

<value > = frequency in Hertz

Example: 10 DIM Frcy$[100]
20 OUTPUT XXX;":SCOPE:MEASURE:SOUR CHANI;FREQ?"
30 ENTER XXX;Frcy$
40 PRINT Frcy$
50 END

HP 1652B/1653B MEASure Subsystem
Programming Reference 27-7

NWIDth
|
NWIDth query

The NWIDth query makes a negative width time measurement on the
selected channel. The measurement is made between the 50% points of
thefirst falling and the next rising edge displayed on screen.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{1|2};JNWIDth?
Returned Format: [:SCOPe:MEASure:NWIDth] <value> <NL>

where:

<value > . = negative pulse width in seconds

Example: 10 DIM Nw$ [100]
20 OUTPUT XXX; ":SCOPE:MEASURE:SOURCE CHANZ;NWID?"
30 ENTER XXX:Nw$
40 PRINT Nw$
50 END

MEASure Subsystem HP 1652B/1653B
27-8 Programming Reference

OVERShoot

Note %

Query Syntax:
Returned Format:

where:

<value >

Example:

HP 1652B/1653B

Programming Reference

OVERShoot

query

The OVERShoot query makes an overshoot measurement on the selected
channel. The measurement is made by finding a distortion following the
first mgjor transition. The result is the ratio of VMAX or VMIN vs.
VAMPlitude.

The short form of OVERSHOOT is OVERShoot. This is an intentional
deviation from the normal truncation rule.

:SCOPe:MEASure:[SOURce CHANnel{1]2};]JOVERShoot?

[:SCOPe:MEASure:OVERShoot] <value> < NL>

.. = ratio of overshoot to Vamplitude

10 DIM Ovs$[100]

20 OUTPUT XXX;":SCOPE:MEASURE SOURCE CHANL;OVER?”
30 ENTER XXX;Ovs$

40 PRINT QOvs$

50 END

MEASure Subsystem
27-9

PERiod
|
PERiod query

The PERiod query makes a period measurement on the selected channel.
The measurement equivalent to the inverse of frequency.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{1|2};]PERiod?

Returned Format: [:SCOPe:MEASure:PERiod] <value> < NL>

where:

<value > :» = waveform period in seconds

Example: 10 b Pd$[100]
20 OUTPUT XXX;':SCOPE:MEASURE:SOURCE CHANNEL1;PERIOD?"
30 ENTER XXX;Pd$
40 PRINT Pd$
50 END

MEASure Subsystem HP 1652B/1653B
27-10 Programming Reference

PRESHoot

PRESHoot

i
Note %

Query Syntax:
Returned Format:

where:

<value >

Example:

HP 1652B/1653B

Programming Reference

query

The PRESHoot query makes the preshoot measurement on the selected
channel. The measurement is made by finding a distortion which precedes
the first major transition on screen. The result isthe ratio of VMAX or

VMIN vs. VAMPlitude.

The short form of PRESHOOT is PRESHoot. This is an intentional
deviation of the normal truncation rule.

:SCOPe:MEASure:[SOURce CHANnel{ 1 |2};JPRESHoot?

[:SCOPe:MEASure:PRESHoot] <value> <NL>

. = ratio of preshoot to Vamplitude

10 DIM Prs$[100]
20 OUTPUT XXX;":SCOPE:MEASURE:CHANNEL2;PRESH?"

30 ENTER XXX:Prs$
40 PRINT Prs$
50 END

MEASure Subsystem
27-1 1

PWIDth
I

PWIDth query

The PWIDth query makes a positive pulse width measurement on the
selected channel. The measurement is made by finding the time difference
between the 50% points of the first rising and the next faling edge
displayed on screen.

Query Syntax: :8COPe:MEASure:{SOURce CHANnel{ 1|2};]PWIDth?
Returned Format: [:SCOPe:MEASure;PWIDth] <value> < NL>

where:

< value > ;1 = positive pulse width in seconds

Example: 10 DIM Pw$[100)
20 OUTPUT XXX;™:SCOPE:MEASURE:SOURCE CHANNEL?2;PWIDTH?"
30 ENTER XXX:Pw$
40 PRINT Pw$
50 END

MEASure Subsystem HP 1652B/1653B
27-12 Programming Reference

.
RISETime

)
Note &

Query Syntax:

Returned Format:

where:

<value>

Example:

HP 1652B/1653B

Programming Reference

RISETime

query

The RISETime query makes a risetime measurement on the selected
channel by finding the 10% and 90% voltage levels of thefirst rising edge
displayed on screen.

The short form of RISETIME isRISETime. Thisis an intentional
deviation from the normal truncation rule.

:SCOPe:MEASure:[SOURce CHANnel{1]2};]RISETime?

[:SCOPe:MEASure:RISETime] <value > < NL >

.. = risetime in seconds

10 DIM Tr${100)

20 OUTPUT XXX;*:SCOPE:MEASURE:SOURCE CHANNEL1;RISETIME?"
30 ENTER XXX;Tr$

40 PRINT Tr$

50 END

MEASure Subsystem
27-13

SOURce

SOURce

Command Syntax:

where:

< source >

Example:

Query Syntax:
Returned Format:

Example:

MEASure Subsystem
27-14

command/query

The SOURce command specifies the source to be used for subsequent
measurements. |f the source is not specified, the last waveform source is
assumed.

The query returns the presently specified channel.

:SCOPe:MEASure:SOUR <source >

= {112}
OUTPUT XXX;":SCOPE:MEASURE : SOURCE CHANL™

:SCOPe:MEASure:SOURce?

[:SCOPe:MEASure:SOURce] CHANnel < N> c NL>

10 DIM So0$[100]

20 OUTPUT XXX;" :SCOPE:MEASURE : SOURCE?"
30 ENTER XXX;So$

40 PRINT So$

50 END

HP 1652B/1653B
Programming Reference

VAMPIlitude

——
VAM Plitude query

The VAMPlitude query makes a voltage measurement on the selected
channel. The measurement is made by finding the relative maximum and

minimum points on screen.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{1}|2};VAMPlitude?
Returned Format: [:SCOPe:MEASure:VAMPlitude] <value > < NL>

where:

<value> .. = difference between top and base voltage

Example: 10 DIM va$[100]
20 OUTPUT XXX;":SCOPE:MEASURE:SDURCE ~ CHANNELZ2;VAMP?"

30 ENTER XXX;Va$
40 PRINT Va$
50 END

HP 1652B/1 653B MEASure Subsystem
Programming Reference 27-15

VBASe

VBASe query

The VBA Se query returns the base voltage (relative minimum) of a
displayed waveform. The measurement is made on the selected source.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{1|2};]VBASe?

Returned Format: [:SCOPe:MEASure:VBASe] <value ><NL>

where:

<value » 1 = voltage at base level of selected waveform

Example: 10 DIM vb$§[100]
20 OUTPUT XXX;':SCOPE :MEASURE : SOURCE CHAN1;VBAS?"
30 ENTER XXX;Vb$
40 PRINT Vb$
50 END

MEASure Subsystem HP 1652B/1653B
27-16 Programming Reference

VMAX

VMAX query

The VMAX query returns the absolute maximum voltage of the selected
source.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{1]2};]VMAX?

Returned Format: [:SCOPe:MEASure:VMAX] <value > < NL>

where:

<value > 0 = maximum voltage of selected waveform

Example: 10 DIM Vma$[100]
20 OUTPUT XXX;':SCOPE:MEASURE :SOURCE CHANZ ;YMAX?"
30 ENTER XXX;Vma$
40 PRINT Vma$
50 END

HP 1652B/1 6538 MEASure Subsystem
Programming Reference 27-17

VMIN

VMIN

Query Syntax:

Returned Format;

where:

<value >

Example:

MEASure Subsystem
27-18

query

The VMIN query returns the absol ute minimum voltage present on the
selected source.

:SCOPe:MEASure: {SOURce CHANnel{1|2};]VMIN?

[:SCOPe:MEASure VMIN] <« value > <NL >

;. = minimum voltage of selected waveform

10 DIM Vmi$[100]

20 OUTPUT XXX;":SCOPE :MEASURE :SOURCE CHANI;VMIN?"
30 ENTER XXX;Vmi$

40 PRINT Vmi$

50 END

HP 1652B/1653B
Programming Reference

VPP

VPP query

The VPP query makes a peak-to-peak voltage measurement on the
selected source. The measurement is made by finding the absolute
maximum and minimum points on the displayed waveform.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{1]2};JVPP?

