
Errata

Title & Document Type:

Manual Part Number:

Revision Date:

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-
Packard's former test and measurement, semiconductor products and chemical analysis
businesses are now part of Agilent Technologies. We have made no changes to this
manual copy. The HP XXXX referred to in this document is now the Agilent XXXX.
For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We’ve added this manual to the Agilent website in an effort to help you support your
product. This manual provides the best information we could find. It may be incomplete
or contain dated information, and the scan quality may not be ideal. If we find a better
copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available
product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide
you to any available information. Our service centers may be able to perform calibration
if no repair parts are needed, but no other support from Agilent is available.

Advanced Test Equipment Rentals
www.atecorp.com 800-404-ATEC (2832)

®

Established 1981

Christina Samii
1652B/1653B Logic Analyzer Programming Reference

Christina Samii
01652-40903

Christina Samii
December 1989

Programming Reference

HP 1652B/HP 1653B Logic Analyzers

E!ia HEWLETT
PACKARD

@Copyright Hewlett-Packard Company 1989

Manual Number 0165240903 Printed in the U.S.A. December 1989

Printing History

New editions are complete revisions of the manual. Update packages,
which are issued between editions, contain additional and replacement
pages to be merged into the manual by the customer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporated.

A software code may be printed before the date; this indicates the version
level of the software product at the time of the manual or update was
issued. Many product updates and fmes do not require manual changes
and, conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one to one correspondence
between product updates and manual updates.

Edition 1 December 1989 0165240903

List of Effective Pages

The List of Effective Pages gives the data of the current edition and of any
pages changed in updates to that edition. Within the manual, any page
changed since the last edition will have the date the changes were made
printed on the bottom of the page. If an update is incorporated when a
new edition of the manual is printed, the change dates are removed from
the bottom of the pages and the new edition date is listed in Printing
History and on the title page.

Pages Effective Date

All December 1989

Contents

Chapter 1 Introduction to Programming an Instrument
Introduction ..l- 1
AboutThisManuaI ..l- 1
ProgrammingSyntax ..l- 2

Talking to the Instrument . l-2
Instruct ion Syntax .l-2
Output Command . l-3
DeviceAddress...l- 3
Instruct ions ..l- 3
Instruction Header . l-3
WhiteSpace..l- 4
Instruction Parameters. *l-4
HeaderTypes ..l- 4
Combining Commands from the Same Subsystem l-5
Duplicate Keywords . l-5
QueryUsage ..l- 6
Program Header Options . l-7
Parameter Syntax Rules . l-7
Instruction Terminator . l-9
Select ing Mul t ip le Subsystems .1-9

Programming an Instrument . l-10
Initialization . l-10
ExampleProgram..l-ll
ProgramOverview ..l-11
Receiving Information from the Instrument l-11
Response Header Options . l-12
Response Data Formats . l-13
String Variables . 1-14
NumericBase ..l-15
Numeric Variables . l-15
Definite-Length Block Response Data . l-16
Multiple Queries . l-17
InstrumentStatus ..l-17

HP 16528/1653B
Programming Reference

Contents - 1

Chapter 2 Programming Over HP-IB
Introduction ..2- 1
Interface Capabilities .2-l
Command and Data Concepts .2-l
Addressing ..2- 1
Communicating Over the HP-IB Bus (HP 9000 Series 200/300
Controller) ..2- 2
Local, Remote, and Local Lockout .2-2
BusCommands ..2- 3

DeviceClear ..2- 3
Group Execute Trigger (GET) .2-3
Interface Clear (IFC) .2-3

Chapter 3 Programming Over RS-232C
Introduction ..3- 1
Interface Operation .3-l
Cables ..3- 2
Minimum Three-Wire Interface with Software Protocol3-2
Extended Interface with Hardware Handshake3-3
CableExample..3- 4
Configuring the Instrument Interface .3-5
Interface Capabilities .3-S

Protocol ..3- 5
DataBits ..3- 6

Communicating Over the RS-232C Bus (HP 9000 Series 200/300
Controller) ..3- 6
LockoutCommand ..3- 7

Chapter 4 Programming and Documentation Conventions
Introduction .
Truncation Rule .
Infinity Representation .
Sequential and Overlapped Commands
Response Generation .
Syntax Diagrams .
Notat ion Convent ions and Defini t ions
The Command Tree .

. . .

. . .

............. 4-l

. 4-l

. 4-2

. 4-2
. 4-2
. 4-2
. 4-3
. 4-4

Contents - 2 HP 16528/1653B
Programming Reference

Command Types . 4-4
Tree Traversal Rules .4-4
Examples . 4 5

Command Set Organization .4-10
Subsystems..4-10

ProgramExamples ..4-11

Chapter 5 Common Commands
Introduction.. ..5- 1

+cL.s .5-3
*ESE ..5- 4
*ESR . 5-6
*IDN ..5- 8
*opt . 5-9
*RST ..5-10
*SRE . 5-11
*STB . 5-13
*wAI .5-15

Chapter 6 System Commands
Introduction . 6-l

ARMBnc . 6-4
DATA . 6-5

Logic Analyzer Block Data . 6-8
Section Header Descriptiod .6-8
SectionData ..6- 8
Data Preamble Description .6-8
Acquisition Data Description . -6-11

Oscilloscope Block Data .6-18
OsciUoscope Data Section .6-18

Section Header Description .6-18
SectionData ..6-18

OsciIIoscope Display Data Section .6-19
DSP .6-20
ERRor...6-2 1
HEADer ..6-2 2
KEY...6-2 3
LER...6-2 5
LOCKout ..6-2 6

HP 16626/16538 Contents - 3

LONGform...6-2 7
MENU .6-B
MESE .6-29
MESR .6-31
PPOWer ..6-3 3
PRINt ..6- 34
RMODe .6-35
SETup...6- 36
STARt . 6-38
STOP..6-3 9

Chapter 7 MMEMory Subsystem
Introduction ..7- 1

AUToload ..7- 4
CATalog ..7- 5
COPY .7-6
DOWNload ..7- 7
INITialize ..7- 8
L O A D ..7- 9
L O A D ..7-10
PACK ..7-11
PURGe.. ..7-12
REName.. ..7-13
STORe . 7-14
UPLoad . 7-15

Chapter 8 DLlSt Subsystem
Introduction.. ..8- 1

DLISt...8- 2
COLumn..8- 3
LINE. ..8- 5

Contents - 4 HP 16528/1653B
Programming Reference

Chapter 9 WLlSt Subsystem
Introduction

wL1st
OSTate . . .
XSTate . . .
OTIMe . . .
XTIMe . . .

. .

. .

. .

. .

. .

. .

. . .

. . .

. . .

. . .

. . .

. . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.9-l

.9-2

. 9-3
.9-4
. 9-5

. . * 9-6

Chapter 10 MACHine Subsystem
Introduction .10-l

MACHine ..lO- 3
ARM ..lO- 4
ASSign...lO- 5
AUToscale ..lO- 6
NAME ..lO- 7
TYPE ..lO- 8

Chapter 11 SFORmat Subsystem
Introduction ..ll- 1

SFORmat ..ll- 3
CLOCk ..ll- 4
CPERiod ..ll- 5
LABel ..ll- 6
MASTer ..ll- 8
REMove ..ll- 9
SLAVe ..ll-10
THReshold ..ll-11

Chapter 12 STRace Subsystem
Introduction ..12- 1

STRace ..12- 4
BRANch ..12- 5
F I N D ..12- 8
PREStore ..12-10
RANGe ..12-12

HP 16528/l 6538
Programming Reference

Contents - 5

RESTart ..12-14
SEQuence ..l2-16
STORe .l2-17
TAG ..12-19
TERM .12-21

Chapter 13 SLlSt Subsystem
Introduction ..13- 1

SLISt .13-5
COLumn ..l3- 6
DATA ..13- 8
LINE ..13- 9
MMODe ..13-10
OPATtern ..13-11
OSEarch ..13-13
OSTate ..13-14
OTAG . 13-15
RUNTil ..13-16
TAVerage ..13-18
TMAXimum ..13-19
TMINimum ..13- 20
VRUNs ..l3-2 1
XOTag ..13-2 2
XPATtem ..13-2 3
XSEarch ..13-2 5
XSTate ..13- 26
XTAG .13-27

Chapter 14 SWAVeform Subsystem
Introduction.. ..l~ 1

SWAVeform .14-3
Accumulate ..14- 4
DELay...14- 5
INSert ..14- 6
RANGe..14- 7
REMove ..14- 8

Contents - 6 HP 16528/l 6538
Programming Reference

Chapter 15 SCHart Subsystem
Introduction ..15- 1

SCHart ..15- 3
Accumulate ..l5- 4
HAxis .15-s
VAxis ..15- 7

Chapter 16 COMPare Subsystem
Introduction ..16- 1

COMPare ..16- 3
CMASk.. ..16- 4
COPY ..16- 5
DATA...16- 6
FIND . 16-8
RANGe..16- 9
RUN-IX . 16-10

Chapter 17 TFORmat Subsystem
Introduction .17-l

TFORmat ..17- 2
LABel ..17- 3
REMove ..17- 5
THReshold...17- 6

Chapter 18 lTRace Subsystem
Introduction

TIRace
AMODe
DURation
EDGE
GLITch
PAlTern

........

........

........

........

........

........

........

. .

. .

. .

. .
* .
. .

. .
. .
. .
. .
. .
. .
. .

. 18-1
, 18-3
. 18-4
. 18-5
. 18-6
. 18-8
. 18-9

HP 16628/1653B
Programming Reference

Contents - 7

Chapter 19 TWAVeform Subsystem
Introduction ..19- 1

TWAVeform ..19- 5
Accumulate . 19-6
DELay . 19-7
INSert ..19- 8
MMODe ..19- 9
OCONdition . 19-10
OPATtern . 19-11
OSEarch ..19-13
OTIMe ..19-14
RANGe ..19-15
REMove ..19-16
RUNTil ..19-17
SPERiod.. ..19-19
TAVerage ..19-2 0
TMAXimum ..19-2 1
TMINimum ..19-2 2
VRUNs ..19-2 3
XCONdition ..19-2 4
XOTime ..19- 25
XPATtern ..19- 26
XSEarch ..19- 28
XTIMe ..19-2 9

Chapter 20 SYMBol Subsystem
Introduction .20-l

SYMBol ..20- 3
BASE . 20-4
PAlTern ..20- 5
RANGe ..2O- 6
REMove ..20- 7
WIDTh ..20- 8

Contents - 8 HP 16526/1653B
Programming Reference

Chapter 21 SCOPe Subsystem
Introduction . 21-1

SCOPe...21- 2
AUToscale ..21- 3
SMODe . 21-4

Chapter 22 CHANnel Subsystem
Introduction ..~- 1

CHANnel ..22- 3
COUPling..22- 4
OFFSet ..22- 5
PROBe ..22- 6
RANGe..22- 7

Chapter 23 TRlGger Subsystem
Introduction ..23- 1

The Edge
TriggerMode ..23- 1
The Immediate Trigger Mode .23-l

TRIGger ..23- 3
LEVEL..23- 4
MODE .23-5
SLOPe.....................................,.........23- 6
SOURce ..23- 7

Chapter 24 ACQuire Subsystem
Introduction ..2~ 1
Acquisition Type Normal .24-2
Acquisit ion Type Average . 24-2

ACQuire.. ..24- 3
COUNt ..24- 4
TYPE ..24- 5

HP 16528/16538 Contents - 9

Chapter 25 TIMebase Subsystem
introduction . 25-l

TIMebase ..25- 2
DELAY .25-3
MODE .25-4
RANGe..25- 6

Chapter 26 WAVeform Subsystem
Introduction . 26-l
Waveform
Record ..~- 3
Data Acquisit ion Types .26-3

NormalMode ..26- 3
AverageMode...26- 3

Format for Data Transfer .26-4
BYTEFormat...26- 4
WORD Format .26-5
ASCIIFormat ..%- 5

Data Conversion .2&6
Conversion from Data Value to Voltage .26-6
Conversion from Data Value to Time .26-6
Conversion from Data Value to Trigger Point26-6

WAVeform .26-7
COUNt ..~- 8
DATA...26- 9
FORMat ..26-10
POINts ..~-11
PREAmble.. ..26-12
RECord ..26-13
SOURce ..26-14
TYPE ..~-15
VALid.. ..~-16
XINCrement ..26-17
XORigin ..26-18
XREFerence ..26-19
YINCrement...26-2 0
YORigin ..26-2 1
YREFerence ..26-2 2

Contents - 10 HP 16528/1653B
Programming Reference

Chapter 27 MEASure Subsystem
Introduction . 27-l

Frequency . 27-2
Period . 27-2
Peak-to-Peak..27- 2
Positive Pulse Width. .27-2
Negative Puke Width .27-2
Risetime . 27-2
FaIItime ..27- 2
Preshoot and Overshoot .27-2
Preshoot..27- 2
Overshoot ..27- 2

MEASure ..27- 4
ALL .27-5
FALLTime.. ..27- 6
FREQuency ..27- 7
NWIDth .27-B
OVERShoot .27-9
PERiod ..27-10
PRESHoot ..27-11
PWIDth .27-12
RISETIme ..27-13
SOURce . 27-14
VAMPlitude...27-15
VBASe ...27-16
VMAX .27-17
VMIN . 27-18
VPP .27-19
VTOP ..27- .

Appendix A Message Communication and System Functions

Introduction ..A- 1
P r o t o c o l s . A - 2

Functional Elements . A-2
Protocol Overview . A-3
Protocol Operation . A-3
Protocol Exceptions . A-4

Syntax Diagrams . A-S

HP 10528/16538
Programming Reference

Contents - 11

Syntax Overview . A-5
Device Listening Syntax . A - g
DeviceTalkingSyntax ..A-2 1

Common Commands . A-27

Appendix B Status Reporting
Introduction . B-l

Event Status Register . B-3
Service Request Enable Register . B-3
Bit Definitions . B-3
KeyFeatures . B-4

SerialPoll . B-6
Using Serial Poll (HP-IB) . B-6

ParallelPoll . B-8
PolliugHP-IBDevices.. B-10
Configuring Parallel Poll Responses . B-10
Conducting a Parallel Poll . B-11
Disabling Parallel Poll Responses . B-11
HP-IBCommands . B-12

Appendix C Error Messages
Device Dependent Errors . C-l
CommandErrors . C-2
Execution Errors . C-3
InternalErrors . C-4
QueryErrors . C-5

Index

Contents - 12 HP 16528/1653B
Programming Reference

Introduction to
Programming an Instrument

1

Introduction This chapter introduces you to the basics of remote programming. The
programming instructions explained in this book conform to the
IEEE 488.2 Standard Digital Interface for Programmable
Instrumentation. These programming instructions provide a means of
remotely controlling the HP 1652B/53B. There are three general
categories of use. You can:

l Set up the instrument and start measurements
l Retrieve setup information and measurement results
l Send measurement data to the instrument

The instructions listed in this manual give you access to the measurements
and front panel features of the HP 1652B153B. The complexity of your
programs and the tasks they accomplish are limited only by your
imagination. This programming reference is designed to provide a
concise descript ion of each instruction.

About This
Manual

This manual is organized in 27 chapters. Chapter 1 is divided into two
sections. The first section (pages 2 through 9) concentrates on program
syntax, and the second section (pages 10 through 17) discusses
programming an instrument. Read either chapter 2, “Programming Over
HP-IB,” or chapter 3, “Programminn Over RS-232C” for information
concerning the physical connection between the HP 1652B/53B and your
controller. Chapter 4, “Programming and Documentation Conventions,”
gives an overview of al l instruct ions and also explains the notat ion
conventions used in our syntax definitions and examples. The remaining
chapters 5 through 27 are used to explain each group of instructions.

HP 16528/1653B Introduction to Programming an Instrument
Programming Reference l-l

Programming
Syntax

Talking to the In general, computers acting as controllers communicate with the
Instrument instrument by sending and receiving messages over a remote interface,

such as HP-IB or RS-232C. Instructions for programming the HP
1652B/53B will normally appear as ASCII character strings embedded
inside the output statements of a “host” language available on your
controller. The host language’s input statements are used to read in
responses from the HP 1652B/53B.

For example, HP 9000 Series 2W300 BASIC uses the OUTPUT
statement for sending commands and queries to the HP 1652B/53B. After
a query is sent, the response is usually read in using the ENTER
statement. All programming examples in this manual are presented in
BASIC. The following BASIC statement sends a command which causes
the HP 1652B/53B’s machine 1 to be a state analyzer:

OUTPUT XXX:":MACHINEl:TYPE STATE" <terminator>

Each part of the above statement is explained in the following pages.

Instruction Syntax To program the instrument remotely, you must have an understanding of
the command format and structure expected by the instrument. The IEEE
483.2 syntax rules govern how individual elements such as headers,
separators, parameters and terminators may be grouped together to form
complete instructions. Syntax definitions are also given to show how
query responses will be formatted. Fiie l-l shows the main syntactical
parts of a typical program statement.

INSTRUCTION
I

OUTPUT XXX;“:SYSTEM:MENU D ISPLAY .2 ’

INSTRUCTION PARAMETERS

Figure l-l. Program Message Syntax

Introduction to Programming an Instrument HP 16528/1653B
l-2 Progmmmlng Reference

Output Command The output command is entirely dependant on the language you choose to
use. Throughout this manual HP !%OO Series 2W300 BASIC 4.0 is used in
the programming examples. People using another language will need to
find the equivalents of BASIC commands like OUTPUT, ENTER and
CLEAR in order to convert the examples. The instructions for the
HP 1652B/53B are always shown between the double-quotes.

Device Address The location where the device address must be specified is also dependent
on the host language which you are using. In some languages, this could
be specified outside the output command. In BASIC, this is always
specified after the keyword OUTPUT. The examples in this manual use a
generic address of XXX. When writing programs, the number you use
will depend on the cable you use in addition to the actual address. If you
are using an HP-IB, see chapter 2. RS-232C users should refer to
chapter 3, “Programming Over RS-232C.”

Instructions Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host language, such as BASIC, Pascal or
C. The only time a parameter is not meant to be expressed as a string is
when the instruction’s syntax definition specifies <block data > . There
are only five instructions which use block data.

Instructions are composed of two main parts: The header, which specifies
the command or query to be sent; and the parameters, which provide
additional data needed to clarify the meaning of the instruction.

instruction Header The instruction header is one or more keywords separated by colons (:).
The command tree in figure 4-l illustrates how all the keywords can be
joined together to form a complete header (see chapter 4, “Programming
and Documentation Conventions”).

The example in figure l-l shows a command. Queries are indicated by
adding a question mark (?) to the end of the header. Many instructions
can be used as either commands or queries, depending on whether or not
you have included the question mark. The command and query forms of
an instruction usually have different parameters. Many queries do not use
any parameters.

When you look up a query in this programming reference, you’ll fmd a
paragraph labeled “Returned Format” under the one labeled “Query
Syntax.” The syntax definition by “Returned format” will always show the
instruction header in square brackets, like (:SYSTem:MENU]. What this

Introduction to Programming an Instrument
1-3

White Space

Instruction Parameters

Header Types

really means is that the text between the brackets is optional, but it’s also a
quick way to see what the header looks like.

White space is used to separate the instruction header from the
instruction parameters. If the instruction does not use any parameters,
you do not need to include any white space. White space is defined as one
or more spaces. ASCII defines a space to be character 32 (in decimal).
Tabs can be used only if your controller first converts them to space
characters before sending the string to the instrument.

Instruction parameters are used to clarify the meaning of the command or
query. They provide necessary data, such as whether a function should be
on or off, which waveform is to be displayed, or which pattern is to be
looked for. Each instruction’s syntax deli&ion shows the parameters, as
well as the values they accept. This chapter’s “Parameter Syntax Rules”
section has all of the general rules about acceptable values.

When there is more than one parameter they are separated by
commas (,). You are allowed to add spaces around the commas.

There are three types of headers: Simple Command; Compound
Command; and Common Command.

Simple Command Header. Simple command headers contain a single
keyword. START and STOP are examples of simple command headers
typically used in this instrument. The syntax is:

cfunction > c terminator >

When parameters (indicated by c data z=) must be included with the
simple command header (for example, :RMODE SINGLE) the syntax is:

cfunction> cwhits space > <data> cterminator >

Compound Command Header. Compound command headers are a
combination of two or more program keywords. The first keyword selects
the subsystem, and the last keyword selects the function within that
subsystem. Sometimes you may need to list more than one subsystem
before being allowed to specify the function. The keywords within the
compound header are separated by colons. For example:

To execute a single function within a subsystem, use the following:

Introduction to Progmmming an Instrument HP 16628/1653B
l-4 Programming Reference

: c subsystem > : c function w <white space > <data > <terminator >

(For example :SYSTEM:LONGFORM ON)

To traverse down a level of a subsystem to execute a subsystem within that
subsystem:

: <subsystem > : c subsystem > : <function > c white space > -z data > <terminator >

(For example :MMEMORY:LOAD:CONFIG “FILE-“)

Common Command Header. Common command headers control IEEE
488.2 functions within the instrument (such as clear status, etc.). Their
syntax is:

*-z command header > c terminator >

No space or separator is allowed between the asterisk and the command
header. *CLS is an example of a common command header.

Combining To execute more than one function within the same subsystem a
Commands from the semi-colon (;) is used to separate the functions:

Same Subsystem
:<subsystem>:4unction> <white space> <data>:

-Z function z- -z white space z- < data z -c terminator >

(For example :SYSTEM:LONGFORM 0N;HEADER ON)

Duplicate Keywords Identical function keywords can be used for more than one subsystem.
For example, the function keyword MMODE may be used to specify the
marker mode in the subsystem for state listing or the timing waveforms:

SLISTMMODE PATIERN - sets the marker mode to pattern in the state
listing.

:TWAVEFORM:MMODE TIME - sets the marker mode to time in the timing
waveforms.

SLIST and TWAVEFORM are subsystem selectors and determine which
marker mode is being modified.

HP 16528/1653B
Programming Reference

Introduction to Programming an Instrument
l-5

Query Usage Command headers immediately followed by a question mark (?) are
queries. After receiving a query, the instrument interrogates the
requested function and places the response in its output queue. The
output message remains in the queue until it is read or another command
is issued. When read, the message is transmitted across the bus to the
designated listener (typically a controller). For example, the logic
analyzer query :MACHINEl:TWAVEFORM:RANGE? places the
current seconds per division full scale range for machine 1 in the output
queue. In BASIC, the input statement

ENTER XXX; Range

passes the value across the bus to the controller and places it in the
variable Range.

Query commands are used to find out how the instrument is currently
configured. They are also used to get results of measurements made by
the instrument. For example, the command

:MACHINEl:lWAVEFORM:XOTIME?

instructs the instrument to place the X to 0 time in the output queue.

Note
The output queue must be read before the next program message is sent.
For example, when you send the query :TWAVEFORM:XOTIME? you
must follow that with an input statement. In BASIC, this is usually done
with an ENTER statement.

Sending another command before reading the result of the query will
cause the output buffer to be cleared and the current response to be lost.
This will also generate a “QUERY UNTERMINATED” error in the
error queue.

Introduction to Programming an Instrument HP 1662Bll663B
1-6 Programming Reference

Program Header Program headers can be sent using any combination of uppercase or
Options lowercase ASCII characters. Instrument responses, however, are always

returned in uppercase.

Both program command and query headers may be sent in either
longform (complete spelling), shortform (abbreviated spelling), or any
combination of longform and shortform. Either of the following examples
turns on the headers and longform.

OUTPUT XXX;":SYSTEM:HEAOER 0N;LONGFORM ON" - longform

OUTPUT XXX;" :SYST:HEAO 0N;LONG ON" - shortform

Programs written in longform are easily read and are almost

self-documenting. The shortform syntax conserves the amount of
controller memory needed for program storage and reduces the amount
of I/O activity.

Note d
The rules for shortform syntax are shown in chapter 4 “Programming and
Documentation Conventions.”

Parameter Syntax There are three main types of data which are used in parameters. They
Rules are numeric, string, and keyword. A fourth type, block data, is used only

for five instructions: the DATA and SETup instructions in the SYSTem
subsystem (see chapter 6); the CATalog, UPLoad, and DOWNload
instructions in the MMEMory subsystem (see chapter 7). These syntax
rules also show how data may be formatted when sent back from the
HP 1652B/53B as a response.

The parameter list always follows the instruction header and is separated
from it by white space. When more than one parameter is used, they are
separated by commas. You are allowed to include one or more spaces
around the commas, but it is not mandatory.

HP 1662Bll653B
Programming Reference

Introduction to Programming an Instrument
1-7

Numeric data. For numeric data, you have the option of using
exponent ial notat ion or using suff ixes to indicate which uni t is being used.
Tables A-l and A-2 in appendix A list all available suffixes. Do not
combine an exponent with a unit. The following numbers are all equal:
28 = 0.2SE2 = 2SOe-1 = 2MOOm = 0.02%.

The base of a number is shown with a prefuL The available bases are
binary (#B), octal (#Q), hexadecimal (#H) and decimal (default). For
example, #BlllOO = #Q34 = #HlC = 28. You may not specify a
base in conjunction with either exponents or unit suffixes. Additionally,
negative numbers must be expressed in decimal.

When a syntax definition specifies that a number is an integer, that means
that the number should be whole. Any fractional part would be ignored,
truncating the number. Numeric parameters which accept fractional
values are called real numbers.

All numbers are expected to be strings of ASCII characters. Thus, when
sending the number 9, you would send a byte representing the ASCII code
for the character “9” (which is 57, or 00111001 in binary). A three-digit
number like 102 would take up three bytes (ASCII codes 49,4S and 50).
This is taken care of automatically when you include the entire instruction
in a s t r ing .

String data. String data may be delimited with either single (‘) or double
(“) quotes. String parameters representing labels are case-sensitive. For
instance, the labels “Bus A” and “bus a” are unique and should not be used
indiscriminately. Also pay attention to the presence of spaces, since they
act as legal characters just like any other. So the labels “In” and ” In” are
also two separate labels.

Keyword data. In many cases a parameter must be a keyword. The
available keywords are always included with the instruction’s syntax
definition. When sending commands, either the longform or shortform (if
one exists) may be used. Upper-case and lower-case letters may be mixed
freely. When receiving responses, upper-case letters will be used
exclusively. The use of longform or shortform in a response depends on
the setting you last specified via the SYSTem:LONGform command (see
chapter 6).

Introduction to Programming an Instrument
l-8

HP 18528/1883B
Progremming Reference

Instruction Terminator An instruction is executed after the instruction terminator is received.
The terminator is the NL (New Line) character. The NL character is an
ASCII linefeed character (decimal 10).

Note d
The NL (New Line) terminator has the same function as an EOS (End Of
String) and EOT (End Of Text) terminator.

Selecting Multiple You can send multiple program commands and program queries for
Subsystems different subsystems on the same line by separating each command with a

semicolon. The colon following the semicolon enables you to enter a new
subsystem. For example:

< instruction header > <data > ;: c instruction header > <data > <terminator >

:MACHINEl:ASSIGNP;:SYSTEM:HEADERS ON

,I4Note 4
Multiple commands may be any combination of simple, compound and
common commands.

HP 16528/1653B Introduction to Programming an Instrument
1-9

Programming
an Instrument

Initialization To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. BASIC provides a
CLEAR command which clears the interface buffer. If you’re using
HP-IB, CLEAR will also reset the HP 1652B/53B’s parser. The parser is
the program which reads in the instructions which you send it.

After clearing the interface, load a predefmed configuration file from the
disk to preset the instrument to a known state. For example:

OUTPUT XXX;" :MMEMORY:LOAD:CONFIG 'DEFAULT-"'

This BASIC statement would load the configuration file “DEFAULT-”
(if it exists) into the HP 1652B/53B. Refer to the chapter “MMEMory
Subsystem” for more information on the LOAD command.

Note ‘d
Refer to your controller manual and programming language reference
manual for information on initializing the interface.

Introduction to Programming an Instrument
l-10

HP 16528/1663B

Example Progrem This program demonstrates the basic command structure used to program
the HP 16XXV53B.

10 CLEAR XXX !Initialize instrument interface

20 OUTPUT XXX;" :SYSTEM:HEADER ON" !Turn headers on
30 OUTPUT XXX; ":SYSTEM:LONGFORM ON" !Turn longfonn on

40 OUTPUT XXX;" :MMEM:LOAD:CONFIG 'TEST-E'" !Load configuration file

50 OUTPUT XXX;":MENU FORMAT,l" !Select Format menu for machine 1

60 OUTPUT XXX;":RMODE SINGLE" !Select run mode

70 OUTPUT XXX;":START" !Run the measurement

Program Overview Line 10 initializes the instrument interface to a known state
Lines 20 and 30 turn the headers and longform on.
Line 40 loads the configuration file “TEST E” from the disc drive.
Line 50 displays the Format menu for machine 1.
Lines 60 and 70 tell the analyzer to run the measurement configured by
the fde “TEST-E” one time.

Receiving Information After receiving a query (command header followed by a question mark),
from the Instrument the instrument interrogates the requested function and places the answer

in its output queue. The answer remains in the output queue until it is
read or another command is issued. When read, the message is
transmitted across the bus to the designated listener (typically a
controller). The input statement for receiving a response message from
an instrument’s output queue typically has two parameters;the device
address and a format specification for handling the response message.
For example, to read the result of the query command
:SYSTEM:LONGFORM? you could execute the BASIC statement:

ENTER W Setting

where XXX represents the address of your device. This would enter the
current setting for the longform command in the numeric variable Sefting.

HP 1652B/l653B
Progmmming Reference

Introduction to Programming an Instrument
l-11

Note
All results for queries sent in a program message must be read before
another program message is sent. For example, when you send the query
:MACHINEl:ASSIGN?, you must follow that query with an input
statement. In BASIC, this is usually done with an ENTER statement.

The format specification for handling the response messages is dependent
on both the controller and the programming language.

Response Header The format of the returned ASCII string depends on the current settings
Options of the SYSTEM HEADER and LONGFORM commands. The general

format is:

c instruction header > <space > <data > c terminator >

The header identifies the data that follows (the parameters) and is
controlled by issuing a :SYSTEM:HEADER ON/OFF command. If the
state of the header command is OFF, only the data is returned by the
query.

The format of the header is controlled by the :SYSTEM:LONGFORM
ON/OFF command. If longform is OFF, the header will be in its
shortform and the header will vary in length depending on the particular
query. The separator between the header and the data always consists of
one space.

The following examples show some possible responses for a
:MACHINEl:SFORMAT:THRESHOLD2? query:

l with HEADER OFF:
<data> <terminator>

l with HEADER ON and LONGFORM OFF:
:MACHl:SFOR:THR2 <space > <data > <terminator z-

l with HEADER ON and LONGFORM ON:
:MACHINEl:SFORMAT:THRESHOLD2 <space> <data> <terminator>

Introduction to Programming an Instrument HP 16628/1653B
1-12 Programming Reference

Note 3

Response Data
Formats

Note d

A command or query may be sent in either longform or shortform, or in
any combination of longform and shortform. The HEADER and
LONGFORM commands only control the format of the returned data
and have no effect on the way commands are sent.

Refer to the chapter “System Commands” for information on turning the
HEADER and LONGFORM commands on and off.

Both numbers and strings are returned as a series of ASCII characters, as
described in the following sections. Keywords in the data are returned in
the same format as the header, as specified by the LONGform command.
Lie the headers, the keywords will always be in upper-case.

The following are possible responses to the “MACHINEl: TFORMAT:
LAB? ‘ADDR’ ” query.

MACHINEl:TFORMAT:lABEL “ADDR “,19.POSITIVE-zterminator~ (Header on;

Longform on)

MACH1:TFOR:lAB “ADDR “,lS,POS-zterminator > (Header on; Longform off)

“ADDR ‘,19,POSlTlVEcterminator > (Header off; Longform on)

“ADDR ‘, lS,POScterminator > (Header off; Longform off)

Refer to the individual commands in this manual for information on the
format (alpha or numeric) of the data returned from each query.

HP 1652B/l653B
Programming Reference

Introduction to Programming an Instrument
1-13

String Variables Since there are so many ways to code numbers, the HP 1652B/53B
handles almost all data as ASCII strings. Depending on your host
language, you may be able to use other types when reading in responses.

Sometimes i t is helpful to use s t r ing variables in place of constants to send
instructions to the HP 1652B/53B. The example below combines variables
and constants in order to make it easier to switch from MACHINE1 to
MACHINE2. In BASIC, the & operator is used for string concatenation.

10 LET MachineS = ":MACHINEZ" !Send all instructions to machine 2

20 OUTPUT XXX; MachineS & ":TYPE STATE" !Make machine a state analyzer

30 ! Assign all labels to be positive
40 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL 'CHAN 1'. POS"

50 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL 'CHAN 2'. POS"

60 OUTPUT XXX; MachineS & ":SFORMAT:LABEL 'OUT', POS"

99 END

If you want to observe the headers for queries, you must bring the
returned data into a string variable. Reading queries into string variables
requires little attention to formatting. For example:

ENTER XXX;Result$

places the output of the query in the str ing variable Result%.

Note
d3 In the language used for this book (HP BASIC 4.0), string variables are

case sensitive and must be expressed exactly the same each time they are
used.

The output of the instrument may be numeric or character data
depending on what is queried. Refer to the specific commands for the
formats and types of data returned from queries.

Introduction to Programming an Instrument
l-14

HP 1652W1653B
Programming Reference

The following example shows logic analyzer data beii returned to a
string variable with headers off:

10 OUTPUT XXX;" :SYSTEM:HEAOER OFF"
20 DIM Rang$[30]

30 OUTPUT XXX;":MACHINEl:TWAVEFORM:RANGE?"

40 ENTER XXX;RangS
50 PRINT Rang$

60 END

After running this program, the controller displays:

+ 1.OOOOOE-05

Numeric Base Most numeric data will be returned in the same base as shown on screen.
When the prefut #B precedes the returned data, the value is in the bii
base. Likewise, #Q is the octal base and #H is the hexadecimal base. If
no prefa precedes the returned numeric data, then the value is in the
decimal base.

Numeric Variables If your host language can convert from ASCII to a numeric format, then
you can use numeric variables. Turning off the response headers will help
you avoid accidently trying to convert the header into a number.

The following example shows logic analyzer data being returned to a
numeric variable.

10 OUTPUT XXX;":SYSTEM:HEADER OFF"
20 OUTPUT XXX;": MACHINEl:TWAVEFORM:RANGE?"
30 ENTER XXX;Rang
40 PRINT Rang

50 END

This time the format of the number (such as whether or not exponential
notation is used) is dependant upon your host language. In BASIC, the
output would look like:

l.E-5

HP 16528/1653B
Programming Reference

Introduction to Programming an Instrument
l-15

Definite-Length Block Definite-length block response data allows any type of device-dependent
Response Data data to be transmitted over the system interface as a series of 8-bit binary

data bytes. This is particularly useful for sending large quantities of data
or 8-bit extended ASCII codes. The syntax is a pound sign (#) followed
by a non-zero digit representing the number of digits in the decimal
integer. After the non-zero digit is the decimal integer that states the
number of 8-bit data bytes being sent. This is followed by the actual data.

For example, for transmitting 80 bytes of data, the syntax would be:

N U M B E R O F D I G I T S
T H A T F O L L O W

A C T U A L D A T A

i -
#800000080<eighty b y t e s o f data><terminator>

N U M B E R O F B Y T E S
T O BE TRANSMITTED 1IJBBIBLZZ

Figure 1-2. Definite-length Block Response Data

The “8” states the number of digits that follow, and ‘WOOOO80” states the
number of bytes to be transmitted.

Note
Indefinite-length block data is not supported on the HI?1652B/53B.

Introduction to Progmmming an Instrument HP 16528/1653B
1-16 Progmmming Reference

Multiple Queries

Note

Instrument Status

HP 16528/1653B

You can send multiple queries to the instrument within a single program
message, but you must also read them back within a single program
message. This can be accomplished by either reading them back into a
string variable or into multiple numeric variables. For example, you could
read the result of the query :SYSTEM:HEADER?;LONGFORM? into
the string variable Results$ with the command:

ENTER XXX: Results$

When you read the result of multiple queries into string variables, each
response is separated by a semicolon. For example, the response of the
query :SYSTEM:HEADER?:LONGFORM? with HEADER and
LONGFORM on would be:

:SYSTEM:HEADERl;:SYSTEM:LONGFORMl

If you do not need to see the headers when the numeric values are
returned, then you could use following program message to read the query
:SYSTEM:HEADERS?;LONGFORM? into multiple numeric variables:

ENTER XXX; Resultl. Result2

When you are receiving numeric data into numeric variables, the headers
should be turned off. Otherwise the headers may cause misinterpretation
of returned data.

Status registers track the current status of the instrument. By checking the
instrument s tatus, you can find out whether an operation has been
completed, whether the instrument is receiving triggers, and more.
Appendix B, “Status Report ing,” explains how to check the status of the
instrument.

Introduction to Programming an Instrument
1-17

Programming Over HP-IB 2
Introduction This section describes the interface functions and some general concepts

of the HP-IB. In general, these functions are defined by IEEE 488.1
(HP-IB bus standard). They deal with general bus management issues, as
well as messages which can be sent over the bus as bus commands.

Interface
Capabilities

The interface capabilities of the HP 1652B/53B, as defined by IEEE 488.1
are SHl, AHl, T5, TEO, L3, LEO, SRl, RLl, PPl, DCl, DTl, CO, and E2.

Command and The HP-IB has two modes of operation: command mode and data mode.

Data Concepts The bus is in command mode when the ATN line is true. The command
mode is used to send talk and l is ten addresses and various bus commands,
such as a group execute trigger (GET). The bus is in the data mode when
the ATN line is false. The data mode is used to convey device-dependent
messages across the bus. These device-dependent messages include all of
the instrument commands and responses found in chapters 5 through 27
of this manual.

Addressing By using the front-panel I/O and SELECT keys, the HP-IB interface can
be placed in either talk only mode “Printer connected to HP-IB” or
addressed talk/listen mode “Controller connected to HP-IB” (see “I/O
Port Configuration” in Chapter 5 of the HP 1652BIHP 16538 Front-Panel
Reference manual Talk only mode must be used when you want the
instrument to talk directly to a printer without the aid of a controller.
Addressed talk/listen mode is used when the instrument will operate in
conjunction with a controller. When the instrument is in the addressed
talk/listen mode, the following is true:

l Each device on the HP-IB resides at a particular address ranging
from 0 to 30.

l The active controller specifies which devices will talk, and which
will listen.

l An instrument, therefore, may be talk addressed, listen addressed,
or unaddressed by the controller.

HP 16528/16538
Programming Reference

Programming Over HP-IB
2-1

If the controller addresses the instrument to talk, it will remain configured
to talk until it receives an interface clear message (IFC), another
instrument’s talk address (OTA), its own listen address (MIA), or a
universal untalk (UNT) command.

If the controller addresses the instrument to listen, it will remain
configured to listen until it receives an interface clear message (IFC) its
own talk address (MTA), or a universal unlisten (UNL) command.

Communicating s ince HP-IB can address multiple devices through the same interface

Over the HP-IB card, the device address passed with the program message must include

Bus (HP 9000
not only the correct instrument address, but also the correct interface
c o d e .

Series 200/300
Controller) Interface Select Code (Selects Interface). Each interface card has its own

interface select code. This code is used by the controller to direct
commands and communications to the proper interface. The default is
always “7” for HP-IB controllers.

Instrument Address (Selects Instrument). Each instrument on the
HP-IB port must have a unique instrument address between decimal 0
and 30. The device address passed with the program message must
include not only the correct instrument address, but also the correct
interface select code.

DEVICE ADDRESS = (Interface Select Code) X 100 + (Instrument Address)

For example, if the instrument address for the HP 1652B/53B is 4 and the
interface select code is 7, when the program message is passed, the
routine performs its function on the instrument at device address 704.

Local, Remote, The local, remote, and remote with local lockout modes may be used for

and Local various degrees of front-panel control while a program is running. The

Lockout
instrument will accept and execute bus commands while in local mode,
and the front panel will also be entirely active. If the HP 1652B/53B is in
remote mode, the instrument will go from remote to local with any front
panel activity. In remote with local lockout mode, all controls (except the
power switch) are entirely locked out. Local control can only be restored
by the controller.

Programming Over HP-IB HP 16528/1653B
2-2 Programming Reference

Note
Cycling the power will also restore local control, but this will also reset
certain HP-IB states.

The instrument is placed in remote mode by setting the REN (Remote
Enable) bus control line true, and then addressing the instrument to
listen. The instrument can be placed in local lockout mode by sending the
local lockout (LLO) command (see SYSTem:LOCKout in chapter 6).
The instrument can be returned to local mode by either setting the REN
line false, or sending the instrument the go to local (GTL) command.

Bus Commands

Device Clear

Group Execute
Trigger (GET)

Interface Clear (IFC)

HP 16526/l 6536 Programming Over HP-IB
Programming Reference 2-3

The following commands are IEEE 488.1 bus commands (ATN true).
IEEE 488.2 defmes many of the actions which are taken when these
commands are received by an instrument.

The device clear (DCL) or selected device clear (SDC) commands clear
the input and output buffers, reset the parser, clear any pending
commands, and clear the Request-OPC flag.

The group execute trigger command will cause the same action as the
START command for Group Run: the instrument will acquire data for
the active waveform and l ist ing display(s) ,

This command halts all bus activity. This includes unaddressing all
listeners and the talker, disabling serial poll on all devices, and returning
control to the system controller.

Programming Over RS-232C

Introduction This section describes the interface functions and some general concepts
of the RS-232C. The RS-232C interface on this instrument is
Hewlett-Packard’s implementation of EIA Recommended Standard
RS-232C, “Interface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Binary Data Interchange.”
With this interface, data is sent one bit at a time and characters are not
synchronized with preceding or subsequent data characters. Each
character is sent as a complete entity without relationship to other events.

Interface
Operation

The HP 1652B/53B can be programmed with a controller over RS-232C
us ing e i the r a minimum three-wire or extended hardwire interface. The
operation and exact connections for these interfaces are described in
more detail in the following sections. When you are programming an
HP 1652B/53B over RS-232C with a controller, you are normally
operating directly between two DTE (Data Terminal Equipment) devices
as compared to operating between a DTE device and a DCE (Data
Communications Equipment) device.

When operating directly between two DTE devices, certain
considerations must be taken into account. For three-wire operation,
XON/XOFF must be used to handle protocol between the devices. For
extended hardwire operation, protocol may be handled either with
XON/XOFF or by manipulating the CTS and RTS lines of the RS-232C
link. For both three-wire and extended hardwire operation, the DCD and
DSR inputs to the HP 1652B/53B must remain high for proper operation.

With extended hardwire operation, a high on the CI’S input allows the HP
1652B/53B to send data and a low on this line disables the HP 1652B/53B
data transmission. Likewise, a high on the RTS line allows the controller
to send data and a low on this line signals a request for the controller to
disable data transmission. Since three-wire operation has no control over
the CTS input, internal pull-up resistors in the HP 1652B/53B assure that
this line remains high for proper three-wire operation.

HP 16528/l 6538 Programming Over RS-232C
3-l

Cables Selecting a cable for the RS-232C interface is dependent on your specific
application. The following paragraphs describe which lines of the
HP 1652B/53B are used to control the operation of the RS-232C relative
to the HP 1652B/53B. To locate the proper cable for your application,
refer to the reference manual for your controller. This manual should
address the exact method your controller uses to operate over the
RS-232C bus.

Minimum With a three-wire interface, the software (as compared to interface

Three-Wire
Interface with
Software
Protocol

hardware) controls the data flow between the HP 1652B/53B and the
controller. This provides a much simpler connection between devices
since you can ignore hardware handshake requirements. The
HP 1652B/53B uses the following connections on its RS-232C interface for
three-wire communication:

l Pin 7 SGND (Signal Ground)
l Pin 2 TD (Transmit Data from HP 1652B/53B)
l Pin 3 RD (Receive Data into HP 1652B/53B)

The TD (Transmit Data) line from the HP 1652B/53B must connect to the
RD (Receive Data) line on the controller.‘Likewise, the RD line from the
HP 1652B/53B must connect to the TD line on the controller. Internal
pull-up resistors in the HP 1652B/53B assure the DCD, DSR, and CIS
lines remain high when you are using a three-wire interface.

Note
The three-wire interface provides no hardware means to control data flow
between the controller and the HP 1652B/53B. XON/OPP protocol is the
only means to control this data flow.

Programming Over RS-232C
3-2

HP 16526/1663B

Extended With the extended interface, both the software and the hardware can
Interface with control the data flow between the HP 1652B/53B and the controller. This

Hardware
Handshake

allows you to have more control of data flow between devices. The
HP 1652B/53B uses the following connections on its RS-232C interface for
extended interface communication:

l Pin 7 SGND (Signal Ground)
l Pm 2 TD (Transmit Data from HP 1652B/53B)
l Pin 3 RD (Receive Data into HP 1652B/53B)

The additional lines you use depends on your controller’s implementation
of the extended hardwire interface.

l Pin 4 RTS (Request To Send) is an output from the
HP 1652B/53B which can be used to control incoming data flow.

l Pin 5 CTS (Clear To Send) is an input to the HP 1652B/53B
which controls data flow from the HP 1652B/53B.

l Pm 6 DSR (Data Set Ready) is an input to the HP 1652B/53B
which controls data flow from the HP 1652B/53B within two bytes.

l Pin 8 DCD (Data Carrier Detect) is an input to the HP
1652B/53B which controls data flow from the HP 1652B/53B within
two bytes.

l Pin 20 DTR (Data Terminal Ready) is an output from the
HP 1652B/53B which is enabled as long as the HP 1652B/53B is
turned on.

The TD (Transmit Data) line from the HP 1652B/53B must connect to the
RD (Receive Data) line on the controller. Likewise, the RD line from the
HP 1652B/53B must connect to the TD line on the controller.

HP 16528/1653B
Programming Reference

PrOgn3mming Over RS-232C
3-3

The RTS (Request To Send), is an output from the HP 1652B/53B which
can be used to control incoming data flow. A true on the RTS line allows
the controller to send data and a false on this line signals a request for the
controller to disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data
Carrier Detect) lines are inputs to the HP 1652B/53B which control data
flow from the HP 1652B/53B (Pin 2). internal pull-up resistors in the
HP 1652B/53B assure the DCD and DSR lines remain high when they are
not connected. If DCD or DSR are connected to the controller, the
controller must keep these lines and the CTS line high to enable the
HP 1652B/53B to send data to the controller. A low on any one of these
lines will disable the HP 1652B/53B data transmission. Dropping the CTS
line low during data transmission will stop HP 1652B/53B data
transmission immediately. Dropping either the DSR or DCD line low
during data transmission will stop HP 1652B/53B data transmission, but as
many as two additional bytes may be transmitted from the HP 1652B/53B.