Returned Format: [:SCOPe:MEASure:VPP] <value> <NL>

where:

<value > .. = peak to peak voltage of selected waveform

Example: 10 DIM Vpp$ [100]
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHAN1:VPP?"
30 ENTER XXX;Vpp$
40 PRINT Vpp$
50 END

HP 1652B/1653B MEASure Subsystem
Programming Reference 27-19

VTOP
I
VTOP query

The VTOP query returns the voltage at the top (relative maximum) of
waveform on the selected source.

QuerySyntax: :8COPe:MEASure:[SOURce CHANnel{1]2};]vTOP?

Returned Format: [;SCOPe:MEASure:VTOP) <value> <NL>

where:

< value > - = voltage at the top of the selected waveform

Example: 10 DM Vt$[100]
20 OUTPUT XXX;“:SCOPE:MEASURE:SOURCE CHANZ2;VTOP?"

30 ENTER XXX;Vt$
40 PRINT Vt$
50 END

MEASure Subsystem HP 1652B/1653B
27-20 Programming Reference

Message Communication A
and System Functions

Introduction

]
Note @:

HP 1652B/1653B
Progremming Reference

This appendix describes the operation of instruments that operatein
compliance with the IEEE 488.2 (syntax) standard. Although the

HP 1652B and HP 1653B logic analyzers are RS-232C instruments, they
were designed to be compatible with other Hewlett-Packard |EEE 488.2
compatible instruments.

The |EEE 488.2 standard is a hew standard. Instruments that are
compatible with IEEE 488.2 must aso be compatible with |EEE 488.1
(HP-1B bus standard); however, IEEE 488.1 compatible instruments may
or may not conform to the |IEEE 488.2 standard. The IEEE 488.2
standard defines the message exchange protocols by which the instrument
and the controller will communicate. It also defines some common
capabilities, which are found in all IEEE 488.2 instruments. This

appendix also contains afew itemswhich are not specifically defined by
IEEE 488.2, but deal with message communication or system functions.

The syntax and protocol for RS-232C program messages and response
messages for the HP 1652B/1653B are structured very similar to those
described by 488.2. In most cases, the same structure shown in this
appendix for 488.2 will aso work for RS-232C. Because of this, no
additional information has been included for RS-232C.

Message Communication and System Functions
A-l

Protocols The protocols of |EEE 488.2 define the overall scheme used by the
controller and the instrument to communicate. This includes defining
when it isappropriate for devicesto talk or listen, and what happens when
the protocol is not followed.

Functional Elements Before proceeding with the description of the protocol, afew system
components should be understood.

Input Buffer. The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send a string of commands to the
instrument which could take some time to execute, and then proceed to
talk to another instrument while the first instrument is parsing and
executing commands.

Output Queue. The output queue of the instrument is the memory area
where all output data (< response messages:) are stored until read by
the controller.

Par ser. Theinstrument’s parser is the component that interprets the
commands sent to the instrument and decides what actions should be
taken. “Parsing” refersto the action taken by the parser to achieve this
goal. Parsing and executing of commands begins when either the
instrument recognizesa ¢ program message terminator > (defined later
in this appendix) or the input buffer becomes full. If you wish to send a
long sequence of commands to be executed and then talk to another
instrument while they are executing, you should send all the commands
before sending the < program message terminator > .

Message Communication and System Functions HP 1652B/1653B
A-2 Programming Reference

Protocol Overview

Protocol Operation

HP 1652B/1653B
Programming Reference

The instrument and controller communicate using < program message > s
and < response message > S. These messages serve as the containers into
which sets of program commands or instrument responses are placed.

< program message > s are sent by the controller to the instrument, and

< response message > s are sent from the instrument to the controller in
response to a query message. A < query message > is defined as being a
< program message > which contains one or more queries. The
instrument will only talk when it has received avalid query message, and
therefore has something to say. The controller should only attempt to
read a response after sending a compl ete query message, but before
sending another ¢ program message > . The basic rule to remember is
that the instrument will only talk when prompted to, and it then expectsto
talk before being told to do something else.

When the instrument is turned on, the input buffer and output queue are
cleared, and the parser isreset to the root level of the command tree.

The instrument and the controller communicate by exchanging complete
< program message > s and < response message > s. This means that the
controller should always terminate a < program message > before
attempting to read a response. The instrument will terminate < response
message > § except during a hardcopy output.

If a query message is sent, the next message passing over the bus should
be the < response message > . The controller should always read the
compl ete < response message > associated with a query message before
sending another < program message > to the same instrument.

The instrument allows the controller to send multiple queriesin one query
message. Thisisreferred to as sending a“ compound query.” Aswill be
noted later in this appendix, multiple queriesin a query message are
separated by semicolons. The responses to each of the queriesin a
compound query will also be separated by semicolons.

Commands are executed in the order they are received.

Message Communication and System Functions
A-3

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not
be completed in a normal manner. Some of the protocol exceptions are
shown below.

Command Error. A command error will be reported if the instrument
detects a syntax error or an unrecoghnized command header.

Execution Error. An execution error will be reported if a parameter is
found to be out of range, or if the current settings do not allow execution
of arequested command or query.

Device-specific Error. A device-specilic error will be reported if the
instrument is unable to execute acommand for a strictly device dependent
reason.

Query Error. A query error will be reported if the proper protocol for
reading aquery is not followed. Thisincludes the interrupted and
unterminated conditions described in the following paragraphs.

Message Communication and System Functions HP 1652B/1653B

A-4

Programming Reference

Syntax
Diagrams

The syntax diagrams in this appendix are similar to the syntax diagramsin
the IEEE 488.2 specification. Commands and queries are sent to the
instrument as a sequence of data bytes. The allowabl e byte sequence for
each functional element is defined by the syntax diagram that is shown
with the element description.

The allowabl e byte sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that follows the direction of the arrows. If there is a path around an
element, that element is optional. If there is a path from right to left
around one or more elements, that element or those elements may be
repeated as many times as desired.

Syntax
Overview

HP 1652B/1653B
Programming Reference

This overview is intended to give a quick glance at the syntax defined by
|EEE 488.2. It should allow you to understand many of the things about
the syntax you need to know. This appendix also contains the details of
the IEEE 488.2 defined syntax.

|EEE 488.2 defines the blocks used to build messages which are sent to
the instrument. A whole string of commands can therefore be broken up
into individual components.

Figure A-l shows a breakdown of an example < program message > .
There are afew key itemsto notice:

1. A semicolon separates commands from one another. Each
< program message unit> serves as a container for one command.
The < program message unit>> s are separated by a semicolon.

2. A < program message > is terminated by a < NL > (new ling). The
recognition of the < program message terminator >, or < PMT >,
by the parser serves asasignal for the parser to begin execution of
commands. The < PMT > also affects command tree traversal (see
the Programming and Documentation Conventions chapter).

3. Multiple data parameters are separated by a comma.,,

Message Communication and System Functions
A-5

4. The first data parameter is separated from the header with one or
more spaces.

5. The header MACHINE1:ASSIGN 2,3 is an example of acompound
header. It places the parser in the machine subsystem until the
< NL > is encountered.

6. A colon preceding the command header returns you to the top of the
command tree.

Message Communication and System Functions HP 1652B/1653B
A-6 Programming Reference

:TWAVEFORM:OSEARCH 30,TRIGGER ; DELAY 3 8 ns <NL>

.

—

<{progrom message unit>
TWAVEFORM: OSEARCH 30, TRIGGER

// \\\ \

<ccmmand program hecder> <program header separator> <program daotao>
TWAVEFORM : OSEARCH SP 3¢ , TRIGGER

TN\

/

\

\ <white space>

<whliitte spaoce> |[<Kwhi tes spraame>

<t rogram mnemonic> : <progrem mnemonic> <progrom dote> <progrom daoto seperator> <program doto>
TWAVE FORM OSEARCH 30 TRIGGER
<decimal nymeric program data> <program data>
30 TRIGGER

<program message unit separator>

SP ; SP
- . <program message terminator>
e
e \ SP >

- <program message unit>
<white space> N <white spoce> DELAY 3.8 ns

<white space> N L

<program header> <prograom header separator> <progrom dota>

DELAY 20 /3'£ ns
<whi le space> <decimal program dotg> <suffix progromdata>
3.8 SP ns

/

<white space> <suffix muitiptier> <suffix unit>
n S

Figure A-l. < program message > Parse Tree

HP 16528/1653B Message Communication and System Functions
Programming Reference A-7

Device Listening The listening syntax of IEEE 488.2 is designed to be more forgiving than
Syntax thetalking syntax. This allows greater flexibility in writing programs, as
well as allowing them to be easier to read.