Cable Example Fiie 3-l is an example of how to connect the HP 1652B/53B to the
HP 9S62SA Interface card of an HP 9000 series 2W3OO controller. For
more information on cabling, refer to the reference manual for your
specific controller.

Note
I(4 Since this example does not have the correct connections for hardware

handshake, XON/XOFP protocol must be used when connecting the
HP 1652B/53B as shown in figure 3-l

Programming Over RS232C
3-4

Figure 3-l . Cable Example

HP 16528/16538
Programming Reference

Configuring the The front-panel I/O menu key allows you access to the RS-232C
Instrument Configuration menu where the RS-232C interface is configured.

Interface If you are not familiar with how to conf’iie the RS-232C interface, refer
to the HP 165281538 Front-panel Reference manual.

Interface
Capabilities

The baud rate, stop bits, parity, protocol, and data bits must be configured
exactly the same for both the controller and the HP 1652B/53B to
properly communicate over the RS-232C bus. The HP 1652B/53B
RS-232C interface capabilities are listed below:

l Baud Rate: 110,300,600,1200,2400,4800,9600, or 19.2 k
l Stop Bits: 1, 1.5, or 2
l Parity: None, Odd, or Even
l Protocol: None or XON/XOPP
l Data Bits: 8

Protocol NONE. With a three-wire interface, selecting NONE for the protocol
does not allow the sending or receiving device to control data flow. No
control over the data flow increases the possibility of missing data or
transferring incomplete data.

With an extended hardwire interface, selecting NONE allows a hardware
handshake to occur. With hardware handshake, hardware signals control
data flow.

XON/XOFF. XON/XOPP stands for Transmit On/Transmit Off. With
this mode the receiver (controller or HP 1652B/53B) controls data flow
and can request that the sender (HP 1652B/53B or controller) stop data
flow. By sending XOPP (ASCII 19) over its transmit data line, the
receiver requests that the sender disables data transmission. A
subsequent XON (ASCII 17) allows the sending device to resume data
transmission.

Programming Over RS-232C
3-5

Data Bits

Note d

Data bits are the number of bits sent and received per character that
represent the binary code of that character. Characters consist of either 7
or 8 bits, depending on the application. The HP 1652B/53B supports 8 bit
only.

8 Bit Mode. Information is usually stored in bytes (8 bits at a time). With
8-bit mode, you can send and receive data just as it is stored, without the
need to convert the data.

The controller and the HP 1652B/53B must be in the same bit mode to
properly communicate over the RS-232C. This means that both the
controller and the HP 1652B/53B must have the capability to send and
receive 8 bit data.

For more information on the RS-232C interface, refer to the
HP 1652BlHP 1653B Front-Panel Reference Manual. For information on
RS-232C voltage levels and connector pinouts, refer to the HP 165281538
Service Manual.

Communicating Each RS-232C interface card has its own interface select code. This code
Over the. is used by the controller to direct commands and communications to the

RS-232C Bus
proper interface by specifying the correct interface code for the device
address.

(HP 9000
Series 200/300 Generally, the interface select code can be any decimal value between 0

Controller)
and 31, except for those interface codes which are reserved by the
controller for internal peripherals and other internal interfaces. This
value can be selected through switches on the interface card. For more
information, refer to the reference manual for your interface card or
controller.

For example, if your RS-232C interface select code is 9, the device
address required to communicate over the RS-232C bus is 9.

Programming Over RS-232C HP 16528/l 6538
3-6 Programming Reference

Lockout
Command

To lockout the front panel controls use the SYSTem command LOCKout.
When this function is on, all controls (except the power switch) are
entirely locked out. Local control can only be restored by sending the
command :LOCKout OFF. For more information on this command see
the chapter “System Commands” in this manual.

Note ”3
Cycling the power will also restore local control, but this will also reset
certain RS-232C states.

HP 16528/16538 Programming Over AS-232C
Programming Reference 3-7

Programming and
Documentation Conventions

4

Introduction This section covers the progr amming conventions used in programming
the instrument, as well as the documentations conventions used in this
manual. This chapter also contains a detailed description of the command
tree and command tree traversal.

Truncation Rllk The truncation rule for the keywords used in headers and parameters is:

If the longform has four or fewer characters, there is no change in the
shortform. When the longform has more than four characters the
shortfonn is just the first four characters, unless the fourth character is
a vowel. In that case only the first three characters are used.

Note
There are some commands that do not conform to the truncation rule by
design. These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various commands
are shown in table 4-1.

HP 16528/1653B
Programming Reference

Longform Shortform

OFF OFF
DATA DATA
START STAR
LONGFORM LONG
DELAY DEL
ACCUMULATE ACC

Table 4-l. Keyword Truncation

Programming and Documentation Conventions
4-l

Infinity The representation of infinity is 9.9E + 37 for real numbers and 32767 for
Representation integers. This is also the value returned when a measurement cannot be

made.

Sequential and IEEE 488.2 makes the distinction between sequential and overlapped

Overlapped commands. Sequential commands finish their task before the execution of

Commands
the next command starts. Overlapped commands run concurrently, and
therefore the command following an overlapped command may be started
before the overlapped command is completed. The overlapped commands
for the HP 1652B/53B are STARt, STOP, and AUToscale.

Response
Generation

IEEE 488.2 defines two times at which query responses may be buffered.
The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read
the response. The HP 1652B/53B will buffer responses to a query when it
is parsed.

syntax Diagrams At the be-g of each of the following chapters are syntax diagrams
showing the proper syntax for each command. All characters contained in
a circle or oblong are literals, and must be entered exactly as shown.
Words and phrases contained in rectangles are names of items used with
the command and are described in the accompanying text of each
command. Each line can only be entered from one direction as indicated
by the arrow on the entry line. Any combination of commands and
arguments that can be generated by following the lines in the proper
direction is syntactically correct. An argument is optional if there is a
path around it. When there is a rectangle which contains the word
“space,” a white space character must be entered. White space is optional
in many other places.

Programming and Documentation Conventions HP 16528/1653B
4-2 Programming Reference

Notation The fol lowing conventions are used in this manual when describing
Conventions and Programming rules ~de~ples:

Definitions <>

:: =

. . .

[I

0

Angular brackets enclose words or characters that are used
to symbolize a program code parameter or a bus command.

“is defined as.” For example, A :: = B indicates that A
can be replaced by B in any statement containing A .

“or”: indicates a choice of one element from a list. For
example, A 1 B indicates A or B, but not both.

An ellipsis (trailing dots) is used to indicate that the
preceding element may be repeated one or more times.

Square brackets indicate that the enclosed items are optional.

When several i tems are enclosed by braces and separated
by 1 s, one, and only one of these elements must be selected.

Three Xs after an ENTER or OUTPUT statement
represent the device address required by your controller.

In addition, the following definition is used:

<NL> :: = Linefeed (ASCII decimal 10).

HP 16!528/1653B
Programming Reference

Programming and Documentation Conventions
4-3

The Command The command tree (figure 4-l) shows all commands in the HP 1652B/53B

Tree logic analyzers and the relationship of the commands to each other.
Parameters are not shown in this figure. The command tree allows you to
see what the HP 1652B/53B’s parser expects to receive. All legal headers
can be created by traversing down the tree, adding keywords until the end
of a branch has been reached.

Command Types As shown in chapter l’s “Header Types” section, there are three types of
headers. Each header has a corresponding command type. This section
shows how they relate to the command tree.

System Commands. The system commands reside at the top level of the
command tree. These commands are always parsable if they occur at the
beginning of a program message, or are preceded by a colon. START and
STOP are examples of system commands.

Subsystem Commands. Subsystem commands are grouped together
under a common node of the tree, such as the MMEMORY commands.

Common Commands. Common commands are independent of the tree,
and do not affect the position of the parser within the tree. *CLS and
+RST are examples of common commands.

Tree Traversal Rules Command headers are created by traversing down the command tree. For
each group of keywords not separated by a branch, one keyword must be
selected. As shown on the tree, branches are always preceded by colons.
Do not add spaces around the colons. The following two rules apply to
traversing the tree:

A leading colon (the first character of a header) or a < terminator >
places the parser at the root of the command tree.

Executing a subsystem command places you in that subsystem (until a
leading colon or a < terminator > is found). The parser will stay at the
colon above the keyword where the last header terminated. Any
command below that point can be sent within the current program
message without sending the keywords(s) which appear above them.

Programming and Documentation Conventions
4-4

HP 16528/1653B
Programming Reference

Examples

Example 1

Example 2

Example 3

HP 16!528/1653B
Programming Reference

The following examples are written using HP BASIC 4.0 on a HP !%OO
Series 2W300 Controller. The quoted string is placed on the bus,
followed by a carriage return and linefeed (CRLF).

The three Xs (XXX) shown in this manual after an ENTER or OUTPUT
statement represents the device address required by your controller.

OUTPUT XXXf:SYSTEM:HEADER 0N;LONGFORM ON”

In example 1, the colon between SYSTEM and HEADER is necessary
since SYSTEM:HEADER is a compound command. The semicolon
between the HEADER command and the LONGFORM command is the
required < program message unit separator > . The LONGFORM
command does not need SYSTEM preceding it, since the
SYSTEM:HEADER command sets the parser to the SYSTEM node in
the tree.

OUTPUT XXX;“:MMEMOFlY:INITlALlZE;STORE ‘FILE-‘,‘FILE DESCRIPTION”’

or

OUTPUT XXX;“:MMEMORY:INITlALlZE”
OUTPUT XXX;“:MMEMORY:STORE ‘FILE-‘,‘FILE DESCRIPTION”’

In the frrst line of example 2, the “subsystem selector” is implied for the
STORE command in the compound command. The STORE command
must be in the same program message as the INITIALIZE command,
since the -z program message terminator > will place the parser back at
the root of the command tree.

A second way to send these commands is by placing “MMEMORY:”
before the STORE command as shown in the fourth line of example 2.

OUTPUT ~“:MMEM:CATALOG?;:SYSTEM:PRlNT ALL”

In example 3, the leading colon before SYSTEM tells the parser to go
back to the root of the command tree. The parser can then see the
SYSTEM:PRINT command.

Programming and Documentation Conventions
4-5

I I I I I
PPOWer RMODe STARt S T O P M M E M : M A C H

I

I I
AUTu I oad LdAD : STORe :

CATalog
c OP ‘Y

CO& i g COljlF i g

@OWNload
ASSemb I e r

INITialize
PACr
PURGe

REName
UFLoad

I I
SFORmo t STRoce :

CL OCk
CPER i od
LABe I

MASTer
REMove
SL AVe
THReshol d

BRANch
F I N D
PREStore

RANGe
RESTar t
SEQuence
STORe

I
SLISt.

COL umn
D A T A
L I N E

MMODe
OPATtern
OSEarch
OSTate

TAG
TERM

OTAG
RUNT i I
TAVer a g e
TMAX i mum
T M I N imum

VRUNs
XOTag
XPATtern

XSEarch
XSTate
XTAG

I I

CoMpla r e :
SCHort:

I

l-
ir

I I I 4-w

lef112). DLISt: WLISt: SYSTem-
I

COLumn XST’a t e
I

ARMBnc

L I N E OSTa t e D A T A
OTIMe DSP
XTIMe ERRo r

HEADe r

KEY

ARM

ASS i gn
AlJTosca I e
NAME

T Y P E

L E R
LOCKou t

LONGform
MENU
MESE
MESR

PRINt
SETup

I I I
TFORMat: TTRace : TWAVeform:

LABe I AMADe
I

ACCumulate
REMove DURat i o n DELoy
THReshold EDGE INSer t

GLITch MMODe
PATTern OCONdition

OPATtern

OSEarch
OTIMe
RANGe
REMove
RUNT i I
SPERiod

TAVerage
TMAX i mum
TMINimum

VRUNs
XCONdition

XOT i me
XPATtern

I I
SWAVeform: SYMBOL :

XSEarch

I I XTIMe
CMASk Accumulate Accumulate BASE
COPY HAX i s DELoy PATTern

D A T A VAX i s INSer t RANGe
F I N D RANGe REMove
RANGe REMove WIDTh
RUNT, I

Figure 4-i. HP 16!528/53B Command Tree

Programming and Documentation Conventions
4-6

HP 16528/16538
Programming Reference

SCOPe :

I
AUTosco I e
SMODe

I I I I I
CHANne I : TRIGger AC0uir.e: TIMebose: WAVeform: MEASur e :

I I I I
cow I n g LEVe I CO”llr t DELay COUPA ALL
OFFSet MODE T Y P E MODE D A T A FALLt Ime
PROBe SLOPe RANGe FORMa t FREOuency
RANGe S O U R c e POINts NWIDth

PREomb I e OVERshoo t
RECord PERiod
S O U R c e PREShoo t
TYPE PWIDth
VAL i d RISet ime
XINCrement SOURce
XOR i g i n VAMPlitude
XREFerence VBASe
YINCrement VMAX
YORigin VMIN

01650851 YREFerence VPP
V T O P

Figure 41. HP 16528/53B Command Tree (continued)

HP 16528/1653B Progmmming and Documentation Conventions
4-7

Table 4-2. Alphabetic Command Cross-Reference

Command Where used Command Where used

ACCumulate SCHart, SWAVeform, GLITch TIRacc
TWAVeform HA2cis SCHart

ALL MEASure HEADer System
AMODe ‘ITRace INITialize MMEMory
ARM MACHine INSert SWAVeform, TWAVeforn
ARMBnc System KEY System
ASSign MACHine LABel SFORmat, TFORmat
AUToload MMEMory LER System
AUToscale MACHine, SCOPe LEVel TRIGger
BASE SYMBol LINE DLISt, SLISt
BRANch STRace LOAD MMEMory
CATalog MMEMory LOCKout System
CLOCk SFORmat LONGform System
CMASk COMPare MASTer SFORmat
COLumn DLISt, SLISt MENU System
COPY COMPare, MMEMory MESE System
COUNt ACQuire, WAVeform MESR System
COUPling CHANnel MMODe SLISt
CPERiod SFORmat MODE TIMebase, TRIGger
DATA COMPare, SLISt, System, NAME MACHine

WAVEform NWIDth MEASure
DELay SWAVeform, TIMebase, OCONdition TWAVeform

TWAVeform OFFSet CHANnel
DOWNload MMEMory OPATtem SLISt
DSP System MMODe TWAVeform
DURation TIXace OPATtem TWAVeform
EDGE 7TRacc OSEarch SLISt, TWAVeform
ERRor System OSTate SLIS& WL1st
FALLtime MEASure OTAG SLISt
FIND COMPare, STRace OTIMe TWAVeform, WLISt
FORMat WAVeform OVERshoot MEASure
FREQuency MEASure PACK MMEMory (

Programming and Documentation Conventions
4-8

HP 18828/1853B

Table 42. Alohabetic Command Cross-Reference (continued)

Command Where used

PATTern
PERiod
POINts
PPOWer
PREamble
PREShoot
PREStore
PRINt
PROBe
PURGe
PWIDth
RANGe

RECord
REMove

REName
RESTart
RISetime
RMODe
RUNTil

SEQuence
SETup
SLAVe
SLOPe
SMODe
SOURce

SPERiod
STARt
STOP

SYMBol, TRace
MEASure
WAVeform
System
WAVeform
MEASure
STRace
System
CHANnel
MMEMory
MEASure
CHANnel, COMPare,
STRace, SWAVeform,
SYMBol, TIMebase,

TWAVeform
WAVeform
SFORmat, SWAVeform,
Symbol , TFORmat,
TWAVeform
MMEMory
STRace
MEASure
System
COMPare, SLISt,
WAVeform
STRace
System
SFORmat
TRIGger
SCOPe
MEASure, TRIGger,
WAVeform
TWAVeform
System
System

Command Where used

STORe
TAG
TAVerage
TERM
THReshold
TMAXiIIlunl
TMINimum
TYPE

UPLoad
VALid
VAMPlitude
VAXk
VBASe

VMIN
VPP
VRUNs
VTOP
WIDTh
XCONdition
XINCrement
XORigin
XOTag
XOTime
XPATtem
XREFerence
XSEarch
XSTate
XTAG
XTIMe
YINCrement
YORigin
YREFerence

MMEMory, STRace
STRace
SLISt, TWAVeform
STRace
SFORmat, TFORmat
SLISt, TWAVeform
SLISt, TWAVeform
ACQuire, MACHine,
WAVeform
MMEMory
WAVeform
MEASure
SCHart
MEASure
MEASure
MEASure
MEASure
SLISt, TWAVeform
MEASure
SYMBol
TWAVeform
WAVeform
WAVeform
SLISt
TWAVeform
SLISt, TWAVeform
WAVeform
SLISt, TWAVeform
SLISt, WL1st
SLISt
TWAVeform, WLISt
WAVeform
WAVeform
WAVeform

3

HP 16528/1653B Programming and Documentation Conventions
4-9

Command Set
Organization

The command set for the HP 1652B/53B logic analyzer is divided into 24
separate groups: common commands, system commands and 22 sets of
subsystem commands. Each of the 24 groups of commands is described in
the following chapters. Each of the chapters contain a brief description of
the subsystem, a set of syntax diagrams for those commands, and f inal ly,
the commands for that subsystem in alphabetical order. The commands
are shown in the longform and shortform using upper and lowercase
letters. As an example AUToload indicates that the longform of the
command is AUTOLOAD and the shortform of the command is AUT.
Each of the commands contain a description of the command and its
arguments, the command syntax, and a programming example.

Subsystems There are 19 subsystems in this instrument. In the command tree (figure
4-l) they are shown as branches, with the node above showing the name of
the subsystem. Only one subsystem may be selected at a t ime. At power
on, the command parser is set to the root of the command tree, and
therefore no subsystem is selected. The 22 subsystems in the
HP 1652B/53B are:

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

.

l

SYSTem - controls some basic functions of the instrument.
MMEMory - provides access to the internal disk drive.
DLISt - a l lows access to the dual l is t ing funct ion of two s tate
analyzers.
WLISt - allows access to the mixed (timing/state) functions.
MACHine - provides access to analyzer functions and subsystems.
SFORmat - allows access to the state format functions.
STRace - al lows access to the state trace functions.
SLISt - a l lows access to the s ta te l is t ing funct ions.
SWAVeform - al lows access to the state waveforms functions.
SCHart - al lows access to the state chart functions.
COMPare - allows access to the compare functions.
TFORmat - allows access to the timing format functions.
‘ITRace - allows access to the timing trace functions.
TWAVeform - al lows access to the t iming waveforms funct ions.
SYMBol - a l lows access to the symbol specif icat ion funct ions.
SCOPe - provides access to osci l loscope funct ions and subsystems.
CI-IANnel - provides access to the vert ical axis of the oscil loscope
TRIGger - allows control of the trigger conditions
ACQuire - al lows changes to the set t ings for the DIGitize
command.

Programming and Documentation Conventions HP 16528/1653B
4-10 Programming Reference

l TIMebase - allows control of the timebase (horizontal axis) of the
oscilloscope.

l WAVeform - allows access to data transfer commands.
l MEASure - allows you to control automated measurements.

Program
Examples

The program examples given for each command in the following chapters
and appendices were written on an HP 9000 Series m/300 controller
using the HP BASIC 4.0 language. The programs always assume a generic
address for the HP 1652/53B of XXX.

In the following examples, special attention should be paid to the ways in
which the command and/or query can be sent. Keywords can be sent
using either the longform or shortform (if one exists for that word). With
the exception of some string parameters, the parser is not case-sensitive.
Upper-case (capital) and lower-case (small) letters may be mixed freely.
System commands like HEADer and LONGform allow you to dictate
what forms the responses take, but have no affect on how you must
structure your commands and queries.

The following commands all set Timing Waveform Delay to 100 ms.

l keywords in longform, numbers using the decimal format.

OUTPUT XXX:":MACHINEl:TWAVEFORM:OELAY .l"

l keywords in shortform, numbers using an exponential format.

OUTPUT XXX;":MACHl:TWAV:OEL lE-1”

l keywords in shortform using lower-case letters, numbers using a
SUffiX.

OUTPUT XXX;":machl:twav:del 10Qns"

Note
In these examples, the colon shown as the first character of the command
is optional on the HP 1652B/53B.

The space between DELay and the argument is required.

HP 1662B/l653B Programming and Documentation Conventions
4-11

Common Commands 5
Introduction The common commands are defined by the IEEE 488.2 standard. These

commands will be common to all instruments that comply with this
standard.

The common commands control some of the basic instrument functions,
such as instrument identification and reset, how status is read and cleared,
and how commands and queries are received and processed by the
instrument.

Common commands can be received and processed by the HP 1652B/53B
whether they are sent over the bus by themselves or as part of a
multiple-command string. If an instrument subsystem has been selected
and a common command is received by the instrument, the instrument will
remain in the selected subsystem. For example, if the instruction

“:MMEMORY:INITlALlZE;‘CLS; STORE ‘FILE_‘,‘DESCRIPTION”’

is received by the instrument, the instrument will initialize the disk and
store the file; and clear the status information. This would not be the case
if some other type of command were received within the program
message. For example, the program message

‘:MMEMORY:INITlALlZE;:SYSTEM:HEADERS 0N:MMEMORY
:STORE ‘FI1E_‘;DESCRIPTlON’”

would initialize the disk, turn headers on, then store the file. In this
example :MMEMORY must be sent again in order to reenter the
mmemory subsystem and store the file.

HP 1652B/l653B Common Commands
Progmmming Reference s-1

Each status register has an associated status enable (mask) register. By
setting the bits in the mask value you can select the status information you
wish to use. Any status bits that have not been masked (enabled in the
enable register) will not be used to report status summary information to
bits in other status registers.

Refer to appendix B, “Status Reporting,” for a complete discussion of how
to read the status registers and how to use the status information available
from this instrument.

Refer to figure 5-l for the common commands syntax diagram.

c

mask = An integer, 0 through 255. 73is number is the sum of all the bits in
the mask corresponding to conditions that are enabled. Refer to the
*ESE and *SRE commandr for bit definitions in the enable registerA.

Figure 5-l. Common Commands Syntax Diagram

Common Commands
5-2

HP 16528/10538

“CLS

“CLS

Command Syntax:

Example:

Note u
I’

HP 1652Bll6536

(Clear Status) command

The *CLS common command clears the status data structures, including
the device defined error queue. If the l CLS command immediately
follows a <terminator > , the output queue and the MAV (Message
Available) bit will be cleared.

'CLS

OUTPUT XXX;"*CLS"

Refer to appendix B, “Status Reporting,” for a complete discussion of
status.

Common Commands
s-3

*ESE

*ESE (Event Status Enable) command/query

Note rl
4

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a mask value for the
bits to be enabled in the Standard Event Status Register. A one in the
Standard Event Status Enable Register will enable the corresponding bit
in the Standard Event Status Register. A zero will disable the bit. Refer
to table 4-l for information about the Standard Event Status Enable
Register bits, bit weights, and what each bit masks.

The *ESE query returns the current contents of the enable register.

Refer to appendix B, “Status Reporting,” for a complete discussion of
status.

Command SyntaX: *ESE <mask >

where:

-z mask z :: = integer from 0 to 255

Example: OUTPUT XXX;"*ESE 32"

In this example, the *ESE 32 command will enable CME (Command
Error), bit 5 of the Standard Event Status Enable Register. Therefore,
when a command error occurs, the event summary bit (ESB) in the Status
Byte Register will also be set.

Common Commands
6-4

HP 16528/16538
Programming Reference

*ESE

Qlle~+ttU: *ESE?

&WrwClFo~t: cmask><NL>

Example: 10 DIM Event$[lOO]

20 OUTPUT XXX;"*ESE?"
30 ENTER XXX;Event$

40 PRINT EventJ
50 END

Table 51. Standard Event Status Enable Register

B i t

I
Weight

128
64
32
16
8
4
2
1 t

Enables

PON - Power On
URQ - User Request
ChE - Command Error
EXE - Execution Error
DDE - Device Dependent Error
QYE - Query Error
RQC - Request Control
OPC - Operation Complete

High- enables the ESR bit

HP 16526/16538 Common Commands
Programming Reference !5-5

*ESR

*ESR (Event Status Register) query

The *ESR query returns the contents of the Standard Event Status
Register. Reading the register clears the Standard Event Status Register.

Note ”4
The bits iu this register must be set by sending the *ESE command before
sending the *ESR query (see “*ESE command/query” on page 5-4).

QUefy Syntax: *ES??

Returned Format: -Z status > c NL >

where:

<status > :: = integer from 0 to 255

Example: 10 DIM Esr-event$[lOO]
20 OUTPUT XXX;"*ESR?"
30 ENTER XXX;Esr-events
40 PRINT Esr-events

50 END

With the example, if a command error has occurred the variable
“Esr-event” will have bit 5 (the CME bit) set.

Table 4-2 shows the Standard Event Status Register. The table shows
each bit in the Standard Event Status Register, and the bit weight. When
you read Standard Event Status Register, the value returned is the total bit
weights of all bits that are high at the time you read the byte.

Common Commands
5-6

HP 16528/1653B

*ESR

Table 52. The Standard Event Status Register.

BIT
WEErr NEE

CONDITION
--

7 128 PON 0 = Register read - not in power up mode
1 = Power up

6 64 URQ 0 = user request - not used - always zero
5 32 CME 0 = no command errors

1 = a command error has been detected
4 16 EXE 0 = no execution errors

1 = an execution error has been detected
3 8 DDE 0 = no device dependent errors

1 = a device dependent error has been detected
2 4 Q Y E 0 = no query errors

1 = a query error has been detected
1 2 RQC 0 = request control - NOT used - always 0
0 1 OPC 0 = operation is not complete

1 = operation is complete

=: False = Low
1 =: True = High

Common Commands
5-7

“IDN

*IDN (Identification Number) query

The *IDN? query allows the instrument to identify itself. It returns the
string:

"HEWLETT-PACKARD.l6526,D,REV <revision code>”

An *IDN? query must be the last query in a message. Any queries after
the *IDN? in the program message will be ignored.

Query Syntax: l lDN?

Returned Format: HEWLETT-PACKARD,1652B,O,REV <revision code>

where:

<revision code > : : = f o u r - d i g i t code r e p r e s e n t i n g R O M r e v i s i o n

Example: 10 DIM Id$[lOO]
20 OUTPUT XXX;"*ION?"
30 ENTER XXX;Id$

40 PRINT Idf
50 END

Common Commands
58

HP 18528/1853B
Programming Reference

*opt

*opt (Operation Complete) command/query

The *OPC command will cause the instrument to set the operation
complete bit in the Standard Event Status Register when all pending
device operations have finished. The commands which affect this bit are
the Overlapped Commands. An Overlapped Command is a command
that allows execution of subsequent commands while the device
operations initiated by the Overlapped Command are still in progress.
The overlapped commands for the HP 1652B/53B are:

STARt
STOP

AUToscale

The * OPC query places an ASCII “1” in the output queue when all
pending device operations have been completed.

Command Syntax: l OPC

Example: OUTPUT XXX;"*OPC"

Query Syntax: l opc7

Returned Format: i < Nb

Example: 10 DIM Status$[lOO]
20 OUTPUT XXX;"*OPC?"
30 ENTER XXX;Status$
40 PRINT StatusJ

50 END

HP 1052B/1653B
Programming Reference

Common Commands
59

“RST

“RST (Reset) command

The *RST command (488.2) sets the HP 1652B/53B to the power-up
default settings as if no autoload file was present.

Command Syntax: *RST

Example: OUTPUT XXX;"*RST"

Common Commands
5-10

HP 10528/1653B
Programming Reference

*SRE

*SRE (Service Request Enable) command/query

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A
zero will disable the bit. Refer to table 5-3 for the bits in the Service
Request Enable Register and what they mask.

The *SRE query returns the current value.

Note d status.
Refer to appendix B, “Status Reporting,” for a complete discussion of

Command Syntax: *sRE c mask >

where:

c mask > :: = integer from 0 to 255

Example: OUTPUT XXX; “*SRE 16”

This example forces the h4AV bit high (see table 5-3).

HP 16528/l 6538
Programming Reference

Common Commands
511

*SRE

Query Syntax: l sw

RetUrrled Format: c mask > c NL>

where:

-Z mask > : : = s u m o f a l l b i t s t h a t a r e s e t - 0 t h r o u g h 2 5 5

Example: 10 DIM Sre-value$[lOO]
20 OUTPUT XXX;"*SRE?"

30 ENTER XXX;Sre-value$

40 PRINT Sre-value$

50 END

Table 6-3. HP 16528/53B Service Request Enable Register

Bit

15-B
7
6
5
4
3
2
1
0

Weight Enables

128
64
32
1 6
8
4
2
1

not used
not used
MSS - Master Summary Status
ESB - Event Status
MAV - Message Available
LCL - Local
not used
not used
MSB - Module Summary

Common Commands HP 16528/l 6538
512 Programming Reference

“ST6

*STB (Status Byte) query

The *SIB query returns the current value of the instrument’s status byte.
The MSS (Master Summary Status) bit and not RQS (Request Service)
bit is reported on bit 6. The MSS indicates whether or not the device has
at least one reason for requesting service. Refer to table 5-4 for the
meaning of the bits in the status byte.

Note aI?e Refer to appendix B, “Status Reporting,” for a complete discussion of
status.

Query Syntax: *sm

Returned Format: <value > c NL>

where:

<value> ::= integer from Oto 255

Example: 10 DIM Stb-value$[lOO]

20 OUTPUT XXX;"*STB?"
30 ENTER XXX;Stb-value$
40 PRINT Stb-values

50 END

HP 16528/1653B
Programming Reference

Common Commands
s-13

“STB

Table 5-4. The Status Byte Register

BIT BIT BIT CONDITION
WEIGHT NAME

7 128 --- 0 = not used
6 64 MSS 0 = instrument has no reason for service

1 = instrument is requesting service
5 32 ESB 0 = no event status conditions have occurred

1 = an enabled event status condition has occured
4 16 MAV 0 = no output messages are ready

1 = an output message is ready
3 8 LCL 0 = a remote-to-local transition has not occurred

1 = a remote-to-local transition has occurred
2 4 _-- not used
1 2 _-- not used
0 1 MSB 0 = HP 1652B/1653B has activity to report

1 = no activity to report

0 = False =: Low
1 = True = High

Common Commands
514

HP 16528/1653B

*WAI

*WAI command

The *WAI command causes the device to wait until the completion of all
overlapped commands before executing any further commands or queries.
An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the
overlapped command are still in progress. The overlapped commands for
the HP 1652B/53B are:

STAFii
STOP
AUToscale

Command Syntax: WAI

Example: OUTPUT XXX;"*WAI"

HP 1652Bll653B Common Commands
Programming Reference 5-15

System Commands 6
Introduction System commands control the basic operation of the instrument including

formatting query responses and enabling reading and writing to the
advisory l ine of the instrument’s display. They can be called at anytime.
The HP 1652B/53B System commands are:

ARMBnc
DATA
DSP (display)
ERRor
HEADer
KEY
LER (Local Event Register)
LOCKout
LONGform
MEND
MESE
MESR
PRINt
SETup

In addition to the system commands, there is are three run control
commands and a preprocessor power supply condition query. These
commands are:

0 PPOWer
l RMODe
l STARt
l STOP

The run control commands can be called at anytime and also control the
basic operation of the logic analyzer. These commands are at the same
level in the command tree as SYSTem; therefore they are not preceded by
the :SYSTem header.

HP 16528/1653B
Programming Reference

System Commands
61

System Commands HP 16528/16538
6-2 Programming Reference

math-num

ARMBnc? c

k e y - c o d e

Figure 81. System Commands Syntax Diagram

enable-mask

ci PPcwcr? .

.

REPetihve

value = integerfrom 0 to 255.
menu = integer . Refer to the indiv idualprogramming manuals for each module and the system for

specif ic menu number def ini t ions.
enable-value = integerfiom 0 to 255.
index = integerfrom 0 to 5.
block-data = data in IEEE 488.2 format.
string = string of up to 60 alphanumeric characters.

Figure 81. System Commands Syntax Diagram (continued)

HP 1652Bll663B System Commands
Programming Reference 6-3

ARMBnc

ARMBnc command/query

The ARMBnc command selects the source that will generate the arm out
signal that will appear on the rear panel BNC labelled External Trigger
out.

The ARMBnc query returns the source currently selected.

Command Syntax: :SYSTem:ARMBnc { MACHine{ 112) 1 SCOPe 1 NONE}

Example: OUTPUT XXX;":SYSTEM:ARMBNC MACHINEl"

Query Syntax: : S Y S T e m : A R M B n c ?

RetUrned Format: [:SYSTem:ARMBnc] { MACHine{ 112)) SCOPe I NONE} c NL>

Example: 10 DIM Mode$[lOO]
20 OUTPUT XXX;":ARMBNC?"

30 ENTER XXX;Mode$

40 PRINT Mode$
50 END

System Commands
6 4

HP 16528/16538
Programming Reference

DATA

DATA

Note #b

Note ‘$

command/query

The DATA command allows you to send and receive acquired data to and
from a controller in block form. This helps saving block data for:

l Re-loading to the logic analyzer
l Processing data later
l Processing data in the controller.

The format and length of block data depends on the instruction being
used and the configuration of the instrument. This section describes each
part of the block data as it will appear when used by the DATA
instruction. The beginning byte number, the length in bytes, and a short
description is given for each part of the block data. This is intended to be
used primarily for processing of data in the controller.

Do not change the block data in the controller if you intend to send the
block data back into the logic analyzer for later processing. Changes
made to the block data in the controller could have unpredictable results
when sent back to the logic analyer.

The SYSTem:DATA query returns the block data.

The data sent by the SYSTem:DATA query reflects the configuration of
the machines when the last run was performed. Any changes made since
then through either front-panel operations or programming commands do
not affect the stored configuration.

HP 16628/1653B
Programming Reference

System Commands
6 5

DATA

System Commands
6-6

For the DATA instruction, block data consists of either 14506 bytes
containing logic analyzer only information or 26794 bytes containing both
logic analyzer and oscilloscope information. This information is captured
by the acquisition systems. The information for the logic analyzer will be
in one of four formats depending on the type of data captured. The logic
analyzer format is described in the “Acquisition Data Description” section
in “Logic Analyzer Block Data.” The oscilloscope format is described in
the “Acquisi t ion Data Description” section in “Oscil loscope Block Data.”
Since no parameter checking is performed, out-of-range values could
cause instrument lockup; therefore, care should be taken when
transferring the data string into the HP 1652B/53B.

The < block data > parameter can be broken down into a
< block length specifier > and a variable number of < section > s.

The <block length specifier > always takes the form #8DDDDDDDD.
Each D represents a digit (ASCII characters “0” through “9”). The value of
the eight digits represents the total length of the block (all sections). For
example, if the total length of the block is 14522 bytes, the block length
specifier would be “#800014522”.

Each < section > consists of a <section header > and < section data > .
The < section data > format varies for each section and may be any
length. For this instruction, the < section data > section is composed of a
data preamble section and an acquisition data section.

HP 16528/16538
Programming Reference

DATA

Command Syntax:

Example:

where:

-z block data >

-z block length specifier >
c length >

<section >

-z section header >
<section data >

Note ‘6

Query Syntax:

Returned Format:

HP-IB Example:

HP 16528/1653B
Programming Reference

:SYSTem:DATA c block data >

OUTPUT XXX;“: SYSTEM: DATA” <block data >

:: = <block length specifier > c section > . . .

:: = #8 < length >

:: = the total length of all sections in byte format (must be represented with 8 digits)
:: = <section header > -z section data >
:: = 16 bytes, described in the following ‘Section Header” sections

:: = format depends on the type of data

The total length of a section is 16 (for the section header) plus the length
of the section data. So when calculating the value for <length > , don’t
forget to include the length of the section headers.

:SYSTem:DATA?

[:SYSTem:DATA] <block data> < NL>

1 0 DIM Nrm1$[2], 81ockS[32000] ! a l l o c a t e e n o u g h m e m o r y f o r b l o c k d a t a
20 OUTPUT XXX;” : SYSTEM: HEAD OFF”
30 OUTPUT XXX;“:SYSTEM:DATA?” ! s e n d d a t a q u e r y
40 ENTER XXX USING “#.2A”;Num$!read i n X 8
50 ENTER XXX USING “#,8D”;8locklength! read in b lock l eng th

60 ENTER XXX USING “-K”;Ellock$! r e a d i n d a t a
70 END

System Commands
6-7

DATA

Logic Analyzer
Block Data

Section Header
Description

1

11

12

13

Section Data

Data Preamble
Description

The logic analyzer block data is described in the following sections. The
oscilloscope block data is appended at the end of the logic analyzer block
data when the oscilloscope is on and has acquired and stored waveform
data. The oscilloscope block data is described in “Oscilloscope Block
Data” later in this sect ion.

The sect ion header uses bytes 1 through 16 (this manual begins counting
at 1; there is no byte 0). The 16 bytes of the section header are as follows:

10 bytes - section name, such as "DATA

1 byte - reserved

’ (six trailing spaces)

1 bytes - module ID (31 for HP 1652B/53B)

4 bytes - length (14506 for the logic analyzer only and 26794 for both the
logic analyzer and oscil loscope).

For the SYSTem:DATA command, the < section data > parameter
consists of two parts: the data preamble and the acquisition data. These
are described in the fol lowing two sect ions.

The block data is organized as 160 bytes of preamble information,
followed by 1024 14byte groups of information, followed by 10 reserved
bytes. The preamble gives information for each analyzer describing the
amount and type of data captured, where the trace point occurred in the
data, which pods are assigned to which analyzer, and other information.

Each 1Cbyte group is made up of two bytes (16 bits) of status for
Analyzer 1, two bytes of status for Analyzer 2, then five sets of two bytes of
information for each of the five 16-bit pods of the HP 1652B. In the
HP 1653B, the status and format for the sets of bytes are the same, but the
data in not val id on pods 3,4, and 5 .

System Commands HP 16528/1663B
68 Programming Reference

DATA

Note d
One analyzer’s information is independent of the other analyzer’s
information. In other words, on any given line, one analyzer may contain
data information for a timing machine, while the other analyzer may
contain count information for a state machine with time tags enabled. The
status bytes for each analyzer describe what the information for that line
contains. Therefore, when describing the different formats that data may
contain below, keep in mind that this format pertains only to those pods
that are assigned to the analyzer of the specified type. The other analyzer’s
data is TOTALLY independent and conforms to its own format.

The preamble (bytes 17 through 176) consists of the fol lowing 160 bytes:

17 2 bytes - Instrument ID (always 1652 for HP 1652B and HP 1653B)

19 2 bytes - Revision Code

Note d
The values stored in the preamble represent the captured data currently
stored in this structure and not what the current configuration of the
analyzer is. For example, the mode of the data (bytes 21 and 99) may be
STATE with tagging, while the current setup of the analyzer is TIMING.

The next 78 bytes are for Analyzer 1 Data Information.

21 1 byte - Machine data mode, one of the following values:
0 = off
1 = state data (with either time or state tags)
2 = state data (without tags)
3 = glitch timing data
4 = transitional timing data

22 1 byte - List of pods in this analyzer, where a 1 indicates that the
corresponding pod is assigned to this analyzer.

bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1
unused u n u s e d P o d 1 P o d 2 Pod 3 Pod 4 Pod 5 unused

HP 16528/1663B
Programming Reference

System Commands
89

DATA

23

24

25

35

36

37

47

51

52

53

1 byte - Master chip in this analyzer - When several chips are grouped
together in a single analyzer, one chip is designated as a master chip. This
byte identifies the master chip. A value of 4 represents POD 1,3 for POD
2,2 for POD 3,1 for POD 4, and 0 for POD 5.

1 byte - Reserved

10 bytes - Number of rows of valid data for this analyzer - Indicates the
number of rows of valid data for each of the five pods. Two bytes are used
to store each pod value, with the ftrst 2 bytes used to hold POD 5 value,
the next 2 for POD 4 value, and so on.

1 byte - Trace point seen in this analyzer - Was a trace point seen (value
= 1) or forced (value = 0)

1 byte - Reserved

10 bytes - Trace point location for this analyzer - Indicates the row
number in which the trace point was found for each of the five pods. Two
bytes are used to store each pod value, with the f irst 2 bytes used to hold
POD 5 value, the next 2 for POD 4 value, and so on.

4 bytes - Time from arm to trigger for this analyzer - The number of 40 ns
ticks that have taken place from the arm of this machine to the trigger of
this machine. A value of -1 (all 32 bits set to 1) indicates counter overflow.

1 byte - Armer of this analyzer - Indicates what armed this analyzer (1 =
RUN, 2 = BNC, 3 = other analyzer)

1 byte - Devices armed by this analyzer - Bitmap of devices armed by this
machine

bitt3 bi t 7 bit 6 b i t 5 bit 4 bi t 3 bit 2 bi t 1
unused unused unused unused SCOPE BNC out Mach. 2 Mach.

A 1 in a given bit position implies that this analyzer arms that device,
while a 0 means the device is not armed by this analyzer.

4 bytes - Sample period for this analyzer (timing only) - Sample period at
which data was acquired. Value represents the number of nanoseconds
between samples.

System Commands HP 16528/1663B
810 Programming Reference

DATA

57

6 1

62

63

68

69

89

Acquisition Data
Description

HP 16528/16538
Programming Reference

4 bytes - Delay for this analyzer (timing only) - Delay at which data was
acquired. Value represents the amount of delay in nanoseconds.

1 byte - Time tags on (s tate with tagging only) - In state tagging mode, was
the data captured with time tags (value = 1) or state tags (value = 0).

1 byte - Reserved

5 bytes - Demuhiplexing (state only) - For each of the f ive pods (f irs t byte
is POD 5, fifth byte is POD 1) in a state machine, describes multiplexing
of each of the five pods. (0 = NO DEMUX, 1 = TRUE DEMUX, 2 =
MIXED CLOCKS).

1 byte - Reserved

20 bytes - Trace point adjustment for pods - Each pod uses 4 bytes to
show the number of nanoseconds that are to be subtracted from the trace
point described above to get the actual trace point value. The first 4 bytes
are for Pod 5, the next four are for Pod 4, and so on.

10 bytes - Reserved

The next 78 bytes are for Analyzer 2 Data Information. They are
organized in the same manner as Analyzer 1 above, but they occupy bytes
99 through 176

The acquisi t ion data sect ion consists of 14336 bytes (1024 1Cbyte groups),
appearing in bytes 177 through 14512. The last ten bytes (14513 through
14522) are reserved. The data contained in the data section will appear in
one of four forms depending on the mode in which it was acquired (as
indicated in byte 21 for machine 1 and byte 99 for machine 2). The four
modes are:

l State Data (without tags)
l State Data (with either time or state tags)
l Glitch Tiig Data
l Transitional Timing Data

The following four sections describe the four data modes that may be
encountered. Each section describes the Status bytes (shown under the
Machine 1 and Machine 2 headings), and the Information bytes (shown
under the Pod 5 through Pod 1 headings).

System Commands
611

DATA

State Data Status Bytes. In normal state mode, only the least significant bit (bit 1) is
(without tags) used. When bit 1 is set, this means that there has been a sequence level

t rans i t ion .

Information Bytes. In state acquisition with no tags, data is obtained from
the target system with each clock and checked with the trace specification.
If the state matches this specification, the data is stored, and is placed into
the memory.

JvIachine 1 Machine 2 Pod 5 Pod4 Pod 3 Pod 2 Pod l*
177 Sta tus Sta tus Data Data Data Data Data
191 Sta tus Sta tus Data Data Data Data Data
205 Sta tus Sta tus Data Data Data Data Data

Sta tus Sta tus Data Data Data Data Data

*The headings are not a part of the returned data.

State Data (with either Status Bytes. In state tagging mode, the tags indicate whether a given row
time or state tags) of the data is a data line, a count (tag) line, or a prestore line.

Bit 2 is the Data vs. Count bit. Bit 3 is the Prestore vs. Tag bit. The two
bits together show what the corresponding Information bytes represent .

Bit 3 Bit 2 tion bvte represents:
0 0 Acquisition Data
0 1 Count
1 0 Prestore Data
1 1 Inval id

If Bit 2 is clear, the information contains either actual acquisition data as
obtained from the target system (if Bit 3 is clear), or prestore data (if Bit 3
is set). If Bit 2 is set and Bit 3 is clear, this row’s bytes for the pods
assigned to this machine contain tags. If Bit 2 and Bit 3 are set, the
corresponding Information bytes are invalid and should be ignored. Bit 1
is used only when Bit 2 is clear. Whenever there has been a sequence level
transition Bit 1 will be set, and otherwise will be clear.

System Commands
6-12

HP 16528/16538
Programming Reference

DATA

Information Bytes. In the State acquisition mode with tags, data is
obtained from the target system with each clock and checked with the
trace specification. If the state does not match the trace specification, it is
checked against the prestore qualifier. If it matches the prestore qualifier,
then it is placed in the prestore buffer. If the state does not match either
the sequencer qualifier or the prestore qualifier, it is discarded.

The type of information in the bytes labeled Data depends on the Prestore
vs. Tags bit. When the Data bytes are used for prestore information, the
following Count bytes (in the same column) should be ignored. When the
Data bytes are used for tags, the Count bytes are formatted as
floating-point numbers in the following fashion:

13 b i t s 11throueh 1
EEEEE MMMMMMMMMMM

The live most-significant bits (EEEEE) store the exponent, and the eleven
least-significant bits (MMMMMMMMMMM) store the mantissa. The
actual value for Count is given by the equation:

Count = (2048 + mantissa) X 2exponent -2048

Since the counts are relative counts from one state to the one previous, the
count for the first state in the data structure is invalid.

If time tagging is on, the count value represents the number of 40
nanosecond t icks that have elapsed between the two stored states. In the
case of state tagging, the count represents the number of qualified states
that were encountered between the stored states.

If a state matches the sequencer qualifiers, the prestore buffer is checked.
If there are any states in the prestore buffer at this time, these prestore
states are first placed in memory, along with a dummy count row. After
this check, the qualified state is placed in memory, followed by the count
row which specified how many states (or 40 ns ticks) have elapsed since
the last stored state. If this is the first stored state in memory, then the
count information that is stored should be discarded.

HP 16528/16538 System Commands
6-13

DATA

JvIachine 1 M a c h i n e 2 P o d 5 P o d 4 P o d 3 P o d 2 P o d l*
177 Sta tus Sta tus Data Data Data Data Data
1 9 1 Sta tus Status @ @ @ @ @
205 Sta tus Sta tus Data Data Data Data Data
219 Sta tus Sta tus c o u n t c o u n t Count c o u n t c o u n t

14485 Sta tus
14499 Sta tus

Sta tus
Sta tus

Data Data Data Data Data
c o u n t c o u n t c o u n t C o u n t c o u n t

*The headings are not a part of the returned data.