Upper/Lower Case Equivalence. Upper and lower case letters are
equivalent. The mnemonic SINGLE has the same semantic meaning as
the mnemonic single.

<white space>. <white space > is defined to be one or more characters
from the ASCII set of 0 - 32 decimal, excluding 10 decima (NL). ¢ white
space > is used by several instrument listening components of the syntax.

It isusually optional, and can be used to increase the readability of a

program.
{_ <white space
character>
Figure A-2. <white space >
Message Communication and System Functions HP 1652B/1653B

A-8 Programming Reference

HP 1652B/1653B
Programming Reference

< program message >, The < program message > is a complete message
to be sent to the instrument. The instrument will begin executing
commands once it has a complete < program message >, or when the
input buffer becomes full. The parser is also repositioned to the root of
the command tree after executing a complete < program message >.
Refer to “Tree Traversal Rules’ in the “Programming and Documentation
Conventions,” chapter 4 for more details.

<program
message unit
seporator>

<progrom
message
terminator>

<program
message unit>

)

 _ae 54120/BL 39

Figure A-3. c program message >

< program message unit > . The < program message unit > is the
container for individual commands within a < program message >.

<command message unit>

<query message unit>

54120/8L40

Figure A-4. <program message unit >

Message Communication and System Functions
A-9

<command <program

<program data
separator>

program header <program datc> -
\\Iﬁﬁy separator>
- £ 54120/BL41
Figure A-5. < command message unit >
<program data
separator>
s
~ <query <program
——‘D-(program header <progrom dotod be——ire—.
. header> tor>
\\\ecbe;// separator
oy 54120/BL42
Figure A-6. <query message unit >
Message Communication and System Functions HP 1652B/1653B

A-10

Programming Reference

< program message unit separator > . A semicolon separates ¢ program
message unit > s, or individual commands.

—w—-[whllte space> T@—»

54120/BL43
Figure A-7. < program message unit separator >

< command program header >/ < query program header >, These

elements serve as the headers of commands or queries. They represent
the action to be taken.

X <simple commond
———® <white space> - P

\ N program header>)

\

N <compound command
program header>)

(\ <common command N >
progrom heoder>

54120/BL44

Figure A-8.<command program header >

HP 1652B/1653B Message Communication and System Functions
Programming Reference A-11

Where < simple command program header > is defined as

<program

=
mnemon i c>

———

54120/8L45

Where <compound command program header> is defined as

-
-

<program .) ‘ <program
mnemonic> <) mnemon ic>

54120/BL45

Where < common command program header > is defined as

®_+ <progr.um
mnemon i c>

54120/BL45

where <program mnemonic > is defined as

<upper/lower

I cgse alpha>
<upper/lower ‘/\
case alpha> W '>\;:// 1

]

el <digit> ’——/

0/BL 45

Where < upperflower case alpha > is defined as a single ASCIFéRicded
byte in the range 41 - 54, 61-7A (65 - 90, 97 - 122 decimal).

Y

Where < digit > is defined as a single ASCII encoded byte in the range 30 .
39 (48 « 57 decimal).

Where (_) represents an “underscore”, a single ASCIl-encoded byte with the
value 5F (95 decimal).

Figure A-8. <command program header > (continued)

Message Communication and System Functions HP 1652B/1653B
A-12 Programming Reference

<simple query

——aT——-— <white space>

J/ "1 progrom header>

Y

N <compound query
program header>

program header>

54120/BL 46

Where <simple query program header > is defined as

<program
e e
mnemonic>

54120/8L46

Where < compound query program header > is defined as

. <program
l ' mnemonic>

L » <commonquery »

<program
mnemonic>

—(~

$4120/BL46

Where < common query program header > is defined as

~>®__—.

<program)
mnemonic> .

54120/8L 48

Figure A-9. <query program header >

HP 1652B/1653B Message Communication and System Functions

Programming Reference

A-13

< program data > . The < program data > element represents the
possible types of data which may be sent to the instrument. The

HP 1652B/1653B will accept the following data types: < character
program data > , < decimal numeric program data >, < suffi program
data >, <string program data > , and <arbitrary block program data > .

—

™~
<character \
A program data> /
e
<decimal numeric
progrom dota>
S |
T

<suffix
progrom dota>

<string
program dotcy

<crbitrcry\

block
rogrom dum}/
— p——

54120/8L47

Figure A-10. < program data >

[

<progrqm
mnemon i c>

54120/8148

Figure A-l 1. < character program data >

HP 1652B/1653B

Message Communication and System Functions
Programming Reference

A-14

<mantissa>

<white .
-
space>

<exponent> T

Where < mantissa > is defined as

Y

Y

54120/8L 49

.

<optional .
[/—H\j} f—’ digits> [™ <gigit> ‘ﬁ‘
l L > (\ . [« [) <digits <optional

L digits> J
54120/6L49

Where < optional digits > is defined as

\

’ -

<digtt>

54120/BL51

Where < exponent > is defined as

} <white space> W > - <digit> <

54120/BL50

|

Figure A-12. ¢ decimal numeric program data >

HP 1652B/1653B

Message Communication and System Functions
Programming Reference

A-15

———®= <white space> (- <suffix mult> = <suffix unit> ———

|

54120/BL52

o
o

Figure A-13. < suffix program data >

Suffix Multiplier. The suffix multipliers that the instrument will accept

are shown in table A-I.

Table A-l. <suffix mult>

Value Mnemonic
1E18 EX
1E15 PE
1E12 T
1E9 G
1E6 M A
1E3 K
1E-3 M
1E-6)
1E-9 N
1E-12 P
1E-15 F
1E-18 A

Suffix Unit. Thesuffix units that the instrument will accept are shown in

table A-2.

Table A-2. < suffix unit >

Suffix

Referenced Unit

A\
S

Volt
Second

Message Communication and System Functions
A-16

HP 1652B/1653B
Programming Reference

HP 1652B/1653B
Programming Reference

<inserted’>

<non-single
qguote char>

‘ <inserted">

<non—-double
quote char>

54120/BL53

where <inserted "> is defined as a single ASCII character with the value 27
(39 decimal).

Where < non-single quote char > is defined as a single ASCII character of
any value except 27 (39 decimal).

Where < inserted "> is defined as a single ASCII character with the value 22
(34 decimal).

Where <non-double quote char > is defined as a single ASCII character of
any value except 22 (34 decimal)

Figure A-14. <string program data >

Message Communication and System Functions
A-17

<non—zero
digit>

S

<digit>

——»L

A

<B-bit
dota byte>

P
\ _us

Y

<8-bit)
dota byte>

D

5412078154

Where <non-zero digit > is defined as a single 4SCII encoded byte in the
range 31 -39 (49 - 57 decimal).

Where < 8-bit byte > is defined as an 8-bit byte in the range 00 - FF (0 = 255

decimal).

Figure A-15. c arbitrary block program data >

< program data separator > . A comma separates multiple data
parameters of a command from one another.

<white space>

-

Y

<white space>

==y

54120/8L55

Figure A-16. < program data separator >

Message Communication and System Functions

A-16

HP 1652B/1653B
Programming Reference

< program header separator > . A space sepaaes the header from the
first or only parameter of the command.

——= <white space> @

Figure A-17. < program header separator>

< program message terminator > . The < program message terminator >
or < PMT > serves as the terminator to a complete < program

message > . When the parser sees a complete ¢ program message > it

will begin execution of the commands within that message. The< PMT >

also resets the parser to the root of the command tree.

/_\\\
END

T <whi te space> 4 @ @
= <NL>
54120/8L73

Where < NL > is defined as a single ASCIl-encoded byte @4 (10 decimal).

Figure A-18. < program message terminator >

HP 1652B/1653B Message Communication and System Functions
A-19

Programming Reference

'SYSTEM:ARMBNC 1;:TWAVEFORM:DELAY 3. 8E—-9<NL>

T | | .

|

1]
1 ‘
<response messgge unit> <response message unit separator>
SYSTEM: ARMBNC 1

NT—

<response header> <response header seporator> <response data>
/:SYSTEM:ARMBNC_ Sp !
- e / \
/ \\\
<response '}nnemon|c> <response " mnemonic> <white space> <NR1 numeric response data>
SYS TEM ARMBNC |

<response message ynit> <response message terminator>

TWAVEF ORM: DELAY 3\8E—9 NL
<response header> <response header separator> <response data>
- . TWAVEFOR;LDE_LAY . ei 3.86-9
<1 esponse mnemon c> <response mnemonic> <white space> <NR3 numeric response dota>
TWAVEF ORM DELAY 3.8E-9
1650078130
Figure A-19. <response message > Tree
Message Communication and System Functions HP 1652B/1653B

A-20 Programming Reference

Device Talking Syntax

HP 1652B/16538

Programming Reference

The talking syntax of IEEE 488.2 is designed to be more precise than the
listening syntax. This allows the programmer to write routines which can
easily interpret and use the data the instrument is sending. One of the
implications of thisisthe absence of ¢ white space> in the talking
formats. The instrument will not pad messages which are being sent to the
controller with spaces.

< response message > . This element serves as a compl ete response from
the instrument. It is the result of the instrument executing and buffering
the results from a complete < program message > . The complete

< response message > should be read before sending another < program
message > to the instrument.

<response
message unit
separator>

<response
message unit>

<response message
terminator>

54120/BL57

Figure A-20. < response message >

< response message unit > . This element serves as the container of
individual pieces of aresponse. Typically a< query message unit > will
generate one < response message unit >, although a < query message
unit > may generate multiple < response message unit > s.

< response header > . The < response header >, when returned,
indicates what the response data represents.

Message Communication and System Functions
A-21

<simple
— response EEE—
header>

<compound
—— - response —
header>

<common
- response e
header>

54120/BL58

Where <simple response mnemonic > is defined as

<response
mnemonic>

54120/BL59

Where < compound response header > is defined as

<response <response
por > pon I -
mnemon) c> mnemon i c>

54120/8L60

|

Where < common response header >* is defined as

<response
P . EE—
mnemon 1c>

54120/BL61

Figure A-21. <response message unit >

Message Communication and System Functions HP 1652B/1653B
A-22 Programming Reference

HP 1652B/16538
Programming Reference

Where < response mnemonic > is defined as

<upper
case alpho>

<upper
case alpha> N

A]

54120/8L62

where < uppercase alpha > is defined as a single ASCII encoded byte in the
range 41- 54 (65 - 90 decimal).

Where (_) represents an ‘underscore”, a single ASCII-encoded byte with the
value 5F (95 decimal).

Figure A-21. < response message unit> (Continued)

< response data > . The < response data > element represents the
various types of data which the instrument may return. These types
include: < character response data >, < nrl numeric response data >,

< nr3 numeric response data>, ¢ string response data > , < definite
length arbitrary block response data > , and < arbitrary ASCI| response
data > .

<response
mnemon i c>

54120/8..83

Figure A-22. < character response data>

Message Communication and System Functions
A-23

%T
j :9 =

A

e

Figure A-23. < nrl numeric response data >

= ~

<digit>

-
-

]

<digit>

e
—————»@—LAQ}— <digit>

.

Figure A-24. < nr3 numeric response data >

<inserted'">

%f@*

<non—doubie
quote char>

54120/8L86

Figure A-25. € string response data >

Message Communication and System Functions
A-24

54120/BL65

HP 1652B/1653B

Programming Reference

A

i

<non-zero { . . J \ - <B-bit
——P@—’ digits 2 <digit> -

' datc byte>

54120/BL67

Figure A-26. <definite length arbitrary block response data >
‘\

<ASCIT o
dato byte> V@_—'

54120/BL68

Where < ASCII data byte > represents any ASCII-encoded data byte except
< NL > (OA, 10 decimal).

Notes

1. The END message provides an unambiguous termination to an
element that contains arbitrary ASCII characters.

2. The IEEE 488.1 END message serves the dual function of
terminating this element as well as terminating the < RESPONSE
MESSAGE > . It is only sent once with the last byte of the indefinite
block data. The NL is present for consistency with the
< RESPONSE MESSAGE TERMINATOR > . Indefinite block
data format is not supported in the HP 1652B/1653B.

Figure A-27. <arbitrary ASCII response data >

HP 16528116538 Message Communication and System Functions
Programming Reference A-25

< response data separator > . A comma separates multiple pieces of
response data within a single < response message unit > .

el

54120/8L69

Figure A-26. <response data separator >

< response header separator > . A space (ASCII decima 32) delimits the
response header, if returned, from the first or only piece of data.

.
54120/BL70

Figure A-29. < response header separator >

< response message unit separator > . A semicolon delimits the
< response message unit > sif multiple responses are returned.

e

54120/BL71
Figure A-30. <response message unit separator >
< response message terminator > . A < response message terminator >

(NL) terminates a complete < response message > . It should be read
from the instrument along with the response itself.

Message Communication and System Functions HP 1652B/1653B

A-26

Programming Reference

Common
Commands

HP 1652B/1653B
Programming Reference

|EEE 488.2 defines a set of common commands. These commands
perform functions which are common to any type of instrument. They can

therefore be implemented in a standard way across awide variety of

instrumentation. All the common commands of IEEE 488.2 begin with an
asterisk. There is one key difference between the IEEE 488.2 common
commands and the rest of the commands found in this instrument. The
IEEE 488.2 common commands do not affect the parser’s position within
the command tree. More information about the command tree and tree
traversal can be found in the Programming and Documentation

Conventions chapter.

Table A-3. HP 1652B/53B’s Common Commands

Command Command Name

*CLS Clear Status Command

*ESE Event Status Enable Command
*ESE? Event Status Enable Query

*ESR? Event Status Register Query
*|DN? Identification Query

*OPC Operation Complete Command
*OPC? Operation Complete Query

*RST Reset (not implemented on HP 1652B/1653B)
*SRE Service Request Enable Command
*SRE? Service Request Enable Query
*STB? Read Status Byte Query

*WALI Wait-to-Continue Command

Message Communication and System Functions

A-27

Status Reporting B

Introduction The status reporting feature available over the busis the serial poll. IEEE
488.2 defines data structures, commands, and common bit definitions.
There are also instrument defined structures and bits.

The bits in the status byte act as summary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if the
gueueis not empty. For registers, the summary bit is set if any enabled bit
in the event register is set. The events are enabled viathe corresponding
event enable register. Events captured by an event register remain set
until the register is read or cleared. Registers are read with their
associated commands. The "*CLS" command clears all event registers
and all gqueues except the output queue. If "™CLS" is sent immediately
following a c program message terminator > , the output queue will also
be cleared.

HP 1652B/1653B Status Reporting
Programming Reference B-I

EVENT REGISTER
(MESR)

ENABLE
REGISTER
(MESE)

LOGICAL OR |

ZO0U
DDC
mzT o
m>xm
o
M=o

L] (ESR)
QC NOT IMPLEMENTED

9 EVENT
g C| REGISTERS
R

=
o
=
m
c
o

0 AN

ENABLE
'l REGISTERS
(ESE)

LOGICAL OR

QUEUES
0-OUTPUT
M-MESSAGE

STATUS
BYTE
(«STB>

<H=
o
IR

LD
ow;rym

SERVICE

REQUEST
ENABLE 16500802

REGISTER
(#SRE)

[[evozfet=]

Figure B-l. Status Byte Structures and Concepts

Status Reporting HP 1652B/1653B
B-2 Programming Reference

Event Status Register

Service Request
Enable Register

Bit Definitions

Note ﬁ

HP 1652B/1653B
Progrsmming Reference

The Event Status Register is a488.2 defined register. The bits inthis
register are “latched.” That is, once an event happens which sets a bit, that
bit will only be cleared if the register isread.

The Service Request Enable Register is an 8-hit register. Each bit enables
the corresponding bit in the status byte to cause a service request. The

sixth bit does not logically exist and is always returned as a zero. To read
and write to this register use the * SRE? and * SRE commands.