@ = Invalid data

Glitch Timing Data Status Bytes. In glitch timing mode, the status bytes indicate whether a
given row in the data contains actual acquisition data information or glitch
information.

Bit 1 is the Data vs. Glitch bit. If Bit 1 is set, this row of information
contains glitch information. If Bit 1 is clear, then this row contains actual
acquisition data as obtained from the target system.

Information Bytes. In the Glitch timing mode, the target system is
sampled at every sample period. The data is then stored in memory and
the glitch detectors are checked. If a glitch has been detected between the
previous sample and the current sample, the corresponding glitch bits are
set. The glitch information is then stored. If this is the first stored sample
in memory, then the glitch information stored should be discarded.

System Commands
6-14

HP 16528/16!538’
Programming Reference

DATA

Machine 1 Machine 2 Pod 5 Pod4 Pod 3 Pod 2 Pod I*
177 Sta tus Sta tus Data Data Data Data Data
191 Sta tus Status @ co @ @ @
205 Sta tus Sta tus Data Data Data Data Data
219 Sta tus Sta tus Glitch Glitch Glitch Glitch Glitch

14405 Sta tus Sta tus Data Data Data Data Data
14499 Sta tus Sta tus Glitch Glitch Glitch Glitch Glitch

*The headings are not a part of the returned data.

@ = Invalid data

Transitional Timing Data Status Bytes. In transitional timing mode, the status bytes indicate
whether a given row in the data contains acquisition information or
transition count information.

10-9 bi ts 8-7 bi ts 6-5 bits43 bi t s 2-l
Pod 5 Pod 4 Pod 3 Pod 2 P o d 1

Each pod uses two bits to show what is being represented in the
corresponding Information bytes. Bits 10,8,6,4 and 2 are set when the
appropiate pod’s Information bytes represent acquisition data. When that
bit is clear, the next bit shows if the Information bytes represent the first
word of a count. Together there are three possible combinations:

10 - This pods Information bytes contain acquisition data as obtained from
the target system.

01 - This pod’s Information bytes contain the f i rs t word of a count .
00 - This pod’s Information bytes contain part of a count other than the

firs t word.

HP 16528/1653B
Programming Reference

System Commands
615

DATA

Information Bytes. In the Transitional timing mode the logic analyzer
performs the fol lowing s teps to obtain the information bytes:

1. Four samples of data are taken at 10 nanosecond intervals. The data is
stored and the value of the last sample is retained.

2. Four more samples of data are taken. If any of these four samples differ
from the last sample of the step 1, then these four samples are stored
and the last value is once again retained.

3. If all four samples of step 2 are the same as the last sample taken in step
1, then no data is stored. Instead, a counter is incremented. This
process wil l continue unti l a group of four samples is found which
differs from the retained sample. At this time, the count will be stored
in the memory, the counters reset, the current data stored, and the last
sample of the four once again retained for comparison.

I

Note u
The stored count indicates the number of 40 ns intervals that have elapsed
between the old data and the new data.

The rows of the acquisition data may, therefore, be either four rows of
data followed by four more rows of data, or four rows of data followed by
four rows of count. Rows of count will always be followed by four rows of
data except for the last row, which may be either data or count.

Note d
This process is performed on a pod-by-pod basis . The individual s tatus
bi ts wil l indicate what each pod is doing.

System Commands
6-16

HP 1652B/l653B

DATA

Example :
177
1 9 1
205
219
233
247
261
275
289
303
317
331
345
359
373
387

11*

S t a t u s S t a t u s Data Data Data Data Data
Sta tus Sta tus Data Data Data Data Data
Sta tus Sta tus Data Data Data Data Data
Sta tus Sta tus Data Data Data Data Data
Sta tus Sta tus Data count Count Data Data
Sta tus Sta tus Data count Count Data Data
Sta tus Sta tus Data count Count Data Data
Sta tus Sta tus Data Count count Data Data
Sta tus Sta tus count Data Data Count Data
Sta tus Sta tus Count Data Data Count Data
Sta tus Sta tus count Data Data count Data
Sta tus Sta tus count Data Data count Data
Sta tus Sta tus Data Data count Data Data
Sta tus Sta tus Data Data count Data Data
Sta tus Sta tus Data Data count Data Data
Sta tus Sta tus Data Data count Data Data

14457 Sta tus Sta tus Data Data Data Data Data
14471 Sta tus Sta tus Data Data Data Data Data
14485 Sta tus Sta tus Data Data Data Data Data
14499 Sta tus Sta tus Data Data Data Data Data

The following table is just an example. The meaning of the Information
bytes (Data or Count) depends upon the corresponding Status bytes.

*The headings are not a part of the returned data.

HP 16528/1663B System Commands
6-17

DATA

Oscilloscope
Block Data

Oscilloscope
Data Section

Section Header
Description

14523

14533

14534

14535

Section Data

The osci l loscope block data is described in the fol lowing sect ions. This
data is appended to the logic analyzer block data and is present only when
the oscilloscope is on and waveform data has been acquired and stored.

The oscilloscope data contains both a section header and section data
similar to the logic analyzer for both of its sections. The oscilloscope block
data sections are Oscilloscope Data and Oscilloscope Display Data.

l Oscilloscope Data - the raw data captured on the last acquisition.

l Oscilloscope Display Data - the segment of data displayed after
each acquisi t ion.

The oscil loscope data and oscil loscope display data sect ions are sent only
when the oscil loscope is on and there is waveform data stored in the
oscilloscope memory.

The Oscilloscope Data section contains the raw data the oscilloscope
acquired on the last acquisition.

The oscilloscope data < section header > used bytes 14523 through 14539.
The 16 bytes of the section header are as follows:

10 bytes - Section name, "SCOPEDAT " (two trai l ing spaces)

1 byte - Reserved (always 0)

1 byte - Unused

4 bytes - Length of osci l loscope data

The oscilloscope raw data < section data > contains the initially acquired
data. Each data unit is contained in a byte. The lower six bits contain the
data, while the upper two bits are not used and as a result, each data unit
can represent a value from 0 to 63. The total number of bytes is this
section is 4096 with the first 2048 bytes for channel 1 and the remaining
2048 bytes for channel 2.

System Commands
6-18

HP 18528/1653B
Programming Reference

DATA

14539

16587

Oscilloscope
Display Data
Section

Note ‘d

18635

22731

HP 16628/16538
Programming Reference

2048 bytes - raw oscilloscope data for channel 1.

2048 bytes - raw oscilloscope data for channel 1.

The display data section < section data > contains the initial data
displayed after an acquisition. Each data unit is represented by a 16 bit
value which is generated by taking the raw oscilloscope data and shifting it
the the left by 8 bits.

Changing the seconds-per-division after the oscilloscope has stopped will
change the data displayed on the screen but it will not change the display
data in this section.

4096 bytes - Displayed oscilloscope data for channel 1

4096 bytes - Displayed oscilloscope data for channel 2

System Commands
6-19

DSP

DSP (Display) command

The DSP command writes the specified quoted string to a device
dependent portion of the instrument display.

Command Syntax: :SYSTem:DSP <str ing >

where:

<string > :: = string of up to 60 alphanumeric characters

Examples: OUTPUT XXX;“:SYSTEM:DSP ‘The message goes here”’

System Commands
6-20

HP 16528/1653B
Programming Reference

ERRor
A

ERRor

query

The ERRor query returns the oldest error number from the error queue.
A complete list of error numbers for the HP 1652B/53B is shown in
appendix C, “Error Messages.” If no errors are present in the error queue,
a zero is returned.

Query Syntax: :SYSTem:ERRoR

Returned Format: [:SYSTem:EFWor] <error number> <NL>

Example: 10 OUTPUT XXX;":SYSTEM:ERROR?"

20 ENTER XXX;Err-num
30 PRINT Err-num

40 END

HP 16526/16636 System Commands
621

HEADer

HEADer command/query

The HEADER command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, query
responses will include the command header.

The HEADer query returns the current state of the HEADer command.

Command Syntax: :SYSTem:HEADer {{ON~l}~{OFF~O}}

Example: OUTPUT XXX;":SYSTEM:HEADER ON"

QUety Command: :SYSTem:HEADer?

Returned Format: [:SYSTem:HEADer] { 1 lo} < NL>

Example: 10 DIM Mode$[lOO]
20 OUTPUT XXX:":SYSTEM:HEAOER?"

30 ENTER XXX;Mode$

40 PRINT Mode$
50 END

Note d
Headers should be turned off when returning values to numeric variables.

System Commands
822

HP 16528/16538
Programming Reference

KEY

KEY command/query

Note #b

The KEY command allows you to simulate pressing a specified
front-panel key. Key commands may be sent over the bus in any order
that is legal from the front panel. Be sure the instrument is in a desired
setup before executing the KEY command. Key codes range from 0 to 36
with 99 representing no key (returned at power-up). See table 6-l for key
codes.

The external KEY buffer is only two keys deep; therefore, attempting to
send KEY commands too rapidly will cause a KEY buffer overflow error
to be displayed on the HP 1652B/53B screen.

The KEY query returns the key code for the last front- panel key pressed
or the last s imulated key press over the bus.

Command Syntax: :SYSTem:KCI <key-code >

where:

< key-code z :: = integer from 0 to 36

Example: OUTPUT XXX;“:SYSTEM:KEY 24”

HP 16528/1663B System Commands
6-23

KEY

Query Syntax: :SYSTem:KEY?

Returned Format: [:SYSTem:KPI] <key-code> -cNL>

Example: 10 DIM Key$[lOO]
20 OUTPUT XXX;":SYSTEM:KEY?"

30 ENTER XXX; KEY$
40 PRINT KEY$

50 END

Table 6-l. Key codes

Key Value HP 1652B/53B
Key

Key Value

-

0 RUN 19
1 STOP 20
2 unused 21
3 SELECT 22
4 CHS 23
5 Don’t Care 24
6 0 25
7 1 26
8 2 27
9 3 28
10 4 29
11 5 30
12 6 31
13 7 32
14 8 33
15 9 34
16 A 35
17 B 36
18 C 99

L

HP1652BE3B
Key

D
E
F
u n u s e d
u n u s e d
Knob left
Knob right
L/R RoII
U/D RolI
u n u s e d
unused
u n u s e d
,! ,t

Clear Entry
FORMAT/CHAN
TRACE/TRIG
DISPLAY
I/O
Power Up

System Commands
6 2 4

HP 16528/16638

LER

LER (LCL Event Register) wry

The LER query allows the LCL (local) Event Register to be read. After
the LCL Event Register is read, it is cleared. A one indicates a
remote-to-local transition has taken place. A zero indicates a
remote-to-local transition has not taken place.

QIJWy Syntax: :SYSTem:LER?

Returned Format: [:SYSTem:LERJ {OIl}-zNL>

Example: 10 DIM Event$[lOO]
20 OUTPUT XXX;":SYSTEM:LER?"

30 ENTER XXX;Event$

40 PRINT Event$

50 END

HP 1652B/l653B System Commands
6-25

LOCKout

LOCKout command/query

The LOCKout command locks out or restores front-panel operation.
When this function is on, all controls (except the power switch) are
entirely locked out.

The LOCKout query returns the current status of the LOCKout command.

Command Syntax: :SYSTem:LOCKout {{ON~l}~{OFF~O}}

Example: OUTPUT XXX;":SYSTEM:LOCKOUT ON"

Query Syntax: :SYSTem:LOCKout?

Returned Format: [:SYSTem:LOCKout] {OIl}<NL>

Example: 10 DIM Status$[lOO]
20 OUTPUT XXX;":SYSTEM:LOCKOUT?"

30 ENTER XXX;Status$
40 PRINT Status$
50 END

System Commands
6-26

HP 16528/1663B
Programming Reference

LONGform

LONGform command/query

The LONGform command sets the longform variable which tells the
instrument how to format query responses. If the LONGform command
is set to OFF, command headers and alpha arguments are sent from the
instrument in the abbreviated form. If the LONGform command is set to
ON, the whole word will be sent to the controller.

This command has no affect on the input data messages to the instrument.
Headers and arguments may be input in either the longform or shortform
regardless of how the LONGform command is set.

The query returns the status of the LONGform command.

Command Syntax: :SYSTem:LONGform {{ON~1}~{OFF~O}}

Example: OUTPUT XXX;":SYSTEM:LONGFORM ON"

Query Syntax: : S Y S T e m : L O N G f o r m ?

Returned Format: [:SYSTem:LONGform] (1 IO} < NL>

Example: 10 DIM Mode$[lOO]
20 OUTPUT XXX;":SYSTEM:LONGFDRM?"

30 ENTER XXX;Mode$
40 PRINT Moded
50 END

HP 16528/l 6538 System Commands
6-27

MENU

MENU command/query

The MENU command puts a menu on the display.

The MENU query returns the current menu selection.

Command Syntax: :SYSTem:MENU c menu-type >, < math-num >

where:

-= menu-type > : : = { SCONfig 1 FORMat 1CHANnel 1TRACe 1TRlGger 1DlSPlay 1WAVeform I SWAVeform 1

COMPare I SCHart 1 SLISt}
cmach num > ::= {O 1 1 1 2 1 3)

0 : : = m i x e d m o d e
1 : : = a n a l y z e r 1
2 : : = a n a l y z e r 2
3 : : = o s c i l l o s c o p e

Example: OUTPUT XXX;"SYSTEM:MENU FORMAT.l"

Query Syntax: :SYSTem:MENU?

Returned Format: [:SYSTem:MENU] <menu-type r , < math-num >

Example: 10 DIM Response$[lOO]
2 0 O U T P U T XXX;“:SYSTEM:MENU?”

3 0 E N T E R XXX;Response$

40 PRINT Response$

50 END

System Commands
6-28

HP 16528/1653B
Programming Reference

MESE

MESE command/query

The MESE command sets the Module Event Status Enable Register bits.
The MESE register contains a mask value for the bits enabled in the
MESR register. A one in the MESE will enable the corresponding bit in
the MESR, a zero will disable the bit.

The MESE query returns the current setting.

Refer to table 6-2 for information about the Module Event Status Enable
register bits, bit weights, and what each bit masks for the logic analyzer.

Command Syntax: :SYSTem:MESE <enable -mask>

where:

-C enable mask > :: = integer from 0 to 255

Example: OUTPUT XXX;” :SYSTEM:MESE 1”

HP 16528/1653B
Programming Reference

System Commands
629

MESE

Query Syntax: :SYSTem:MESE?

RetUrned Format: [:SYSTem:MESE] <enable -mask> <NL>

Example: 10 OUTPUT XXX;“:SYSTEM:MESE?”
20 ENTER XXX; Mes

30 PRINT M e s

40 END

Table 62. Module Event Status Enable Register

Module Event Status Enable Register
(A “1” enables the MESR bit)

Bit Weight Enables

7 128 Not used
6 64 Not used
5 32 Not used
4 16 Not used
3 8 Not used
2 4 Not used
1 2 RNT - Run until satisified
0 1 MC - Measurement complete

System Commands
6 3 0

HP 16528/1653B

MESR

MESR query

The MESR query returns the contents of the Module Event Status
register.

Note d
Reading the register clears the Module Event Status Register.

Table 6-3 shows each bit in Module Event Status Register and their bit
weights for the logic analyzer. When you read the MESR, the value
returned is the total bit weights of all bits that are set at the time the
register is read.

Query Syntax: :SYSTem:MESW)

Returned Format: [:SYSTem:MESR] -c status > < NL>

where:

c status > :: = integer from 0 to 255

Example: 10 OUTPUT XXX;“:SYSTem:MESR?”

20 ENTER XXX; Mer
30 PRINT Mer

40 END

HP 16528/1663B System Commands
631

MESR

System Commands HP 16528/16538
6-32 Programming Reference

Table 83. Module Event Status Register

Module Event Status Register

Bit Weight Condition

7 128
6 64
5 32
4 16
3 8
2 4
1 2

0 1

N o t u s e d
N o t u s e d
N o t u s e d
N o t u s e d
N o t u s e d
N o t u s e d
1 = Run until satisified
0 = Run until not satisified
1 = Measurement complete
0 = Measurement not complet

PPOWer

PPOWer query

The PPOWer (preprocessor power) query returns the current status of
the HP 1652BE3B’s high-current limit circuit. If it is functioning properly,
0 is returned. If the current draw is too high, 1 is returned until the
problem is corrected and the circuit automatically resets.

Query Syntax: :PPOWer?

l?eturned Format: [:PPOWer] {o 1 I}

Example: 10 DIM Response$[lO]
20 OUTPUT XXX;":PPOWER?"

30 ENTER XXX; Response$

40 PRINT Response%
50 END

HP 16528/16538
Programming Reference

System Commands
633

PRlNt

PRlNt command

The PRINt command initiates a print of the screen or print all over the
RS-232C bus. The PRINt parameters SCReen or ALL specify how the
screen data is sent to the controller. PRINt SCReen transfers the data to
the controller in a printer specific graphics format. PRINt ALL transfers
the data in a raster format for the following menus:

l State and Timing Format menus

l Disk menu

l State and Timing Symbol menus

0 State Listing menu

l State Trace

0 State Compare

Command Syntax: :SYSTem:PRINt {SCReen 1 ALL}

Example: OUTPUT XXX;“:SYSTEM:PRINT SCREEN”

System Commands
6 - 3 4

HP 16528/16538
Programming Reference

RMODe

RMODe command/query

The RMODe command is a run control command that specifies the run
mode for logic analyzer and oscilloscope. It is at the same level in the
command tree as SYSTem; therefore, it is not preceded by :SYSTem.

The query returns the current setting.

Note d
After specifying the run mode, use the STARt command to start the
acquis i t ion .

Command Syntax: :RMODe {SINGle 1 REPetitive}

Example: OUTPUT XXX;“:RMOOE SINGLE”

Query Syntax: :RMoDe?

Returned Format: [:RMODe] {SINGle 1 REPetitive} c NL>

Example: 10 DIM Mode$[lOO]
20 OUTPUT XXX;“:RMODE?”

30 ENTER XXX;Mode$
40 PRINT Hode$
50 END

HP 16526/1653B
Programming Reference

System Commands
6-35

SETup

SETup command/query

The SYStem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller.

The SYStem:SETup query returns a block of data that contains the
current configuration to the controller.

There are three data sections which are always returned and a fourth
header when the oscilloscope is on and has acquired and stored waveform
data. These are the strings which would be included in the section header:

0 "CONFIG "

0 "1650 RS232"

0 "1650 DISP "
0 "1650 DISP2"

0 "SCOPECNF "

Addit ional ly, the fol lowing sect ions may also be included, depending on
what’s loaded:

0 "SYMBOLS A -

0 "SYMBOLS B "
0 "SPA DATA A"

l "SPA DATA 8"
l "INVASH A "
0 "INVASM B "

0 "COMPARE -

System Commands
6-36

HP 16528/1653B
Programming Reference

SETup

Command syntax:

where:

< block data z=

-z block length specifier >
c length >

<section >

<section header >

<section data z

Note d

Example:

Query Syntax:

Returned Format:

HP-IB Example:

:SYStem:SETup <block d a t a >

:: = <block length specifier > <section > . . .

::= #8<length>
:: = the total length of all sections in byte format (must be represented with 8 digits)

:: = c section header > <section data>

:: = 16 bytes in the following format:
10 bytes for the section name

1 byte reserved
1 byte for the module ID code (31 for the logic analyzer)
4 bytes for the length of the section data in bytes

:: = format depends on the type of data

The total length of a section is 16 (for the section header) plus the length
of the section data. So when calculating the value for c length >, don’t
forget to include the length of the section headers.

OUTPUT XXX USING “%,K”;“:SYSTEH:SETllP ” < b l o c k d a t a >

:SYStem:SETup?

[:SYStem:SETup] c block data> c NL>

10 DIM Block$ [32000] !allocate enough memory f o r b l o c k d a t a

2 0 D I M Specif ier$ [2]
30 OUTPUT XXX; “:SYSTEM:HEAD OFF”

40 OUTPUT XXX;“:SYSTEM:SETUP?” ! s e n d s e t u p q u e r y
50 ENTER XXX USING “#.ZA”;Specifier$! r e a d i n 18
60 ENTER XXX USING “#.8D”;Blocklength! read in b lock l eng th
70 ENTER XXX USING “-K”;Block$! r e a d i n d a t a

80 END

HP 16528/1653B
Programming Reference

System Commands
6-37

STARt

STARt

Note ‘4

Command Syntax:

Example:

System Commands
6-38

command

The STARt command is a run control command that starts the logic
analyzer running in the spccificd run mode (see RMODe). The STARt
command is on the same level in the command tree as SYSTem; therefore,
it is not preceded by :SYSTem.

The STARt command is an Overlapped Command. An Overlapped
Command is a command that allows execution of subsequent commands
while the device operations initiated by the Overlapped Command are still
in progress .

:STAR

OUTPUT XXX;":START"

HP 18528/18538
Programming Reference

A
STOP

STOP

Note d

command

The STOP command is a run control command that stops the logic
analyzer. The STOP command is on the same level in the command tree
as SYSTem; therefore, it is not preceded by :SYSTem.

The STOP command is an Overlapped Command. An Overlapped
Command is a command that allows execution of subsequent commands
while the device operations initiated by the Overlapped Command are still
in progress .

Command Syntax: :STOP

Example: OUTPUT m”:STOP

HP 16528/l 6538
Programming Reference

System Commands
6-39

MMEMory Subsystem

Introduction MMEMory subsystem commands provide access to the disk drive. The
MMEMory subsystem commands are:

l AUToload
l CATalog
0 C O P Y
l DOWNload
0 INITialize
0 L O A D
l PACK
l PURGe
l REName
l STORe
l UPLoad

Note
If you are not going,to store information to the configuration disk, or if the
disk you are using contains information you need, it is advisable to write
protect your disk. This will protect the contents of the disk from
accidental damage due to incorrect commands, etc.

HP 16528/1653B
Programming Reference

MMEMory Subsystem
7-l

I f /

type block-dot0

Figure 7-1. MMEMory Subsystem Commands Syntax Diagram

MMEMory Subsystem HP 16528/16538
7-2 Programming Reference

auto-file = string of up to 10 olphanumen’c characters reptesenting a validfile name.
name = string of up to 10 alphanumeric characters representing a valid file name.
description = string of up to 32 alphanumeric characters.
type = integer, refer to table 7-l.
block-data = data in IEEE 4W2 #format.
ia-name = string of up to 10 alphanumeric characters representing a vaIid file name.
new-name = string of up to 10 alphanumetic characters representing a valid file name

Figure 7-1. MMEMory Subsystem Commands Syntax Diagram (continued)

Note 1’4 Refer to “Disk Operations” in chapter 5 of the HP 1652Bl53B Logic
Analyzes Reference manual for a description of a valid file name.

HP 1652B/l653B
Programming Reference

MMEMory Subsystem
7-3

AUToload

AUToload command/query

The AUToload command controls the autoload feature which designates
a configuration file to be loaded automatically the next time the
instrument is turned on. The OFF parameter (or 0) disables the autoload
feature. When a string parameter is specified it represents the desired
autoload file.

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled, the query returns a string parameter that
specifies the current autoload file.

Command Syntax: :MMEMory:AUToload {{OFF(O)) <auto-file > }

where:

<auto-file > :: = string of up to 10 alphanumeric characters

Examples: OUTPUT XXX;":MMEMORY:AUTOLOAD OFF"
OUTPUT XXX;": MMEMORY:AUTOLOAD 'FILEl"
OUTPUT XXX;":MMEMORY:AUTOLOAD 'FILE,?"'

Query Command: :MMEMory:AUToload?