The following mnemonics are used in figure B-I and in the “Common
Commands’ chapter:

MAV . message available. Indicates whether there is aresponse in the
output queue.

ESB - event statushit. Indicatesif any of the conditionsin the Standard
Event Status Register are set and enabled.

M SS » master summary status. Indicates whether the device has areason
for requesting service. This bit isreturned for the * STB? query.

RQS . request service. Indicatesif the deviceis requesting service. This
bit is returned during a serial poll. RQS will be set to O after being read
via a serial poll (MSSis not reset by *STB?).

MSG - message. Indicates whether there is a message in the message
queue.

PON = power on. Indicates power has been turned on.
URQ - user request. Always 0 on the HP 1652B/1653B.

CME » command error. Indicates whether the parser detected an error.

The error numbers and/or strings for CME, EXE, DDE, and QYE can be
read from a device defined queue (which is not part of 488.2) with the
query :SYSTEM:ERROR?.

Status Repotting
B-3

Key Features

Status Reporting
B-4

EXE . execution error. Indicates whether a parameter was out of range,
or inconsistent with current settings.

DDE . device specific error. Indicates whether the device was unable to
complete an operation for device dependent reasons.

QYE . query error. Indicates whether the protocol for queries has been
violated.

RQC . request control. Always 0 on the HP1652B/1653B.

OPC . operation complete. Indicates whether the device has completed
al pending operations. OPC is controlled by the * OPC common
command. Because this command can appear after any other command,
it serves as a general purpose operation complete message generator.

LCL « remoteto local. Indicates whether a remote to local transition has
occurred.

M SB « module summary bit. Indicates that an enable event in one of the
modules Status registers has occurred.

A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete. The IEEE 488.2 structure provides one technique
which can be used to find out if any operation is finished. The * OPC
command, when sent to the instrument after the operation of interest, will
set the OPC bit in the Standard Event Status Register. [f the OPC bit and
the RQS bit have been enabled a service request will be generated. The
commands which affect the OPC bit are the overlapped commands.

OUTPUT XXX;**SRE 32 ; *ESE 1" lenables an OPC service request

HP 1652B/1653B
Programming Reference

Status Byte. The Status Byte contains the basic status information which
is sent over the bus in a seria poll. If the device is requesting service
(RQS set), and the controller seria polls the device, the RQS hit is
cleared. The MSS (Master Summary Status) bit (read with *STB?) and
other bits of the Status Byte are not be cleared by reading them. Only the
RQS hit is cleared when read.

The Status Byte is cleared with the *CLS common command.

= STATUS SUMMARY MESSAGES ——

_|: l J l l l l -«}—— READ BY SERIAL POLL
SERVICE S
REQUEST 6 Esa]&Av] JE) STATUS BYTE REGISTER
GENERATION S
I «al—— READ BY «STB?
- ﬁ&)
ol &
& ﬁ Y
g {1&) Y
¢ le {&P
4
. 3
e
?
st ENER ERERERE Rl
*SRE <NRf>
+SRE?
Figure B-2. Service Request Enabling
HP 1652B/1653B Status Reporting

Programming Reference B-5

Serial Poll

Using Serial Poll
(HP-IB)

Status Reporting
B-6

The HP 1652B/1653B supports the IEEE 488.1 serial poll feature. When
aseria poll of theinstrument is requested, the RQS bit is returned on bit
6 of the status byte.

This example will show how to use the service request by conducting a
serial poll of all instruments on the HP-1B bus. In this example, assume
that there are two instruments on the bus; aLogic Analyzer at address 7
and a printer at address 1.

The program command for serial poll using HP BASIC 4.0 is Stat =
SPOLL(707). The address 707 is the address of the oscilloscope in the
this example. The command for checking the printer is Stat =
SPOLL(701) because the address of that instrument is 01 on bus address
7. This command reads the contents of the HP-1B Status Register into the
variable called Stat. At that time bit 6 of the variable Stat can be tested to
seeif itisset (bit 6 = 1).

The serial poll operation can be conducted in the following manner:

1. Enable interrupts on the bus. Thisallows the controller to “see” the

SRQ line,
2. Disable interrupts on the bus.

3. If the SRQ line is high (some instrument is requesting service) then
check the instrument at address 1 to seeif bit 6 of its status register
is high.

HP 1652B/1653B
Programming Reference

4. To check whether bit 6 of an instruments status register is high, use
the following Basic statement:

IF BIT (Stat, 6) THEN

5. If bit 6 of theinstrument at address 1 is not high, then check the
instrument at address 7 to see if bit 6 of its status register is high.

6. As soon as the instrument with status bit 6 high is found check the
rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to happen on the bus than
simply reading the register. This command clears the bus automatically,
addresses the talker and listener, sends SPE (seria poll enable) and SPD
(seria poll disable) bus commands, and reads the data. For more
information about serial poll, refer to your controller manual, and
programming language reference manuals.

After the serial poll is completed, the RQS bit in the HP 1652B/1653B
Status Byte Register will bereset if it was set. Once abit in the Status
Byte Register is set, it will remain set until the statusis cleared with a
*CLS command, or the instrument is reset.

HP 1652B/1653B Status Reporting
Programming Reference B-7

Parallel Poll

Status Reporting
B-8

Parallel poll isacontroller initiated operation which is used to obtain
information from several devices simultaneously. When a controller
initiates a Parallel Poll, each device returns a Status Bit via one of the DIO
datalines. Device DIO assignments are made by the controller using the
PPC (Paralel Poll Configure) sequence. Devices respond either
individually, each on a separate DIO ling; collectively on asingle DIO
line; or any combination of these two ways. When responding collectively,
the result is alogical AND (True High) or logical OR (True Low) of the
groups of status bits.

Figure B-2 shows the Parallel Poll Data Structure. The summary bit is
sent in response to a Parallel Poll. This summary bit is the "ist" (individual
status) local message.

The Parallel Poll Enable Register determines which events are
summarized in the ist. The * PRE command is used to write to the enable

register and the * PRE? query is used to read the register. The *IST?
query can be used to read the "ist" without doing a parallel poll.

HP 1652B/1653B
Programming Reference

DEVICE DEFINED CONDITIONS SUMMARY MESSAGE

biddbdd dbdbidby

PEMSRBTREINED [45 114] 13 12_1‘—1'1_1_131 5 L _J | 7 imsslr:ss]mv[3 l 2 [1] 0 RE‘GSITSBT?ER

>
A

{&
A

(e
et

ST
Vg

Py

Al
o=

LOGICAL OR
\
L I
e
N
{0 Jotl—

(o)
V\?j—

™ \&

!
1 i
(g
b

C‘é

\
— /&
|
wordon DAALTToTET |1 [e [Tl [o] el ort
ATUS «PRE?
»IST?
Figure B-3. Parallel Poll Data Structure
HP 1652B/1653B Status Reporting

Programming Reference B-9

Polling HP-IB Devices Parallel Poll is the fastest means of gathering device status when several
devices are connected to the bus. Each device (with thiscapability) can
be programmed to respond with one bit of status when parallel polled.
This makes it possible to obtain the status of several devices in one
operation. If a device responds affirmatively to a parallel poll, more
information about its specific status can be obtained by conducting a serial
poll of the device.

Configuring Parallel Certain devices, including the HP 1652B/1653B, can be remotely
Poll Responses programmed by a controller to respond to a parallel poll. A device which

iscurrently configured for a parallel poll responds to the poll by placing
its current status on one of the bus datalines. The response and the
data-bit number can then be programmed by the PPC (parallel Poll
Configure) statement. No multiple listeners can be specified in this
statement. If more than one device isto respond on a single bit, each
device must be configured with a separate PPC statement.

Example: ASSIGN @Device TO 707
PPOLL CONFIGURE @Device;Mask

The value of Mask (any’ numeric expression can be specified) isfirst
rounded and-then used to configure the device's parallel response. The
least significant 3 bits (bits 0 through 2) of the expression are used to
determine which dataline the device isto respond on (place its status on).
Bit 3 specifiesthe “true” state of the parallel poll response bit of the
device. A value of 0 implies that the device's response is 0 when its status
bit message is true.

Example: Thefollowing statement configures the device at address 07 on the
interface select code 7 to respond by placing a 0 on bit 4 when its status
response is “true.”

PPOLL CONFIGURE 707;4

Status Reporting HP 1652B/1653B
B-10 Programming Reference

Conducting aParallel The PPOLL (Parallel Poll) function returns a single byte containing up to
Poll 8 status bit messages for all devices on the bus capable of responding to
the poll. Each bit returned by the function corresponds to the status bit of
the device(s) configured to respond to the parallel poll (one or more
devices can respond on asingle line). The PPOLL function can only be
executed by the controller. It isinitiated by the simultaneous assertion of
ATN and EOI.

Example: Response = PPOLL(7)

Disabling Parallel Poll The PPU (Parallel Poll Unconfigure) statement gives the controller the
Responses capability of disabling the parallel poll responses of one or more devices
on the bus.

Examples: The following statement disables device 5 only:

PPOLL UNCONFIGURE 705

This statement disables all devices on interface select code 8 from
responding to a parallel poll:

PPOLL UNCONFIGURE 8

If no primary addressis specified, all bus devices are disabled from
responding to a parallel poll. If aprimary addressis specified, only the
specified devices (which have the parallel poll configure capability) are
disabled.

HP 1652B/1653B Status Reporting
Programming Reference B-I'1

HP-IB Commands

The following paragraphs describe actual HP-IB commands which can be
used to perform the functions of the Basic commands shown in the
previous examples.

Parallel Poll Unconfigure Command. The parallel poll unconfigure
command (PPU) resets all parallel poll devices to the idle state (unable to
respond to a paralel poll).

Parallel Poll Configure Command. The parallel poll configure command
(PPC) causes the addressed listener to be configured according to the
paralel poll enable secondary command PPE.

Parallel Poll Enable Command. The parallel poll enable secondary
command (PPE) configures the devices which have received the PPC
command to respond to a parallel poll on a particular HP-IB DIO line
with a particular level.

Parallel Poll Disable Command. The parallel poll disable secondary
command (PPD) disables the devices which have received the PPC
command from responding to the parallel poll.

Table B-l. Parallel Poll Commands

Command M nemonic Decimal ASCIISO
Code Character

Parallel Poll Unconfigure PPU 21 NAK
(Multiline Command)
Parallel Poll Configure PPC 5 ENQ
(Addressed Command)
Paralel Poll Enable PPE 9%-111 I-O
(Secondary Command)
Parallel Poll Disable PPD 112 P
(Secondary Command)

Status Reporting
B-12

HP 1652B/1653B
Programming Reference

Error Messages C

This section covers the error messages that relate to the HP 1652B/53B
Logic Analyzers.

Device 200 Label not found
Dependent e
1

Errors 201 Peattern string invalid

202 Qudifier invdid

203 Data not available

300 RS-232C error
HP 1652B/1653B8 Error Messages

Programming Reference CH

Command -100 Command error (unknown command)(generic error)
Errors

-101 Invalid character received

-110 Command hesder error

-111 Header delimiter error

-120 Numeric argument error

-121 Wrong data type (numeric expected)

-123 Numeric overflow

-129 Missing numeric argument

-130 Non numeric argument error (character,string, or block)

-131 Wrong data type (character expected)

-132 Wrong data type (string expected)

-133 Wrong data type (block type #D required)

-134 Data overflow (string or block too long)

-139 Missing non numeric argument

-142 Too many arguments

-143 Argument delimiter error

-144 Invalid message unit delimiter

Error Messages HP 1652B/16538
c-2 Programming Reference

Execution
Errors

HP 16528/1653B
Programming Reference

-200 No Can Do (generic execution error)
-201 Not executable in Local Mode

-202 Settings lost due to return-to-local or power on
-203 Trigger ignored

-211 Legal command, but settings conflict
-212 Argument out of range

-221 Busy doing something else

-222 Insufficient capability or configuration
-232 Output buffer full or overflow

-240 Mass Memory error (generic)

-241 Mass storage device not present

-242 No media

-243 Bad media

-244 Media full

-245 Directory full

-246 File name not found

-247 Duplicate file name

-248 Media protected

Error

Messages
c-3

Internal Errors -300 Device Failure (generic hardware error)
-301 Interrupt fault
-302 System Error
-303 Time out
-310 RAM error
-311 RAM failure (hardware error)
-312 RAM data loss (software error)
-313 Calibration data loss
-320 ROM error
-321 ROM checksum
-322 Hardware and Firmware incompatible
-330 Power on test failed
-340 Self Test failed

-350 Too Many Errors (Error queue overflow)

Error Messages HP 1652B/1653B
C-4 Progremming Reference

Query Errors -400 Query Error (generic)
-410 Query INTERRUPTED
-420 Query UNTERMINATED
-421 Query received. Indefinite block response in progress
-422 Addressed to Talk, Nothing to Say

-430 Query DEADLOCKED

HP 1652B/1653B Error Messages
Programming Reference C-5

Index

*CLS command S-3
*ESE command S-4
*ESR command S-6
*IDN command S-8
*OPC command S-9
*RST command S-10
*SRE command S-11
*STB command S-13
*WAI command S-15
w 43

32767 4-2

99E +37 4-2

no= 43

[1 43

{ } 4-3

| 4-3

A

ACCumulate command/query 14-4,15-4, 19-6
Acquisition data 6-11

Addressed talk/listen mode 2-|
ALL 27-S

AMODe command/query 18-4
Analyzer 1 Data Information 6-9
Anayzer 2 Data Information 6-11
Angular brackets 4-3

Arguments 1-4

ARM command/query 10-4
ARMBnc¢ command 6-4

ASCIl Format 26-S

ASSign command/query 10-5

HP 1652B/1652B
Programming Reference

AUToload command/query 7-4
AUToscale 21-3

AUToscale command 10-6
Average Mode 24-2, 263

BASE command 20-4

Bases |-8

BASIC [-2

Baud rate 3-S

Bit definitions B-3

Block data 1-3, 1-16, 6-6
Block length specifier 6-6
Block length specifier 6-7,6-37
Braces 4-3

BRANch command/query 12-S-12-7
BYTE Format 26-4

C

Cable
RS-232C 3-2
CATalog query 7-S
chart display 15
Clear To Send (CTS) 34
CLOCk command/query 11-4
CMASk command/query 16-4
CME B-3
COLumn command/query 8-3,13-6 . 13-7
Combining commands 1-5

index-|

Comma |-7
Command 1-3,1-13

*CLS 5-3

*ESE 5-4

*OPC 5-9

*RST 5-10

*SRE 5-11

*WAIL 5.15
ACCumulate 14-4,15-4, 19-6
AMODe 18-4
ARM 10-4
ARMBnc 6-4
ASSign 10-5
AUToload 7- 4
AUToscale 10-6,21-3
BASE 20-4
BRANch 12-5
CLOCk 11-4
CMASk 16-4
COLumn 8-3,13-6
COMPare 16-3
CONFig 7-9,7-14
COPY 7-6, 165
COUNt 24-4
COUPling 22-4
CPERiod 11-5
DATA 6-5,16-6
DELay 14-5,19-7,25-3
DOWNIload 7-7
DSP 6-W
DURation 18-5
EDGE 18-6

FIND 12-8
FORMat 26-10
GLITch 1.8-8
HAXis 15-5
HEADer 1-12,6-22
[IASSembler 7-10
INITialize 7-8
INSert 14-6, 198

Index-2

Command (continued)

KEY 6-23

LABel 11-6,17-3
LEVel 23-4

LINE 8-5, 13-9
LOAD:CONFig 7-9
LOAD:1IASSembler 7-10
LOCKout 3-7,6-26
LONGform 1-12,6-27
MACHine 10-3
MASTer 11-8

MENU 6-28

MESE 6-29

MMODe 13-10, 19-9
MODE 23-5,25-4
NAME 10-7
OCON(dition 19-10
OFFSet 22-5
OPATtern 13-11,19-11
OSEarch 13-13,19-13
OTAG 13-15

OTIMe 9.5,19-14
PACK 7-11

PATTern 18-9,20-5
PREstore 12-10

PRINt 6-34

PROBe 22-6

PURGe 7-12

RANGe 12-12, 14-7, 16-9, 19-15, 20-6, 22-7, 25-6
RECord 26-13

REMove 11-9,14-8, 17-5,19-16, 20-7
REName 7-13

RESTart 12-14
RMODe 6-35

Run Control 6-
RUNTi 13-16, 16-10, 19-17
SCHart 15-3

SEQuence 12-16
SETup 6-36

SFORmat 11-3

HP 1652B/1652B
Programming Reference

Command (continued) Compound commands 1-4

SLLAVe 11-10 CONFig command 7-9, 7-14
SLISt 13-5 Confiiation file 1-10 « I-11
SLOPe 23-6 Controller mode 2-
SMODe 21-4 Controllers 1-2