Returned Format: [:MMEMory:AUToload] (0) <auto-file > } < NL>

Example: 10 DIM Auto-status$[lOO]
20 OUTPUT XXX;":MMEMORY:AUTOLOAD?"

30 ENTER XXX;Auto-status$
40 PRINT Auto-status$
50 END

MMEMory Subsystem
7-4

HP 1652Bll653B
Programming Reference

CATalog
A

CATalog

wry

The CATalog query returns the directory of the disk in block data format.
The directory consists of a S-character string for each file on the disk.
Each file entry is formatted as follows:

“NNNNNNNNNN TTTlTIl DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

where N is the filename, T is the file type (a number), and D is the file
description.

Query Syntax: :MMEMory:CATalog?

&Wrned Format: [:MMEMoty:CATalog] <b lock s i ze> <blockdata>

where:

<block size Z- : : = X8dddddddd (X8followed b y a n e i g h t d i g i t n u m b e r)

<blockdata> :: = [<filename > <file type C= <file description >I...

Example: 10 D I M File$[51]

2 0 D I M Specifier$[Z]
30 OUTPUT XXX;“:SYSTEM:HEAD OFF”
40 OUTPUT XXX;” :MMEMORY:CATALDG?” !send c a t a l o g q u e r y
50 ENTER XXX USING “#.2A”;Specifier$!read i n #8

60 ENTER XXX USING “#,8D”;Length !read i n l e n g t h

70 FOR I=1 TO Length STEP 51 !read and pr in t each f i l e

80 ENTER XXX USING “#,51A”;File$

90 PRINT Files
100 NEXT I

110 ENTER XXX USING “A”;Specifier$!read i n f i n a l l i n e f e e d

120 END

HP 16528/1653B MMEMoIY Subsystem
Programming Reference 7-5

COPY

command

The COPY command copies the contents of a Gle to a new file. The two
c name > parameters are the filenames. The first parameter specifies the
source file. The second specifies the destination file. An error is
generated if the source file doesn’t exist, if the destination file already
exists, or any other disc error is detected.

Command Syntax: :MMEMory:COPY < n a m e 5, < n a m e >

where:

<name > : : = s t r i n g o f u p t o 1 0 a l p h a n u m e r i c c h a r a c t e r s r e p r e s e n t i n g a v a l i d f i l e n a m e

Example: To copy the contents of “FILEl” to “FILE2”:

OUTPUT XXX;":MMEMORY:COPY 'FILEl','FILEE'"

MMEMory Subsystem
7-6

HP 16528/16!53B
Programming Reference

DOWNload

DOWNload command

The DOWNload command downloads a file to the disk. The < name >
parameter specifies the filename, the c description > parameter specifies
the file description, and the < block-data > contains the contents of the
file to be downloaded.

Table 7-l lists the file types for the < type > parameter.

Command Syntax: :MMEMory:DOWNload <name >, <description >, <type 7, <block-data 7

where:

c name > :: = string of up to 10 alphanumeric characters representing a valid file name

<description > :: = string of up to 32 alphanumeric characters

<type7 :: = integer (see Table 7-1)
-z block-data > :: = contents of file in block data format

Example: OUTPUT XXX;“:MMEMORY:DOWNLOAD ‘SETUP-‘;‘FILE CREATED FROM SETUP

QUERY’ ,-16127,#600000643.. .”

Table 7-l. File Types

File File ‘Qpe

HP 1652f3 SYSTEM -16383
1652J3 CONFIG -16Q96
AUTOLOAD TYF’E -15615
INVERSE ASSEMBLER -15614
TEXTTYPE -15610

HP 16528/16538
Progmmming Reference

MMEMory Subsystem
7-7

INlTialize

INlTialize command

The INITialize command formats the disk.

Note d

Command Syntax:

Example:

MMEMory Subsystem
7-8

Once executed, the initialize command formats the specitied disk,
permanently erasing all existing information from the disk. After that,
there is no way to retrieve the original information.

:MMEMory:INITialize

OUTPUT XXX;":MMEMORY:INITIALIZE"

HP 18828/1883B
Programming Reference

LOAD

LOAD

Note d

Command Syntax: :MMEMory:LOAD[:CONfig] -z name >

where:

-z name > :: = string of up to 10 alphanumeric characters representing a valid file name

Examples:

HP 16528/1653B
Programming Reference

[:CONFig] command

The LOAD command loads a file from the disk into the analyzer. The
[:CONfig] specifier is optional and has no effect on the command. The
c name > parameter specifies the filename that will be loaded into the
logic analyzer.

Any previous setups and data in the instrument are replaced by the
contents of the configuration file.

O U T P U T XXX;“:MMEMORY:LOAD:CONFIG ‘ F I L E - “ ’
O U T P U T XXX;“:MMEMORY:LOAD ‘ F I L E - “ ’
OUTPUT XXX;“:MMEM:LOAD:CONFIG ‘FILE-A”’

MMEMory Subsystem
7-9

LOAD [:IASSembler] command

This variation of the LOAD command allows inverse assembler files to be
loaded into analyzer 1 or analyzer 2 of the HP 1652BD653B. The
< IA-name > parameter specifies the inverse assembler filename. The
parameter after the c IA-name > parameter specifies into which
machine the inverse assembler is loaded.

tbI’ Inverse assembler files should only be loaded into the state analyzer. If an
Note inverse assembler file is loaded into the timing analyzer no error will be

generated; however, i t will not be accessible.

Command Syntax: :MMEMory:LOAD:lASSembler c IA-name > ,{ 112)

where:

<IA name> :: = string of up to 10 alphanumeric characters representing a valid file name

Examples: OUTPUT xxx;" :MMEMORY:LOAD:IASSEMBLER '16602O_IP',l"

OUTPUT XXX;" :MMEM:LOAD:IASS '168020-IP'l"

MMEMory Subsystem
7-10

HP 16528/16538

PACK

PACK command

The PACK command packs the files on a disk in the disk drive.

Command Syntax: :MMEMO~~:PACK

Example: OUTPUT XXX;" :HMEMORY:PACK"

HP 1652B/l653B
Progmmming Reference

MMEMory Subsystem
7-11

PURGe

PURGe

Note d

Command Syntax:

where:

< name z-

Examples:

MMEMory Subsystem
7-12

command

The PURGe command deletes a file from the disk. The < name >
parameter specifies the filename to be deleted.

Once executed, the purge command permanently erases all the existing
information from the specified file. After that, there is no way to retrieve
the original information.

:MMEMory:PlJRGe c name >

:: = string of up to 10 alphanumeric characters representing a valid file name

OUTPUT XXX;“:MMEMORY:PlJRGE ‘FILEl”’

HP 16528/16538
Programming Reference

REName

REName

Note d

Command Syntax:

where:

c name z

<new-name z

Examples:

HP 16528/1663B
Programming Reference

command

The REName command renames a file on the disk. The < name >
parameter specifies the filename to be changed and the -z new-name >
parameter specifies the new fdename.

You cannot rename a file to an already existing filename.

:MMEMory:REName -z name z- , <new-name 5

:: = string of up to 10 alphanumeric characters representing a valid file name
:: = string of up to 10 alphanumeric characters representing a valid file name

OUTPUT XXX;“:MMEMORY:RENAME ‘OLDFILE’,‘NEWFILE’”

MMEMory Subsystem
7-13

STORe

STORe [:CONFig] command

The STORe command stores a cmfiguration onto a disk. The [:CONFii]
specifier is optional and has no effect on the command. The < name >
parameter specifies the file to be stored to the disk. The c description >
parameter specifies the file description.

Command Syntax: :MMEMory:STORe [:CONfig] < name >, <description >

where:

-z name > :: = string of up to 10 alphanumeric characters representing a valid file name

<: description > :: = string of up to 32 alphanumeric characters

Example: OUTPUT XXX;":MMEM:STORE 'DEFAULTS','DEFAlJLT SETUPS'"

MMEMory Subsystem
7-14

HP 16528/1653B
Progmmming Reference

UPLoad
A

UPLoad

wry

The UPLoad query uploads a file. The < name > parameter specifies the
fde to be uploaded from the disk. The contents of the file are sent out of
the instrument in block data form.

Query Syntax: :MMEhWy:UPLoad? <name >

where:

tnamez :: = string of up to 10 alphanumeric characters representing a valid file name

Returned Format: [:MMEMory:UPLoad] <block-date> cNL>

Example: 10 DIM Block$[32000] !allocate enough memory for block data

20 DIM Specifier$[2]

30 OUTPUT XXX;":SYSTEM HEAD OFF"

40 OUTPUT XXX;":MMEMORY:UPLOAD? 'FILEl" !send upload query
50 ENTER XXX USING "#.2A":Specifier$!read in 18
60 ENTER XXX USING "#,8D";Length !read in block length

70 ENTER XXX USING "-K";Block$!read in file
80 END

HP 16528/1653B MMEMory Subsystem
Programming Reference 7-15

DLISt Subsystem 8

Introduction The DLISt (dual list) subsystem contains the commands in the dual state
listing menu. These commands are:

0 COLumn
0 L I N E

col-num = integerfrom 1 to 8
label-name = a sbing of up to 6 alphanumeric characters
base = {BINary 1 HEXacecimaI 1 OcTal 1 DECimal IASCii ISXUBol}
macb-num = {I 12)
line-num-mid-screen = integerfrom -1023 to + 1023

Figure 8-l. DUSt Subsystem Syntax Diagram

HP 16528/1653B
Programming Reference

DLlSt Subsystem
8-l

DLlSt

DLlSt selector

The DLISt selector (dual list) is used as part of a compound header to
access those settings normally found in the Dual State Listing menu. The
dual list displays data when two state analyzers are run simultaneously.

Command Syntax: :DLISt

Example: OUTPUT XXX;" :OLIST:LINE 0.1"

DUSt Subsystem
6-2

HP 16528/16538
Programming Reference

COLumn

COLumn command/query

The COLumn command allows you to configure the state analyzer list
display by assigning a label name and base to one of eight vertical columns
in the menu. The machine number parameter is required since the same
label name can occur in both state machines at once. A column number
of 1 refers to the left-most column. When a label is assigned to a column
it replaces the original label in that column. The label originally in the
specified column is placed in the column the specified label is moved from.

When “TAGS” is the label name, the TAGS column is assumed and the
next parameter must specify RELative or ABSolute. The machine
number should be 1.

The COLumn query returns the column number, label name, and base for
the specified column.

Command Syntax: :DLISt:COLumn <col-num > ,{“TAGS”,{RELative 1 ABSolute} (

<label-name >, -z base z }, < math-num >

where:

< col-num > ::= {1~2~3~4~5)6~7~6}
<label-name > :: = a string of up to 6 alphanumeric characters

<base> :: = (BINary (HEXadecimal IOCTal (DECimal (ASCii ISYMBol)
i math-num > ::= (112)

Example: OUTPUT XXX;": DLIST:COLUMN 4,'DATA',HEXADECIMAL,l"

HP 16528/16538
Programming Reference

DUSt Subsystem
8-3

COLumn

Query syntax: :DLISt:COLumn? <col-num >

Returned Format: [:DLISt:COLumn] < col-num > , c label-name >, <base > , < math-num r < NL >

Example: 1 0 D I M cl.$[loo]

20 OUTPUT XXX;” :DLIST:COLUMN? 4 ”
30 E N T E R XXX;Cl$
40 PRINT Clf

5 0 END

DLlSt Subsystem
8-4

HP 16528/16538

LINE

LINE command/query

The LINE command allows you to scroll the state analyzer listing
vertically. The command specifies the state line number relative to the
trigger that the specified analyzer will h&hlight at center screen.

The LINE query returns the line number for the state currently in the box
at center screen and the machine number to which it belongs.

Command Syntax: :DLISt:LINE c line-num-mid-screen >, -z math-num z-

where:

-Z line-num-mid-screen > :: = integer from -1023 to + 1023
-C math-num t : : = (112)

Example: OUTPUT XXX;“:DLIST:LINE 511.1”

Query syntax: :DLISt:LINE?

Returned Format: [DLWLINE] -z line-num-mid-screen >, -z maoh-num 7 < NL>

Example: 10 DIM Ln$[lOOl
2 0 OUTPUT XXX;“:DLIST:LINE?”

30 ENTER XXX;Ln$
40 PRINT Ln$
50 END

DUSt Subsystem
5-5

WLlSt Subsystem

Introduction Two commands in the WLJSt subsystem control the X and 0 marker
placement on the waveforms portion of the Timing/State mixed mode
display. These commands are XTIMe and OTIMe. The XSTate and
OSTate queries return what states the X and 0 markers are on. Since the
markers can only be placed on the timing waveforms, the queries return
what state (state acquisition memory location) the marked pattern is
stored in.

Note
In order to have mixed mode, one machine must be a timing analyzer and
the other must be a state analyzer with time tagging on (use
MACHine < N > :STFLace:TAG TIME).

time-value = real number

Figure 91. WLlSt Subsystem Syntax Diagram

HP 16528/16538 WUSt Subsystem
Progmmming Reference 91

WLlSt selector

The WLISt (Waveforms/listing) selector is used as a part of a compound
header to access the settings normally found in the Mixed Mode menu.
Since the WLISt command is a root level command, it will always appear
as the first element of a compound header.

Note d
The WLISt Subsystem is only available when one state analyzer (with time
tag&g on) and one timing analyzer are specified.

Command Syntax: :wust

Example : OUTPUT XXX;":WLIST:XTIME 40.OE-6"

WUSt Subsystem HP 16528/1653B
0-2 Programming Reference

OSTate

OSTate query

The OSTate query returns the state where the 0 Marker is positioned. I f
data is not valid, the query returns 32767.

Query Syntax: :WLISt:OSTate?

f%3tUrrEd Format: [:WLISt:OSTate] <state-num > <NL>

where:

<state num> :: = integer

Example: 10 DIM s0$[1001
20 OUTPUT XXX;":WLIST:OSTATE?"

30 ENTER XXX;So$
40 PRINT So$

50 END

HP 16528/1653B WUSt Subsystem
9-3

XSTate

XSTate

Query Syntax:

Example:

Returned Format:

where:

<: state-num >

Example:

WUSt Subsystem
9-4

query

The XSTate query returns the state where the X Marker is positioned. If
data is not valid, the query returns 32767.

:WUSt:XSTate?

OUTPUT XXX,":WLIST:XSTATE?

[:WLISt:XSTate] < state-num > < NL>

:: = integer

10 DIM Sx$[lOO]

20 OUTPUT XXX;":WLIST:XSTATE?"
30 ENTER XXX;Sx$
40 PRINT Sx$
50 END

HP 16528/1653B
Programming Reference

OTIMe

OTIMe command/query

The OTIMe command positions the 0 Marker on the timing waveforms in
the mixed mode display. If the data is not valid, the command performs
no action.

The OTIMe query returns the 0 Marker position in time. If data is not
valid, the query returns 9.9E37.

Command Syntax: :WLlSt:OTIMe <time-value z-

where:

<time value > : : = r e a l n u m b e r

Example: OUTPUT XXX,":WLIST:OTIME 40.0~~6"

Query Syntax: :WLISt:OTIMe?

RetUrned Format: [:WLISt:OTIMe] <time-value> c NL>

Example: 10 DIM To$[lOO]
20 OUTPUT XXX;":WLIST:OTIME?"
30 ENTER XXX;To$

40 PRINT To$
50 END

HP 1652B/l653B
Programming Reference

WLlSt Subsystem
Q-5

XTIMe

XTIMe command/query

The XTIMe command positions the X Marker on the timing waveforms in
the mixed mode display. If the data is not valid, the command performs
no action.

The XTIMe query returns the X Marker position in time. If data is not
valid, the query returns 9.9E37.

Command Syntax: :WLISt:XTIMe <time-value >

where:

c time value > :: = real number-

Example: OUTPUT XXX.":WLIST:XTIME 40.OE-6"

Query Syntax: :WLISt:XTIMe?

Returned Format: [:WLISt:XTIMe] c time-value > c NL>

Example: 10 DIM Tx$[lOO]
20 OUTPUT XXX;":WLIST:XTIME?"

30 ENTER XXX;TxS
40 PRINT Tx$
50 END

WLlSt Subsystem
9-6

HP 16528/1653B

MACHine Subsystem 1 0
Introduction The MACHine subsystem contains the commands available for the

State/lYming Configuration menu. These commands are:

l ARM
w ASSign
l AUToscaIe (Timing Analyzer only)
l NAME
a T Y P E

There are actually hvo MACHine subsystems: MACHinel and
MACHine2. Unless noted, they are identical. In the syntax definitions
you will see MACHme{ 112) anytime the subject is applicable to both
subsystems.

Additionally, the following subsystems are a part of the MACHine
subsystem. Each is explained in a separate chapter.

SFORmat subsystem
STRace subsystem
SLISt subsystem
SWAVeform subsystem
SCHart subsystem
COMPare subsystem
TFORmat subsystem
‘ITRace subsystem
TWAVeform subsystem
SYMBoI subsystem

(chapter 11)
(chapter 12)
(chapter 13)
(chapter 14)
(chapter 15)
(chapter 16)
(chapter 17)
(chapter 18)
(chapter 19)
(chapter 20)

MACHine Subsystem
lo-l

space p o d - l i s t 9

AUToscale I

math i ne-name

MACHine Subsystem
lo-2

arm-source = {RUN / MACHine {I 12))
pod-list = (NONE 1 <pod-num > [, <pod-num >I...}
pod-num = (I 1 2 1 3 1 4 (5)
machine-name = string of up to 10 alphanumeric characters

Figure 10-l. Machine Subsystem Syntax Diagram

HP 16528/1653B

MACHine

MACHine selector

The MACHine c N > selector specifies which of the two analyzers
(machines) available in the HP 1652B/53B the commands or queries
following will refer to. Since the MACHine < N > command is a root
level command, it will normally appear as the first element of a compound
header.

Command Syntax: :MACHine < N z-

where:

<N> :: = (112) (the number of the machine)

Example: OUTPUT XXX; “:MACHINEl:NAME ‘DRAMTEST’”

HP 16529/1653B MACHine Subsystem
lo-3

ARM

ARM command/query

The ARM command specifies the arming source of the specified analyzer
(machine).

The ARM query returns the source that the current analyzer (machine)
will be armed by.

Command Syntax: :MACHine{ 112):ARM c arm-source >

where:

<arm source > : := {RlJN~MACHine{l~2}~BNC~SCOPe}

Example: OUTPUT XXX;":MACHINEl:ARM MACHINE2"

Query Syntax: :MACHine { 1 I2}:ARM?

Returned Format: [:MACHine { 1 I P):ARM] <arm-source > < NL>

Example: 1 0 D I M String$ [lOO]
2 0 O U T P U T m ‘:MACHINEl:ARM?”

3 0 E N T E R >ooc; StringS
40 P R I N T String$
50 E N D

MACHine Subsystem
10-4

HP 1652BD653B
Programming Reference

ASSign

ASSign command/query

The ASSign command assigns pods to a particular analyzer (machine).

The ASSign query returns which pods are assigned to the current analyzer
(machine).

Command Syntax: :MACHine{l (2):ASSign <pod-list>

where:

-z pod-list > ::= {NONE]cpodY>[, <pod#>]...)
<pod #> ::= (112131415)

Example: OUTPUT XXX;":MACHINEl:ASSIGN 5. 2, 1"

Query Syntax: MACHine { 1 IP}:ASSign’l

Returned Format: [MACHINE { 1 IP):ASSign] <pod-list > c NL>

Example: 10 DIM String$ [lDD]
20 OUTPUT XXX;" :MACHINEl:ASSIGN?”

30 ENTER XXX;String$
40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

MACHine Subsystem
lo-5

AUToscale

AUToscale

Note d

Command Syntax:

Example:

MACHine Subsystem
10-6

command

The AUToscale command causes the current analyzer (machine) to
autoscale if the current machine is a timing analyzer. If the current
machine is not a timing analyzer, the AUToscale command is ignored.

AUToscale is an Overlapped Command. Overlapped Commands allow
execution of subsequent commands while the logic analyzer operations
initiated by the Overlapped Command are still in progress. Command
overlapping can be avoided by using the *OPC and *WAI commands in
conjunction with AUToscale (see chapter 5, “Common Commands.“)

When the AUToscale command is issued, existing timing analyzer
configurations are erased and the other analyzer is turned off.

:MACHine{ 1 IP}:AUToscale

OUTPUT XXX;":MACHINEl:AUTOSCALE"

HP 16528/1663B
Progmmming Reference

NAME

NAME command/query

The NAME command allows you to assign a name of up to 10 characters
to a particular analyzer (machine) for easier identification.

The NAME query returns the current analyzer name as an ASCII string.

Command Syntax: :MACHine{ 1 IP):NAME <: machine-name >

where:

-z machine name > :: = string of up to 10 alphanumeric characters

Example: OUTPUT XXX;":MACHINEl:NAME 'DRAMTEST'"

Query Syntax: :MACHine{l IP):NAME?

RetWEd Format: [MACHine{ 1 (P}:NAME] c machine name > -Z NL>

Example: 10 DIM String$ [lOO]
20 OUTPUT XXX;“:MACHINEl:NAME?”
30 ENTER XXX;String$
40 PRINT String$
50 END

HP 16528/l 8538
Programming Reference

MACHine Subsystem
lo-7

TYPE

TYPE

Note uI’

command/query

The TYPE command specifies what type a specified analyzer (machine)
will be. The analyzer types are state or timing. The TYPE command also
allows you to turn off a particular machine.

Only one of the two analyzers can be specified as a timing analyzer at one
time.

Command Syntax:

where:

<analyzertype>

Example:

Query Syntax:

Returned Format:

Example:

MACHine Subsystem
10-8

The TYF’E query returns the current analyzer type for the specified
analyzer.

:MACHine{ 1 IP}:TYPE <analyzer type >

::= {OFFISTATeITIMing}

OUTPUT XXX:": MACHINEl:TYPE STATE"

:MACHine{ 112):TYPE?

[MACHine{ (2}:TYPE] <analyzer type z < NL>

10 DIM String$ [loo]
20 OUTPUT XXX;":MACHINEl:TYPE?"

30 ENTER XXX;String$
40 PRINT String$

50 END

HP 1882B/l883B
Programming Reference

SFORmat Subsystem 1 1
Introduction The SFORmat subsystem contains the commands available for the State

Format menu in the HP 1652B/53B logic analyzer. These commands are:

l CLOCk
l CPERiod
0 LABel
l MASTer
l REMove
0 SLAVe
l THReshold

Figure 1 l-l. SFORmat Subsystem Syntax Diagram

HP 16528/1653B SFORmat Subsystem
11-l

c l o c k - i d

space c l o c k - i d

space *

space clock-Id c

3pOCe c l o c k - i d c

THReshold<N>T

<N> = {I 12) 3 14 15)
GT = Greater i%an 60 ns
LT = Less Than 60 ns
name = string of up to 6 alphanumeric characters
polarity = {POSitive 1 NEGative}
pod-specification = format (integerfrom 0 to 65535) for a pod (pods are assigned in decreasing order)
clock-id = {J) K 1 L 1 M 1 N}
clock-spec = {OFF 1 ZUSing I FALLing I BOTH I LOW I HIGH}
value = vol tage (real number) -9 .9 to + 9 .9

Figure 1 l-l. SFORmat Subsystem Syntax Diagram (continued)

SFORmat Subsystem HP 16528/1653B
11-2 Programming Reference

SFORmat

SFORmat selector

The SFORmat (State Format) selector is used as a part of a compound
header to access the settings in the State Format menu. It always follows
the MACHine selector because it selects a branch directly below the
MACHine level iu the command tree.