SOURce 23-7,26-14,27-14 Conventions 4-3

STARt 6-38 COPY command 7-6, 16-5
STOP 6-39 COUNt 24-4

STORe 12-17 COUNt query 26-8
STOReCONFig 7-14 COUPling 22-4

STRace 12-4 CPERiod command/query 11-5
SWAVeform 14-3

SYMBOI 20"3 D
SYStem:DATA 65

SYStem:SETup 6-36

TAG 12-19

TERM 12-21 DATA 6-5,26-9

command 6-5
State (no tags) 6-12
State (with either time or state tags) 6-12
Timing Glitch 6-14
Transitional Timing 6-15
Data bits 3-5.36

TFORmat 17-2
THReshold 11-11, 17-6
TTRace 18-3
TWAVeform 19-5
TY PE 10-8,24-5

VAXis 15-7 i
WIDTh 20-8 8-Bit mode 3-6
WLISt 9-2 Data block

Acquisition data 6-11

XPATtern 13-23,19-26 ﬁngyzer ; 3ata (63-21
XSEarch 13-25,19-28 nalyzer ata 6-
XTAG 13.27 Data preamble 6-8

XTIMe 9-6,19-29 Section data 6-8

Section header 6-8
Command errors C-2 !
Command mode 2| Data Carrier Detect (DCD) 34

Command set organization 4-10 DATA command/query 6-5 «6-19, 16-6 - 16-7
Command structure 1-11 Data Communications Equipment 3-|

Command tree 4-4 gata mOdeb|2-| oo
Command types 4-4 ata preamble 6-

DATA query 13-8
Common commands 1-5,4-45-1, A-27
Communication -2 Data Set Ready (DSR) 34

COMPare sdector 16-3 Data Termina Equipment 3-|
COMPare Subsystem 16-1 Data Terminal Ready (DTR) 3-3

Complex qualifier 12-7 DCE 3-I
DCL 2-3

XCONdition 19-24

HP 1652B/1652B Index-3
Programming Reference

DDE B-4
Definite-length block response data 1-16
Definitions 4-3
DELay 25-3
DELay command/query 14-5,19-7
Device address |-3

HP-1B 2-2

RS-232C 3-6
Device clear 2-3
Device dependent errors C-l
DLIS

Command 8-2
DLISt selector 8-2
DLISt Subsystem 8-l
Documentation conventions 4-3
DOWNIload command 7-7
DSP command 6-20
DTE 3-1
Duplicate keywords -5
DURation command/query 18-5

E

EDGE command/query 186 - 187
EDGE Trigger Mode 23
Ellipsis 4-3

Embedded strings 1-2 - -3
Enter statement [-2

Error messages C-l
ERRor query 6-21

ESB B-3

Event Status Register B-3
EXE B-4

Execution errors C-3
Exponents 1-8

Extended interface 3-3

Index-4

FALLtime 27-6

FIND command/query 12-8-12-9
FIND query 16-8

FORMat 26-10

Fractional values 1-8
FREQuency 27-7

G

GET 2-3

GLITch command/query 18-8
Glitch Timing Data 6-14
Group execute trigger 2-3

H

HAXis command/query 15-5+ 15-6
HEADer command 1-12
HEADer command/query 6-22
Headers 1-3 . |4, |-7

Host language 1-3

HP-IB 2-1, B-6

HP-IB address 2-|

HP-IB commands B-12
HP-IB device address 2-2
HP-IB interfface 2-1

HP-IB interface code 2-2
HP-IB interface functions 2-1

HP 1652B/1652B
Programming Reference

TASSembler command 7-10
IEEE 4881 2-1, A-l

IEEE488.1bus commands 2-3

IEEE 488.2 A-I
IEEE 488.2 Standard |-1
IFC 2-3
Infinity 4-2
Initidization 1-10
INITialize command 7-8
Input buffer A-2
INSert command 14-6, 19-8
Instruction headers 1-3
Instruction parameters 1-4
Instruction syntax [-2
Instruction terminator -9
Instructions -3
Instrument address 2-2
Interface capabilities 2-1
RS-232C 3-5
Interface clear 2-3
Interface code
HP-1B 2-2
Interface select code
RS-232C 3-6
Internal errors C-4

K

KEY command/query 6-23
Keyword data 1-8
Keywords 4-|

HP 1652B/1652B
Programming Reference

LABel command/query 11-6 » 11-7,17-3 - 17-4
LCL B-4

LER query 6-25

LEVel 23-4

LINE command/query 8-3,13-9
Linefeed 1-9,4-3

Listening syntax A-8
LOAD:CONFig command 7-9
LOAD:IASSembler command 7-10
Local 2-2

Local lockout 2-2

LOCKout command 3-7
LOCKout command/query 6-26
Longform | - 7

LONGform command 1-12
LONGform command/query 6-27
Lowercase 1-7

M

Machine selector 10-3
MACHine Subsystem 10-I
MASTer command/query 11-8
MAV B-3

MENU command/query 6-28
MESE command/query 6-29
MESR query 6-31- 6-32
MMEMory subsystem 7-|
MMODe command/query 13-10, 199
Mnemonics 1-8, 4-1

MODE 23-5,25-4 - 25-5
Module Level Commands 21-1
MSB B-4

MSG B-3

MSS B-3

Index-5

Multiple numeric variables 1-17
Multiple program commands -9
Multiple queries 1-17

Multiple subsystems 1-9

N

NAME command/query 10-7
New Line character [-9

N L 1943

Norma Mode 24-2,26-3
Notation conventions 4-3
Numeric base 1-15

Numeric bases -8

Numeric data -8

Numeric variables 1-15
NWIDth 27-8

0

OCON(dition command/query 19-10
OFFSet 22-5

OPATtern command/query 13-11- 13-12,19-11 -
19-12

OPC B-4

Operation Complete B-4

OR notation 4-3

oscilloscope 21-1

Oscilloscope Subsystem commands 21-1
OSEarch command/query 13-13,19-13
OSTate 13-14

OSTate query 9-3

OTAG command/query 13-15

OTIMe command/query 9-5,19-14
Output buffer 1-6

Output command 1-3

Output queue A-2

OUTPUT statement [-2

Index-6

Overlapped command 5-9, 5-15, 6-38 « 6-39
Overlapped commands 4-2
OVERshoot 27-9

P

PACK command 7-11
Paralel poll B-8

Pardlel poll commands B-12
Parameter syntax rules |-7
Parameters |-4

Parity 3-5

Parse tree A-7

Parser A-2

PATTern command 20-5
PATTern command/query 189 1810
PATTern Trigger Mode 23-I
PERiod 27-10

POINts query 26-11

PON B-3

PPC B-12

PPD B-12

PPE B-12

PPOWer query 6-33

PPU B-12

PREamble 26-12

Preamble description 6-8
PREShoot 27-11

PREstore command/query 12-10- 12-11
PRINt command 6-34
Printer mode 2-1

PROBe 22-6

Program data A-14

Program examples 4-11
Program message A-9
Program message syntax [-2
Program message terminator 1-9
Program syntax 1-2
Programming conventions 4-3
Protocol 3-5, A-3

HP 1652B/16528B
Programming Reference

None 3-5
XON/XOFF 3-5
Protocol exceptions A-4
Protocols A-2
PURGe command 7-12
PWIDth 27-12

Q

Query 1-3,1-6, 1-13
*ESE 5-4
*ESR 5-6
*IDN 5-8
*OPC 5-9
*SRE 5-11
*STB 5-13
Accumulate 14-4,15-4,19-6
ALL 27-5
AMODe 18-4
ARM 10-4
ARMEnc 6-4
ASSign 10-5
AUToload 7 -4
BRANch 12-5
CATalog 7-5
CLOCk 11-4
CMASk 16-4
COLumn 83, 136
COUNt 24-4,26-8
COUPling 22-4
CPERiod 11-5
DATA 6-5,13-8, 16-6, 26-9
DELay 14-5,19-7,25-3
DURa tion 18-5
EDGE 18-6
ERRor 6-21
FALLtime 27-6
FIND 12-8,16-8
FORMat 26-10
FREQuency 27-7

HP 1852B/1652B
Programming Reference

Query (conitnued)

GLITch 18-8

HAXis 15-5
HEADer 6-22

KEY 6-23

LABel 11-6, 17-3
LER 6-25

LEVel 23-4

LINE 8-5,13-9
LOCKout 6-26
LONGform 6-27
MASTer 11-8
MENU 6-28

MESE 6-29

MESR 6-31
MMODe 13-10, 19-9
MODE 23-5,25-4
NAME 10-7
NWIDth 27-8
OCONdition 19-10
OFFSet 22-5
OPATtern 13-11,19-11
OSEarch 13-13,19-13
OSTate 9-3,13-14
OTAG 13-15
OTIMe 9-5,19-14
OVERshoot 27-9
PATTern 18-9
PERiod 27-10
POINts 26-11
PPOWer 6-33
PREamble 26-12
PREShoot 27-11
PROBe 22-6
PWIDth 27-12
RANGe 12-12,14-7, 16-9, 19-15, 22-7, 25-6
RECord 26-13
RESTart 12-14
RISetime 27-U
RMODe 6-35
RUNTil 13-16, 16-10, 19-17

Index-7

Query (continued)
SEQuence 12-16
SETup 6-36
SLAVe |:1-10
SLOPe 23-6
SMODe 21-4

SOURce 23-7,26-14, 27-14

SPERiod 19-19
STORe 12-17
SYSTem:DATA 65
SYStem:SETup 6-36
TAG 12-19

TAVerage 13-18, 19-20
TERM 12-21
THReshold 11-11, 17-6
TMAXimum 13-19, 19-21
TMINimum 13-20, 19-22
TY PE 10-8,24-5, 26-15
UPLoad 7-15

VALid 26-16
VAMPlitude 27-15
VAXis 15-7

VBASe 27-16

VMAX 27-17

VMIN 27-18

VPP 27-19

VRUNs 13-21,19-23
VTOP 27-20
XCONdition 19-24
XINCrement 26-17
XORigin 26-18
XOTag 13-22
XOTime 19-25
XPATtern 13-23,19-26
XREFerence 26-19
XSEarch 13-25,19-28
XSTate 9-4, 13-26
XTAG 13-27

XTIMe 9-6,19-29
YINCrement 26-20
YORigin 26-21

index-6

Query (continued)
YREFerence 26-22

Query errors C-5

Query responses 1-11, 4-2

Question mark 1-6

QYE B-4

R

RANGe 22-7,25-6
RANGe command 20-6
RANGe command/query 12-12 . 12-13147,
16-9, 19-15
Receive Data (RD) 32«33
record 26-13
waveform 26-3
Remote 2-2
Remote enable 2-3
REMove command 11-9, 14-8, 17-5, 19-16, 20-7
REN 2-3
REName command 7-13
Request To Send (RTS) 34
Response data 1-16
Response message A-21
Responses 1-12
RESTart command/query 12-14.12-15
RiSetime 27-13
RMODe command/query 6-35
Root 4-4
RQC B-4
RQS B-3
RS-232C 3-1,3-6, A-I
Run Control Commands 6-I
RUNTil command/query 13-16 - 13-17, 16-10 »
16-11.19-17 . 19-18

HP 1652B/1652B
Programming Reference

SCHart selector 15-3
SCHart Subsystem 15-1
SCOPe Subsystem 21-1
SDC 2-3
Section data 6-8
Section data format 6-6
Section header 6-8
Selected device clear 2-3
Separator A-18
SEQuence command/query 12-16
Sequential commands 4-2
Serial poll B-6
Service Request Enable Register B-3
SETup 6-36
SETup command/query 6-36 - 6-37
SFORmat selector 11-3
SFORmat Subsystem 11-|
Shortform [-7
Simple commands [-4
SLAVe command/query 11-10
SLISt selector 13-5
SLISt Subsystem 13-1
SLOPe 23-6
SMODe command 21-4
SMQODe query 21-4
SOURce 23-7,26-14,27-14
Spaces |-4
SPERiod query 19-19
Square brackets 4-3
STARt command 6-38
State data
with either time or statetags 6-12
without tags 6-12
Status 1-17,5-2, B-l
Status byte B-5
Status registers 1-17
Status reporting B-I

HP 1652B/1652B
Programming Reference

Stop bits 3-5
STOP command 6-39
STORe command/query 12-17 - 12-18
STOReCONFii command 7-14
STRace sdlector 12-4
STRace Subsystem 12-1
String data 1-8
String variables 1-14
Subsystem
ACQuire 24-1
CHANnel 22-1
COMPare 16-1
DLIST 8-
MACHine 10-|
MEASure 27-1
MMEMory 7 -1
SCHart 15-1
SCOPe 21-1
SFORmat 11-|
SLISt 13-1
STRace 12-1
SWAVeform 14-1
SYMBol 20-1
TFORmat 17-1
TIMebase 25-1
TRIGger 23-1
TTRace 18-1
TWAVeform 19-1
WAVeform 26-1
WLISt 9 - |
Subsystem commands 4-4
Suffix multiplier A-16
Suffix units A-16
SWAVeform selector 14-3
SWAVeform Subsystem 14-1
SYMBol sdector 20-3
SYMBol Subsystem 20-1
syntax A-8
Syntax diagram
ACQuire Subsystem 24-|
CHANnel Subsystem 22-2

Index-9

Syntax Diagram (continued)
Common commands 5-2
COMPare Subsystem 16-2
DLISt Subsystem 8-l
MACHine Subsystem 10-2
MEASure Subsystem 27-3
MMEMory subsystem 7-2«7-3
SCHart Subsystem 15-2
SCOPe Subsystem 21-1
SFORmat Subsystem 11-I
SLISt Subsystem 13-2
STRace Subsystem 12-1
SWAVeform Subsystem 14-2
SYMBol Subsystem 20-2
System commands 6-3
TFORmat Subsystem 17-1
TIMebase Subsystem 25-|
TRIGger Subsystem 23-2
TTRace Subsystem 18-2
TWAVeform Subsystem 19-2
WAVeform Subsystem 26-2
WLISt Subsystem 9-|

Syntax diagrams 4-2
IEEE 488.2 A-5

System commands 4-4, 6-1

T

TAG command/query 12-19 .12-20
Tak only mode 2-|

Talking syntax A-21

TAVerage query 13-18, 19-20

TERM command/query 12-21- 12-22
Terminator 1-9, A-26

TFORmat selector 17-2

TFORmat Subsystem 17-1
Three-wire In(erface 3-2

Threshold command/query 11-11, 17-6
Timing Glitch Data 6-14
TMAXimum query 13-19, 19-21

Index-l 0

TMINimum query 13-20, 19-22
Trailing dots 4 - 3

Transitional Timing Data 6-15
Transmit Data (TD) 3-2.3-3
Truncation rule 4

TTRace selector 18-3
TTRace Subsystem 18-1
TWAVeform selector 19-5
TWAVeform Subsystem 19-1
TYPE 24-5

TYPE command/query 10-8
TYPE query 26-15

U

Units -8

UPLoad query 7-15
Uppercase 1-7
URQ B-3

VALid 26-16

VAMPlitude 27-15

VAXis command/query 15-7
VBASe 27-16

VMAX 27-17

VMIN 27-18

VPP 27-19

VRUNs query 13-21,19-23
VTOP 27-20

W

waveform
record 26-3
White space 1-4

HP 1652B/1652B
Programming Reference

WIDTh command 20-8
WLISt selector 9-2
WLISt Subsystem 9-I
WORD Format 26-5

X

XCONdition command/query 19-24
XINCrement query 26-17

XORigin query 26-18

XQOTag query 13-22

XOTime query 19-25

XPATtern command/query 13-23 - 13-24, 19-26 -
1927

XREFerence query 26-19

XSEarch command/query 13-25, 19-28
XSTate query 9-4, 13-26

XTAG command/query 13-27
XTIMe command/query 9-6, 19-29
XXX 4-3 45

XXX (meaning of) 1-3

Y

YINCrement query 26-20
YORigin query 26-21
YREFerence query 26-22

HP 1652B/16528 Index- 1
Programming Reference