Command Syntax: :MACHine{l IP}:SFORmat

Example: OUTPUT XXX;“:MACHINE2:SFORMAT:MASTER J, RISING”

HP 16528/1653B
Progmmming Reference

SFORmat Subsystem
11-3

CLOCk

CLOCk command/query

The CLOCk command selects the clocking mode for a given pod when the
pod is assigned to the state analyzer. When the NORMal option is
specified, the pod will sample all 16 channels on the master clock. When
the MIXed option is specified, the upper 8 bits will be sampled by the
master clock and the lower 8 bits will be sampled by the slave clock.
When the DEMultiplex option is specified, the lower 8 bits will be
sampled on the slave clock and then sampled again on the master clock.
The master clock always follows the slave clock when both are used.

The CLOCk query returns the current clocking mode for a given pod.

Command Syntax: :MACHine{ 1 IP}:SFORmat:CLOCk -z N > < c l o c k - m o d e >

where:

<N> : := Pod { I 1213(415}
-Z clock mode z- : : = {NORMal 1 MIXed I DEMultiplex}

Example : OUTPUT XXX;“:MACHINEl:SFORMAT:CLOCKL NORMAL”

Query Syntax: :MACHine{l IP}:SFORmat:CLOCk<N>?

Returned Format: [:MACHine{ l I2}:SFORmat:CLOCK<Nz] < c l o c k - m o d e > <NL>

Example: 10 DIM String$ [loo]
20 OUTPUT XXX; “:MACHINEl:SFDRMAT:CLDCK2?”
30 ENTER XXX; String$

40 PRINT String$
50 END

SFORmat Subsystem
11-4

HP 16628/1663B
Programming Reference

CPERiod

CPERiod command/query

The CPERiod command allows you to set the state analyzer for input
clock periods of greater than or less than 60 11s. Either LT or GT can be
specified. LT signifies a state input clock period of less than 60 ns, and
GT signifies a period of greater than 60 11s.

Because count tagging requires a minimum clock period of 60 ns, the
CPERiod and TAG commands are interrelated (the TAG command is in
the STRace subsystem). When the clock period is set to Less Than, count
tagging is turned off. When count tagging is set to either state or time, the
clock period is automatically set to Greater Than.

The CPERiod query returns the current setting of clock period.

Command Syntax: :MACHine{l 12):SFORmat:CPERiod (LTIGT}

where:

GT :: = greater than SO ns

LT ::= IessthanWns

Example: OUTPUT XXX;" :MACHINE2:SFORMAT:CPERIOD GT”

Query Syntax: :MACHine{ 1 JP}:SFOFtmat:CPEWod?

Returned Format: (:MACHine{l (P}:SFORmat:CPERiod] {GT(LT) c NL>

Example: 10 DIM String$[lOO]
20 OUTPUT XXX;":MACHINE2:SFORMAT:CPERIOD?
30 ENTER XXX; Strings

40 PRINT String$
50 END

HP 15526/1553B
Programming Reference

SFORmat Subsystem
11-5

LABel command/query

The LABel command al lows you to specify polari ty and assign channels to
new or existing labels. If the specified label name does not match an
existing label name, a new label will be created.

The order of the pod-specification parameters is significant. The Iirst one
listed will match the highest-numbered pod assigned to the machine
you’re using. Each pod specification after that is assigned to the
next-highest-numbered pod. This way they match the left-to-right
descending order of the pods you see on the Format display. Not
including enough pod specif icat ions resul ts in the lowest-numbered
pod(s) being assigned a value of zero (all channels excluded). If you
include more pod specifications than there are pods for that machine, the
extra ones will be ignored. However, an error is reported anytime more
than f ive pod specif icat ions are l is ted.

The polarity can be specified at any point after the label name.

Since pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (216-1). When giving the pod assignment in binary
(base 2), each bit will correspond to a single channel. A “1” in a bit
posi t ion means the associated channel in that pod is assigned to that pod
and bit. A “0” in a bit position means the associated channel in that pod is
excluded from the label. For example, assigning #B1111001100 is
equivalent to entering ” * * * *..+ *..’ through the front-panel user
interface.

A label can not have a total of more than 32 channels assigned to it.

The LABel query returns the current specification for the selected (by
name) label. If the label does not exist, nothing is returned. The polarity
is always returned as the first parameter. Numbers are always returned in
decimal format.

SFORmat Subsystem
11-6

HP 16528/1653B

LABel

Command Syntax: :MACHine(l (2):SFOFtmat:lABel <name > [, {c polarity> (<assignment>)]...

where:

-z n a m e > : : = s t r i n g o f u p t o 6 a l p h a n u m e r i c c h a r a c t e r s
< p o l a r i t y > :: = (Positive) NEGative}

-z a s s i g n m e n t > : : = f o r m a t (i n t e g e r f r o m 0 t o 6 6 6 3 6) f o r a p o d (p o d s a r e a s s i g n e d i n d e c r e a s i n g o r d e r)

Examples: OUTPUT XXX;“:MACHINE2:SFORMAT:LABEL ‘STAT’, POSITIVE. 65535,127.40312”

OUTPUT XXX;":MACHINE2:SFORMAT:LABEL ‘SIG l’, 64, 12, 0, 20, NEGATIVE"

OUTPUT XXX;":MACHINEl:SFORMAT:LABEL 'AOOR', NEG, #B0011110010101010”

Query Syntax: :MACHine{l~2}:SFOPmat:LABel?cname z=

RelUrrled Format: [:MACHine{l]2}:SFOFimat:LABel] <name> ,<polarity> [, <assignment>]... cNL>

Example: 10 DIM String$[lOO]
20 OUTPUT XXX;" :MACHINE2:SFORMAT:LABEL? 'DATA"

30 ENTER XXX String$
40 PRINT Strings
5 0 END

HP 16528/1653B SFORmat Subsystem
11-7

MASTer

MASTer command/query

The MASTer clock command allows you to specify a master clock for a
given machine. The master clock is used in all clocking modes (Normal,
Mixed, and Demultiplexed). Each command deals with only one clock
(J,K,L,M,N); therefore, a complete clock specification requires five
commands, one for each clock. Edge specifications (RISing, FALL@, or
BOTH) are ORed. Level specifications (LOW or HIGH) are ANDed.

Note d
At least one clock edge must be specified.

The MASTer query returns the clock specification for the specified clock.

Command Syntax: :MACHine{ 1 IO}:SFORmat:MASTer -z clock-id >, c clock-spec >

where:

c clock id > : : = (JIKIL1MjN)
< clock-spec > :: = (OFF1 Wing 1 FALLing 1 BOTH 1 LOW) HIGH}

Example: OUTPUT XXX ; ” :MACHINE2:SFORMAT:MASTER J , R I S I N G ”

Query Syntax: :MACHine{l (P]:SFORmat:MASTeR <clock-id>

Returned Format: [:MACHine{l (P):SFORmat:MABTer] <clock-id >, <clock-spec r < NL>

Example: 10 DIM String$[100]
20 OUTPUT XXX;“:MACHINE2:SFORMAT:MASTER?<clock_id>*’
30 ENTER XXX String$
40 PRINT String$
50 END

SFORmat Subsystem
11-8

HP 16528/1653B
Programming Reference

REMove

REMove command

The REMove command allows you to delete all labels or any one label for
a given machine.

Command Syntax: :MACHine{l J2):SFORmat:REMove {<name> JALL}

where:

c name > :: = string of up to 6 alphanumeric characters

Examples: OUTPUT XXX;":MACHINE2:SFORMAT:REMOVE 'A"'
OUTPUT XXX;":MACHINE2:SFORMAT:REHOVE ALL"

HP 1652Bll6536
Programming Reference

SFORmat Subsystem
11-9

SLAVe

SLAVe command/query

The SI.AVe clock command allows you to specify a slave clock for a given
machine. The slave clock is only used in the Mixed and Demultiplexed
clocking modes. Each command deals with only one clock (J,K,L,M,N);
therefore, a complete clock specification requires five commands, one for
each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.
Level specifications (LOW or HIGH) are ANDed.

Note
u
3

The slave clock must have at least one edge specified.

The SLAVe query returns the clock specification for the specified clock.

Command Syntax: :MACHine{ I l2):SFOFlmat:SLAVe <clock-id z , <clock-spec>

where:

<clock-id > : : = {JJKILJM(N}
< clock-spec > :: = (OFF1 RlSing 1 FALLlng) BOTH I LOW I HIGH)

Example: OUTPUT XXX;“:MACHINEZ:SFORMAT:SLAVE J, RISING”

Query Syntax: :MACHine{ 1 (P}:SFOFhat:SLAVe? <clock-id >

Returned Format: [:MACHine{ 1(2}:SFORmat:SLAVe] <clock-id >, cclock-spec > < NL>

Example: 10 DIM String$[lDD]
20 OUTPUT XXX;“:MACHINE2:SFORMAT:SLAVE? <clock-id>"

30 ENTER XXX String$
40 PRINT String$
50 END

SFORmat Subsystem
11-10

HP 16528/1653B
Programming Reference

THReshold

THReshold command/query

The THReshold command allows you to set the voltage threshold for a
given pod to ECL, TI’L, or a specific voltage from -99V to + 9.9V in 0.1
volt increments.

Note ”dl
On the HP 1652B, the pod thresholds of pods 1,2 and 3 can be set
independently. The pod thresholds of pods 4 and 5 are slaved together;
therefore, when you set the threshold on either pod 4 or 5, both thresholds
will be changed to the specified value. On the HP 1653B, pods 1 and 2 can
be set independently.

Command Syntax:

where:

<N>

c value >
TTL
ECL

Example:

Query Syntax:

Returned Format:

Example:

HP 1652B/l653B
Progmmming Reference

The THReshold query returns the current threshold for a given pod.

:MACHine{l]2}:SFORmat:THReshold<N> (TTLIECL] cvalue>}

::= pod number \1]2]3]4]5}
:: = voltage (real number) -9.9 to +9.9
:: = default value of + 1.6V
:: = default value of -1.3V

OUTPUT XXX;“:MACHINE1:SFORMAT:THRESHOLOl 4 . 0 ”

:MACHine{l(2}:SFORrnat:THReshold<N>7

[:MACHine{l)2}:SFORmat:THResholdc N>] < v a l u e > <NL>

1 0 D I M Value$ [loo]
20 OUTPUT XXX;“:MACHINE1:SFORMAT:THRESHOLO4?”
30 ENTER XXX;Value$
40 PRINT Valued

50 END

SFORmat Subsystem
11-11

STRace Subsystem 12
Introduction The STRace subsystem contains the commands available for the State

Trace menu in the HP 1652B/53B logic analyzer. The STRace subsystem
commands are:

l BRANch
0 FIND
l PREStore
l RANGe

l RESTart
l SEQuence
l STORe
l TAG
l TERM

space label-nme

stop-pattern

Figure 12-l. STRace Subsystem Syntax Diagram

HP 1652B/l653B
Programming Reference

STFIace Subsystem
12-1

RESTor t c

SEQuence? c

store-quahfier c

K---JSTORe<N>?

p a t t e r n

Figure 12-l. STRace Subsystem Syntax Diagram (continued)

STRace Subsystem HP 16528/1653B
12-2 Programming Reference

branch-qualifier = < qualifier >
to-lev-num = integer from 1 to trieget level when < N P- is less than or equal to the trigger level, or

from (trigger level + I) to <num-of-levels > when c N :, is greater than the trigger level
proceed-qualifier = c qualifier >
occurrence = numberfrom 1 to 65535
prestore-qua1 = -z qualifier >
label-uame = strtng of up to 6 alphanumeric characters
startgattem = “{#B{O(l} . . . (

~Qt~l~l~l~l~l~l~l~~~~~ I
#H{O~Z~2~3~4~5~6~7~8)9~A~B~C~DIE~F}. . . 1
(O~Z~2~3~4~5~6~7~8~9). . . }”

stopgattem = “{#B{OI 1). . . 1
#Qt~l~1213l415l617~~~ - I
#H{~~l~2~3~4~5~6~7~8I91AJBJCJDJEJF). . .)
(O~Z~2~3~4~5~6~7~8~9). . . }”

restart-qualifier = c qualifier >
num-of levels = integerfrom 2 to 8 when ARM is RUN orfrom 2 to 7 otherwise
lev-of-t& = integerfrom 1 to (number of existing sequence levels - I)
store_qualifier = < qualifier >
state-tagqualifier = < qualifier >
term-id = {AIBICIDJEIFIG(H}
pattern = “{#B{OIZ/X}. . . I

~Q~~l~l~l~l~l~l~l~l~~. . . I
#H{OlZ~2~3~4lSl6l7lSl9lA~BlC~DlEIF~X}. . . I
(0~Z~2~3~4~5~6~7~8~9). . . }”

qualifier = { ANYSrate (NOSTate I <any-term > I (expressionl[{AND I OR} cexpession2>]))
(eqression2[{AND I OR} <expression Z >I) }

any-term = { < or-terml > I c and-tennl > I < or-term2 > I and_tennZ}
expression1 = { <or-tetml>[OR <or-tennZ> J... 1 cand-tennZ>[AND <and-termI>]...}
expression2 = { < or-term2 > [OR < or-term2 >I... I < ar@term2 > [AND < and-tern12 >I... }
or-term1 = {AIB(C(D(ZNZ&ngeIOuTRange}
and-term1 = (NOTA 1 NO223 1 NOTCI NOTD (ZNRange (OUZYRange}
or-term2 = {EIFIGIH}
and-term2 = (NOTE) NOW) NOTG) NOTH}

Figure 12-l. STRace Subsystem Syntax Diagram (continued)

HP 1652B/l553B
Programming Reference

STRace Subsystem
12-3

STRace

STRace selector

The STRace (State Trace) selector is used as a part of a compound
header to access the settings found in the State Trace menu. It always
follows the MACHine selector because it selects a branch directly below
the MACHine level in the command tree.

Command Syntax: :MACHine{ 1 IP}:STRace

Example : OUTPUT XXX;":MACHINEl:STRACE:TAG TIME"

STRace Subsystem
124

HP 16528/16538

BRANch

BRANch

Note d

Note #I

command/query

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matched, it will cause the sequencer
to jump to the specified sequence level.

“RESTART PERLEVEL” must have been invoked for this command to
have an effect (see RESTart command).

The terms used by the branch qualifter (A through H) are defined by the
TERM command. The meaning of INRange and OUTRange is
determined by the RANGe command.

Within the l imita t ions shown by the syntax def ini t ions , complex
expressions may be formed using the AND and OR operators.
Expressions are limited to what you could manually enter through the
front panel. Regarding parentheses, the syntax definitions on the next
page show only the required ones. Additional parentheses are allowed as
long as the meaning of the expression is not changed. For example, the
following two statements are both correct and have the same meaning.
Notice that the conventional rules for precedence are not followed.

OUTPUT XXX;": MACHINEl:STRACE:BRANCHl (C OR D AN0 F OR G). 1"
OUTPUT XXX:":MACHINEl:STRACE:BRANCHl ((C OR D) AND (F OR G)), 1"

Fiie 12-2 shows a complex expression as seen on the Format display.

Branching across the trigger level is not allowed. Therefore, the values for
< N z= and < to-level-num > must both be either on or before the trigger
level, or they must both be after the trigger level. The trigger level is
determined through the SEQuence command.

The BRANch query returns the current branch qualifier specification for
a given sequence level.

HP 16528/1653B
Progmmming Reference

STRace Subsystem
12-5

BRANch

Command Syntax:

where:

<N>
c to-level-number >

-z number of levels>- -
<branch-qualifier >

-zany-term >
< expression1 >
< expression2 >

< or-term1 >

<and t e r m 1 >

car termi!>
<: and term2 >

Examples:

Query Syntax

Returned Format:

Example:

STRace Subsystem
12-6

:MACHine{ 1 i 2):STRace:BBANch < N > <branch-qualifier >, c to-level-number >

:: = an integer from 1 to <number of levels>- -
:: = integer from 1 to trigger level, when c N > is less than or equal to the trigger level

or from (trigger level + 1) to <number-of-levels >, when < N > is greater than the
trigger level

:: = integer from 2 to the number of existing sequence levels (maximum 8)
: : = { ANYState i NOSTate i < a n y - t e r m Z= i

(<expression 1 > [{AND i OR} < expression2 z= 1) i
(cexpression2>[{ANDlOFt} <expression1 >I))

: : = { <or-term1 z= i <and-term1 > i c o r - t e r m 2 > i -z a n d - t e r m : ! > }

: : = { <or-term1 >[OR car-term1 >I... i <and-term1 >[AND <and-term1 >I...}
: : = { cor_term2> [OR <or_term2>]...) <and_term2> [AND <and_term2>]...}

: : = {AiBiCiDiINRangeiOUTFlange}

:: = { NOTAl NOTB i NOTC i NOTD I INRange i OLlTBange)

: : = {EiFiGiH)

:: = {NOTE i NOTF i NOTG (NOTH}

OUTPUT XXX;“:MACHINEl:STRACE:BRANCHl ANYSTATE, 3”
OUTPUT XXX:“:MACHINE2:STRACE:BRANCHE A . 7 ”
OUTPUT XXX:“:MACHINEl:STRACE:BRANCHJ ((A OR 6) OR NOTG). 1”

:MACHine{l i2):STRace:BBANch -zN>‘?

[MACHine{ i2}:STBace:BBANch<N>jc branch~qualifier>,eto~level~num~ <NL>

10 DIM String$[lOO]
20 OUTPUT XXX;” :MACHINEl:STRACE:BRANCH3?”
30 ENTER XXX;String$
40 PRINT String$

50 END

HP 16628/1663B
Programming Reference

BRANch

‘igure 12-2. Complex qualifier

Fiie 12-2 is a front panel representation of the complex qualifier
(a Orb) And (+e And A). The following example would be used to
specify this complex qualifier.

OUTPUT XXX;" :MACHINEl:STRACE:BRANCHl ((A OR 6) AND (NOTE AND NDTH)), 2"

Terms A through D and RANGE must be grouped together and terms
E through I-I must be grouped together. In the first level, terms from
one group may not be mixed with terms from the other. For example, the
expression ((A OR INRANGE) AND (C OR H)) is not allowed because
the term C cannot be specified in the E through H group.

Keep in mind that, at the first level, the operator you use determines
which terms are available. When AND is chosen, only the NOT terms
may be used. Either AND or OR may be used at the second level to join
the two groups together. It is acceptable for a group to consist of a single
term. Thus, an expression like (B AND G) is legal, since the two
operands are both simple terms from separate groups.

HP 16528/1653B
Programming Reference

STRace Subsystem
12-7

FIND

FIND command/query

The FIND command defines the proceed qualifier for a given sequence
level. The qualifier tells the state analyzer when to proceed to the next
sequence level. When this proceed qualifier is matched the specified
number of times, the sequencer will proceed to the next sequence level.
The state that causes the sequencer to switch levels is automatically stored
in memory whether it matches the associated store qualifier or not. In the
sequence level where the trigger is specified, the FIND command
specifies the trigger qualifier (see SEQuence command).

The terms A through H are defined by the TERM command. The
meaning of INRange and OUTRange is determined by the RANGe
command. Expressions are limited to what you could manually enter
through the Format menu. Regarding parentheses, the syntax definitions
below show only the required ones. Additional parentheses are allowed
as long as the meaning of the expression is not changed. See figure 6-2 for
a detailed example.

The FIND query returns the current proceed qualifier specification for a
given sequence level.

Command Syntax: :MACHine{ 1]2):STRaoe:FlND< N > <: proceed-qualifier z , c ooourrenoe r

where:

cN>
< ooourrenoe >

-z proceed-qualifier >

-zany-term z-
-z expression 15
-z expression2 >

<or-term1 >
-z and-term 1~

-z or-term2 >

< and-term2 >

:: = integer from 1 to the number of existing sequence levels (maximum 8)

:: = integer from 1 to 88885

:: = { ANYState] NOSTate] <any-term >]
(<expression1 > [{ANDIOR} <expression2>])]

(< expression2 r [{AND (OR} -z expression 1 z- 1) }
: : = {<or-terml> I <and-terml>) <or_term2> I <and_term2>}
:: = { <or-term1 > [OR <or-term1 >I..,) <and-term1 > [AND cand-term1 >I...}
:: = (-zor_term2> [OR <or-termi!>]... I <and_term2> [AND -=and_term2>]...}
::= {A]B]CJD(INRange]OUTRange}
:: = { NOTAJ NOTB] NOTC) NOTD I INRange] OUTRange}
::= {EIFJGIH)

:: = {NOTE I NOTF I NOTG I NOTH}

STRace Subsystem
12-8

HP 16528/1653B

FIND

Examples: OUTPUT xxx ;" :HACHINEl:STRACE:FINDl ANYSTATE. 1”

OUTPUT XXX;" :MACHINEl:STRACE:FIND2 A, 512"

OUTPUT XXX;":MACHINEl:STRACE:FIND3 ((NDTA AND NDTB) OR G), 1"

Query Syntax: :MACHlns{l~2}:STRace:FIND47

Returned Format: [:MACHtne{l JP}:STFWe:FIND<N>] <proceed-qualifier >, coccurrencez <NL>

Example: 10 DIM String$[lDD]
20 OUTPUT XXX;" :MACHINEl:STRACE:FIND<N>?"
30 ENTER XXX;String$
40 PRINT Strings

50 END

HP 16528/1’6538
Programming Reference

STRace Subsystem
12-9

PREStore

PREStore command/query

The PREStore command turns the prestore feature on and off. It also
defines the qualifier required to prestore only selected states. The terms
A through H are defmed by the TERM command. The meaning of
INRange and OUTRange is determined by the RANGe command.

Expressions are limited to what you could manually enter through the
Format menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 12-2.

The PREStore query returns the current prestore specification.

Command Syntax: :MACHine{ 1 IP}:STRace:PREStore {OFF 1 < prestore-qualifier > }

where:

-c p r e s t o r e - q u a l i f i e r > :: = { ANYState 1 NOSTate 1 <any-term > I
(-z e x p r e s s i o n 1 z [{ A N D I OR} -z e x p r e s s i o n 2 z 1) I

(csxpression2> [{ANDJOR) <expression1 >I) }
c any-term > :: = { <or-term1 > I <and-term1 z I cor_term2>) <and_term2>}

< e x p r e s s i o n 1 > :: = { <or-term1 > [OR <or-term1 >I... I <and-term1 > [AND <and-term1 >I...}
< expression2 > ::= { -zor_term2>[OR <or_term2>]... I cand_term2>[AND <and_term2>]...}

car terml> : := {AIB~C~DIINRange~OUTRange}

< a n d - t e r m 1 > : : = (NOTAl N O T B I NOTC I NOTD) INRange I OUTRange}
<or-term:!> : := (EIFIGIH}

< and-term2 > : := {NOTE(NOTF(NOTG(NOTH]

STRace Subsystem
12-10

PREStore

Examples: OUTPUT XXX;":MACHINEl:STRACE:PRESTORE OFF"
OUTPUT XXX;":MACHINEl:STRACE:PRESTORE ANYSTATE"

OUTPUT XXX;":MACHINEl:STRACE:PRESTORE (E)"

OUTPUT XXX;":MACHINEl:STRACE:PRESTORE (A OR B OR II OR F OR H)"

Query Syntax: :MACHine{l IP}:STRace:PREStore?

~eturrled Format: [:MACHine{ 1[2}:STFiace:PREStore] {Off 1-c prestore-qualifier >) -z NL >

Example: 10 DIM String$[lOO]
20 OUTPUT XXX;":MACHINEl:STRACE:PRESTORE?"

30 ENTER XXX;String$
40 PRINT String$

50 END

HP 1652Wl653B
Programming Reference

STFiacs Subsystem
12-l 1

RANGe

RANGe command/query

The RANGe command allows you to specify a range recognizer term in
the specified machine. Since a range can only be defined across one label
and, since a label must contain 32 or less bits, the value of the start pattern
or stop pattern will be between (232)-1 and 0.

Note d
Since a label can only be defined across a maximum of two pods, a range
term is only available across a single label; therefore, the end points of the
range Cannot be split between labels.

Note d

When these values are expressed in binary, they represent the bit values
for the label at one of the range recognizers’ end points. Don’t cares are
not allowed in the end point pattern specifications. Since only one range
recognizer exists, it is always used by the first state machine defmed.

The FMNGe query returns the range recognizer end point specifications
for the range.

When two state analyzers are on, the RANGe term is not available in the
second state analyzer assigned and there are only 4 pattern recognizers
per analyzer.

STRace Subsystem
12-12

HP 1652~/1663B

FlANGe

Command Syntax: :MACHine(l(2):STRace:RANGE clabelpame 7, <startJattern 7,4Opgattern 7

where:

< labe l -name > :: = string of up to 6 alphanumeric characters
< startgattern > : : = “{#B{0l1}. *. 1

#Q{Oll)2)3)4)5)617}. . . 1

#H{Oll~2~3~4~5~6~7~8~9~A)BICIDIEIF). . . /
{0(1~2~3~4(5(6~7~8(9}. . .)”

-z stopgaltern z : : = “{#B{OIl} . I

XQ{OIl~2~3(4(5~6~7}. . . 1

#H{Oll l2~3~4~5l6l7~8~9~A~BIC(D(E(F). . . I

(~1~1~1~1~1~161~1~1~). . . I”

Examples: OUTPUT XXX;":MACHINEl:STRACE:RANGE 'DATA', '127', '255' w
OUTPUT XXX;":MACHINEl:STRACE:RANGE 'ABC', ‘XBOOOO1111’, ‘#HCF’ I’

Query Syntax: :MACHine{l I2):STRace:RANGe?

Returned Format: [:MACHine(l IP}:STFWce:FWGe]
< label-name > , c startgattern 7, e stopgattern 7 < NL >

Example: 10 DIM String$[lOO]
20 OUTPUT XXX;“:MACHINEl:STRACE:RANGE?”

30 ENTER XXX;String$

40 PRINT Strings
50 END

HP 1652B/l653B
Programming Reterence

STRace Subsystem
12-13

RESTatt

RESTart command/query

The RESTart command selects the type of restart to be enabled during
the trace sequence. It also defines the global restart qualifier that restarts
the sequence in global restart mode. The qualifier may be a single term or
a complex expression. The terms A through H are defined by the TERM
command. The meaning of INRange and OUTRange is determined by
the RANGe command.

Expressions are limited to what you could manually enter through the
Format menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 12-2.

The RESTart query returns the current restart specification.

Command Syntax: :MACHine{l IP}:STRace:RESTart {OFF 1 PERLevel 1 <restart-qualifier>}

where:

< restar?_qualifier >

c any-term >
< e x p r e s s i o n 1~

< e x p r e s s i o n 2 >
< or-term1 >

<and term1 1
<or term2s

<and term2 z

:: = { ANYState 1 NOSTate 1 <any-term > 1

(< expression1 > [{AND 1 OR} c expression2 r]) (
(cexpression2> ({AND)OR} <expression1 z-1) }

:: = { <or-term1 z= I <and-term1 > I <or_term2> I -zand_term2>}

:: = {<or-term1 > [OR <or-term1 a]... I <and-term1 5 [AND <and-term1 a]...)
::= {cor_term2>[0R <or-term:!>]... I <and_term2>[AND <and_term2>]...}

::= {AIBJCIDIINRangelOUTRange}
: : = { NOTA I NOTB I NOTC) NOTD I INRange I OUTRange}
: := {EIFJGIH}
: := {NOTEINOTFINOTGINOTH}

Examples: OUTPUT XXX;" :MACHINEl:STRACE:RESTART OFF"

OUTPUT XXX;":MACHINEl:STRACE:RESTART PERLEVEL"

OUTPUT XXX;**:MACHINE~:STRACE:RESTART (NOTA AND NOTE AND INRANGE)"
OUTPUT XXX;":MACHINEl:STRACE:RESTART (B OR (NOTE AND NOTF))"

STRace Subsystem
12-14

HP 16528/1653B

RESTart

Query Syntax: :MACHine{l ~2):STFiace:RESTaK)

Returned Format: [:hdACHine{l IP}:STFtace:RESTart] {OFF 1 PERLevel [<restart-qualifier>) -zNL>

Example: 10 DIM String$[lOO]
20 OUTPUT XXX;" :MACHINEl:STRACE:RESTART?"

30 ENTER XXX;String$

40 PRINT Strings

50 END

HP 1652Bll653B
Progmmming Reference

STRace Subsystem
12-15

SEQuence

SEQuence command/query

The SEQuence command redefines the state analyzer trace sequence.
Fist, it deletes the current trace sequence. Then it inserts the number of
levels specified, with default settings, and assigns the trigger to be at a
specitied sequence level. The number of levels can be between 2 and 8
when the analyzer is armed by the RUN key, When armed by the BNC or
the other machine, a level is used by the arm in; therefore, only seven
levels are available in the sequence.

The SEQuence query returns the current sequence specification.

Command Syntax: :MACHine{ 1 ~2):STRaoe:SEQuence < number-of-levels z , <level-of-trigger >

where:

<number o f l e v e l s >- - :: = integer from 2 to 8 when ARM is RUN or from 2 to 7 otherwise

<level of trigger>- - :: = integer from 1 to (number of existing sequence levels - 1)

Example: OUTPUT XXX;” :MACHINEl:STRACE:SEQUENCE 4 . 3 ”

Query Syntax: :MACHine(l~2):STRaae:SEOuence?

Returned Format: [:MACHine{ 1 l2}:STRace:SEQuence]
< number of levels >, <level of- - trigger > < NL >- -

Example: 10 DIM String$[lOO]
20 OUTPUT XXX;“:MACHINEl:STRACE:SEQUENCE?”
30 ENTER XXX;String$
40 PRINT StringS

50 END

STRace Subsystem
12-16

HP 16528/16538
Programming Reference

STORe

STORe command/query

The STORe command defines the store qualitier for a given sequence
level. Any data matching the STORe qualifier will actually be stored in
memory as part of the current trace data. The qualifier may be a single
term or a complex expression. The terms A through H are defined by the
TERM command. The meaning of INRange and OUTRange is
determined by the RANGe command.

Expressions are limited to what you could manually enter through the
Format menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 12-2.

The STORe query returns the current store qualifier specification for a
given sequence level < N > .

Command Syntax: :MACHine{ 1)P}:STFtaoe:STOFte c N > <store-qualifier >

where:

cN>
c store-qualifier >

-zany-term >

<expression 1 >
< expression2 5

<or term1 >
-z and-term 1~

car term2>
<and-term:! >

:: = an integer from 1 to the number of existing sequence levels (maximum 8)

:: = { ANYState 1 NOSTate (<any-term > 1
(-z expression 1 > [{AND I OR} <expression2 > 1))

(< expression2 > [{AND 1 OR} c expression 1~]) }
:: = { <or-term1 > I <and-term1 z= I <or-term2 > I <and_term2> }
:: = { <or-term1 > [OR <or_terml >I... 1 <and-term1 > [AND <and-term1 >I...)

::= {<or-ten2>(OR cor_term2>]... (cand_term2>[AND <and_term2>]...}
::= {A~BICIDIINRange(OUTFlange)

:: = { NOTAJ NOTB I NOTC I NOTD(INRange I OUTRange}
::= {EIFIGJH}
::= (NOTEINOTFINOTG~NOTH}

HP 1652B/leSSB
Progmmming Reference

STRace Subsystem
12-17

STORe

fhamph?S: OUTPUT XXX;" :MACHINEl:STRACE:STOREl ANYSTATE"
OUTPUT XXX;":MACHINEl:STRACE:STORE2 OUTRANGE"
OUTPUT XXX;":MACHINEl:STRACE:STORE% (NOTC AND NOTD AND NOTH)"

Query Syntax: :MACHine{l(2}:STFtace:STORe~N~?

Returned Format: [:MACHine{ 1 J2):STFtace:STORe c N z-1 <store-qualifier > c NL>

Example: 10 DIM String$[lOO]
20 OUTPUT XXX;":MACHINEl:STRACE:STORE4?"

30 ENTER XXX;String$
40 PRINT Strings
50 END

STRace Subsystem
12-18

HP 18528/1883B
Programming Reference

TAG command/query

The TAG command selects the type of count tagging (state or time) to be
performed during data acquisition. State tagging is indicated when the
parameter is the state tag qualifier, which will be counted in the qualified
state mode. The qualifier may be a single term or a complex expression.
The terms A through H are defined by the TERM command. The terms
INRange and OUTRange are defined by the RANGe command.

Expressions are limited to what you could manually enter through the
Format menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. A detailed example is provided
in figure 12-2.

Because count tagging requires a minimum clock period of 60 ns, the
CPERiod and TAG commands are interrelated (the CPERiod command
is in the SFORmat subsystem). When the clock period is set to Less
Than count tagging is turned off. When count tagging is set to either state
or time, the clock period is automatically set to Greater Than.

The TAG query returns the current count tag specification.

Command Syntax: MACHine{ IP}:STFlace:TAG {OFF) TIME) <state-tag-qualifier>)

where:

<state-tag-qualifier > :: = (ANVState 1 NOSTate 1 -zany-term > I

c any-term >
<expression 1 z
c expression2 z

<or-term1 >
<and-term 1 >

< or-term2 >
c and term2 >

HP 19528/1653B
Programming Reference

(<expression1 > [{ANDJOR} <expression2>]))
(cexpression2> [{ANDIOR} cexpressionl >I) }

:: = { <or-term1 > I <and-term1 > 1 <or_term2> I <and-term2 z- }
:: = { <or-term1 > [OR <or-term1 >I...) <and-term1 >[AND <and-term1 z-l...)
:: = { -zor_term2> [OR <or_term2z]... I <andterm2> [AND <and_term2>]...}

::= {AIBICIDIINRangeIOUTRsnge)
:: = { NOTAJ NOTB I NOTC I NOTD I INRange 1 OUTRange}

::= {EIFIGIH}
::= {NOTEINOTFINOTGINOTH}

STRace Subsystem
12-19

TAG

Examples: OUTPUT XXX;":MACHINEl:STRACE:TAG OFF"

OUTPUT XXX;":MACHINEl:STRACE:TAG TIME"
OUTPUT XXX;":MACHINEl:STRACE:TAG (INRANGE OR NOTF)"

OUTPUT XXX;":MACHINEl:STRACE:TAG ((INRANGE OR A) AND E)"

Query Syntax: :MACHine{lJ2}:STRace:TAG?

Returned Format: [:MACHine{lI2}:STRace:TAG] {OFFJTIME]<state-tag-qualifier>}cNLs

Example: 10 DIM String$[lOO]

20 OUTPUT XXX;":MACHINEl:STRACE:TAG?"
30 ENTER XXX;String$

40 PRINT Stringf
50 END

STRace Subsystem
12-20

HP 1652Wl663B
Programming Reference

TERM

TERM command/query

The TERM command allows you to a specify a pattern recognizer term in
the specified machine. Each command deals with only one label in the
given term; therefore, a complete specification could require several
commands, Since a label can contain 32 or less bits, the range of the
pattern value will be between 232 - 1 and 0. When the value of a pattern is
expressed in binary, it represents the bit values for the label inside the
pattern recognizer term. Since the pattern parameter may contain don’t
cares and be represented in several bases, it is handled as a string of
characters rather than a number.

When a single state machine is on, all eight terms (A through H) are
available in that machine. When two state machines are on, terms A
through D are used by the first state machine defmed, and terms E
through H are used by the second state machine defined.

The TERM query returns the specification of the term specified by term
identification and label name.

Command Syntax: :hlACHine{ 1 jP):STRace:TERM <term-id >, c label-name >, <pattern >

where:

-z term-id > ::= (AIBJCJDIEIFIGIH}
-z label-name z :: = string of up to 6 alphanumeric characters

c pattern > :: = ‘{#B{O) 1 IX) . . . 1

+Q{O~l~2~3l4~SlSl7lX}. . . (

#H{OIl~2~3(4~5~6~7~6~g~AlB(clolEIF~X}. . . I
{Oil ~2~3~4~5(6)7~8~9}. . , }’

Example: OUTPUT XXX;":HACHINEl:STRACE:TERM A,'DATA','255' -

OUTPUT XXX;":MACHINEl:STRACE:TERM B,‘ABC’,‘#BXXXXllOl’ 11

HP 16528/1653B
Programming Reference

STRace Subsystem
12-21

TERM

Query Syntax: :MACHine{l ~P}:STFke:TERM? <term-id z=, -c label-name >

Returned Format: [MACHine{ 1 I2):STRAce:TERM] <term-id z=, <label-name > , c pattern > < NL>

Example: 10 DIM String$[lOO]
20 OUTPUT XXX;":MACHINEl:STRACE:TERM? B.'DATA' w

30 ENTER XXX;String$
40 PRINT String$

50 END

STRace Subsystem
12-22

HP 16528/1653B

SLISt Subsystem 1 3
Introduction The SLISt subsystem contains the commands available for the State

Listing menu in the HP 1652B/53B logic analyzer. These commands are:

0 COLumIl
l DATA
0 LINE!
l MMODe
l OPATtem
l OSEarch
l OSTate
l OTAG
l RUNTil
l TAVerage
l TMAXimum
l TMINimum
l VRUNs
l XOTag
l XPATtem
l XSEarch
l XSTate
l XTAG

HP 16528/16538
Programming Reference

SUST Subsystem
13-l

4- l a b e l - n a m e

l i n e - n u m b e r

4 L I N E ?) I

PATTer n

STATe~ E3TIME

MSTots

MODe?

Figure 13-l. SLlSt Subsystem Syntax Diagram

SLIST Subsystem
13-2

HP 16528/1653B

time-value

Figure 13-l. SLlSt Subsystem Syntax Diagram (continued)

HP 1652B/l653B
Programming Reference

SLIST Subsystem
13-3

module-num = {11213)4/5}
math-num = { 112)
col-uum = {1(2(314(5(6(718}
line-number == integerfrom -1023 to + 1023
label-name = a strirtg of up to 6 alphanumeric character
base = { BINary 1 HEXadecimal) OCTul 1 DECimal 1 ASCii 1 SMMBol IL4SSembler) for labels or

{ABSolute IRELative} for tags
line~num~mid~screen = integerfrom -1023 to + 1023
labelqatteru = “(#B(OJ 11X). . .)

~Q~~l~1~l~l~l~l~l~l~~. . . I
#H{0(1~2~3~4~5~6)7)8~9~AJBICIDIE(F(X}. . . 1
(0~1~2~3~4~5~6~7~8~9). . . }”

occurrence = integerfrom -1023 to + 1023
time-value = real number
state-value = real number
run-until-spec = (OFF I LT, < value >) GT, < value > I INRange, -z value >, < value > I

OUTRange, < value >, < value > }
value = real number

Figure 13-l. SLlSt Subsystem Syntax Diagram (continued)

SUST Subsystem
13-4

HP 16528/16538
Programming Reference

SLlst

SLlSt selector

The SLISt selector is used as part of a compound header to access those
settings normally found in the State Listing menu. It always follows the
MACHine selector because it selects a branch directly below the
MACHine level in the command tree.

Command Syntax: :MACHine{l p}:sust

Example: OUTPUT XXX;" :MACHINEl:SLIST:LINE 256"

HP 16528/16538 SUST Subsystem
Programming Reference 185

COLumn

COLumn

Command Syntax:

where:

< col-num >
< module-num >

<label-name >
<base z-

command/query

The COLumn command allows you to configure the state analyzer
list display by assigning a label name and base to one of the eight vert ical
columns in the menu. A column number of 1 refers to the left most
column. When a label is assigned to a column it replaces the original label
in that column. The label originally in the specified column is placed in
the column the specified label is moved from.

When the label name is “TAGS,” the TAGS column is assumed and the
next parameter must specify RELative or ABSolute.

The optional machine number specifies the machine number of another
time-correlated machine. If the machine number is not specified, the
selected machine is assumed.

The COLumn query returns the column number, label name, and base for
the specified column.

:MACHine{ 1 IP}:SLISt:COLumn ccol-num > [,MACHine{ 112}],
c label name >, < base >

::= {1~2~3~4~5~6~7~8}
::= {11213)415}
:: = a string of up to 6 alphanumeric characters

:: = { BlNary (HEXadecimal I OCTal I DECimal 1 ASCii I SYMBol I IASSembler} for labels

or

:: = {ABSolute 1 RELative} for tags

Note ”4
A label for tags must be assigned in order to use ABSolute or RELative
state tagging.

Examples: OUTPUT XXX;":MACHINEl:SLIST:COLUMN 4,2,MACHINEl.'A',HEX"
OUTPUT XXX;":MACHINEl:SLIST:COLUMN 1,2,MACHINEl,'TAGS'. ABSOLUTE"

SLIST Subsystem
13-6

HP 16528/1653B
Programming Reference

COLumn

Query Syntax: :MACHine{ 1 jP}:SLISt:COLumn? c col-num >

Returned Format: [:MACHine{ 1 IP}:SLISt:COLumn] <cot-num > ,MACHine{ 112},

<label-name >, c base > -c NL>

Example: 10 DIM c1$[100]
20 OUTPUT XXX;” :MACHINEl:SLIST:COLUMN? 4 ”
30 E N T E R XXX;Cl$

40 PRINT Cl$
5 0 END

HP 16528/1653B SLIST Subsystem
13-7

DATA

DATA query

The DATA query returns the value at a specified line number for a given
label. The format will be the same as the one shown in the Listing display
except for ASCII, Symbols, or Inverse Assembly which will be returned in
HEX.

Query Syntax: :MACHine{ 1[2}:SLISt:DATA? <line-number B, <label-name >

Returned Format: [:MACHine{lI2}:SLISt:DATA]

<line-number >, < label-name >, <pattern-string > c NL >

where:

<line number > :: = integer from -1023 to + 1023

<label name > :: = string of up to 6 alphanumeric characters

<pattern-string > :: = “{#El{01 1 IX} . 1

#~{Oll~2~3~4~5~6~7IX}... 1
#H{Oll~2~3~4~5~6~7~8~9(AlBICIDIEIFIX). . I

{Oil ~2~3~4~5~6~7~8~9). . }”

Example: 10 DIM Sd$[lOO]
2 0 OUTPUT XXX;“:MACHINEl:SLIST:OATA? 512. ‘RAS’”

3 0 ENTER XXX;Sd$

4 0 PRINT Sd$

5 0 E N D

SLIST Subsystem
13-8

HP 18528/1653B
Programming Reference

LINE

LINE

Command Syntax:

where:

cline num mid sc reen >- - -

Example:

Query Syntax:

Returned Format:

Example:

HP 16!526/1653B
Programming Reference

command/query

The LINE command allows you to scroll the state analyzer listing
vertically. The command specifies the state line number relative to the
trigger that the analyzer will be highlighted at center screen.

The LINE query returns the line number for the state currently in the
box at center screen.

:MACHine{ lI2}:SLISt:LINE c line-num-mid-screen >

:: = integer from -1023 to + 1023

OUTPUT XXX;“:MACHINEl:SLIST:LINE 0”

:MACHine{l IP):SLISt:LINE?

[MACHine{ jP}:SLlSt:LINE] ~line~num~mid~soreen> <NL>

1 0 DIM Ln$[lOO]

20 OUTPUT XXX;“:MACHINEl:SLIST:LINE?”
30 ENTER XXX:Ln$
40 PRINT Ln$
5 0 END

SLIST Subsystem
13-9

MMODe

MMODe command/query

The MMODe command (Marker Mode) selects the mode controlling the
marker movement and the display of marker readouts. When PAlTern is
selected, the markers will be placed on patterns. When STATe is selected
and state tagging is on, the markers move on qualified states counted
between normally stored states. When TIME is selected and time tagging
is enabled, the markers move on time between stored states. When
MSTats is selected and time tagging is on, the markers are placed on
patterns, but the readouts will be time statistics.

The MMODe query returns the current marker mode selected.

Command Syntax: :MACHine{l I2):SLISt:MMODe <marker-mode>

where:

<marker mode> :: = {OFF) PATTern 1 STATe 1 TIME) MSTats}

Example: OUTPUT XXX;":MACHINE1:SLIST:MMODE TIME"

Query Syntax: :MACHine{l j2):SLISt:MMODe?

Returned Format: [:MACHine{ 1 I2):SLlSt:MMODe] c marker-mode > -z NL>

Example: 10 DIM Mn$[lOO]

20 OUTPUT XXX;":MACHINE1:SLIST:MMOOE?"
30 ENTER XXX;Mn$
40 PRINT Mn$
50 END

SUST Subsystem
13-10

HP 1652B/l653B

OPATtern

OPATtern command/query

The OPATtem command allows you to construct a pattern recognizer
term for the 0 Marker which is then used with the OSEarch criteria when
moving the marker on patterns. Since this command deals with only one
label at a time, a complete specification could require several invocations.

When the value of a pattern is expressed in biiary, it represents the bit
values for the label inside the pattern reco@zer term. In whatever base
is used, the value must be between 0 and 2 - 1, since a label may not have
more than 32 bits. Because the c labelgattern > parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

The OPATtern query returns the pattern specification for a given label
name.

Command Syntax: :MACHine{ 1 IP}:SLISt:OPATtern <label-name z=, < labelgattern >

where:

c label-name > :: = string of up to 6 alphanumeric characters
< labelgattern > :: = “{#B{OI 1 IX} . . . 1

XQ{O~1~2~3(4~5~6~7~X}. . . 1
XH{O~1~2~3~4~5~6~7~8ISIAIBICIDIE(FIX). . . I
(Oll~2~3~4~5~6~7~8~9). . . }”

Examples: O U T P U T XXX;“:MACHINEl:SLIST:OPATTERN ‘OATA’,’ 1,

OUTPUT XXX;“:MACHINEl:SLIST:OPATTERN ‘ABC’.‘#BXXXXllOl’ 11

HP 16528/1663B
Programming Reference

SLIST Subsystem
13-11

OPATtern

Query Syntax: :MACHine{ 1 IP}:SLISt:OPATtern? c label-name >

fbturned Format: [:MACHine{ 1 JP}:SLISt:OPATtern] c label-name > , -z label-pattern z- -z NL>

Example: 10 DIM Dp$[lOO]
20 OUTPUT XXX;" :MACHINEl:SLIST:OPATTERN? 'A"'

30 ENTER XXX;Op$
40 PRINT Op$

50 END

SUST Subsystem
13-12

HP 16528/16538

OSEarch

OSEarch command/query

The OSEarch command defines the search criteria for the 0 marker,
which is then used with associated OPATtem recognizcr
specification when moving the markers on patterns. The origin parameter
tells the marker to begin a search with the trigger, the start of data, or with
the X marker. The actual occurrence the marker searches for is
determined by the occurrence parameter of the OPATtem
recognizer specification, relative to the origin. An occurrence of 0 places
the marker on the selected origin. With a negative occurrence, the marker
searches before the origin. With a positive occurrence, the marker
searches after the origin.

The OSEarch query returns the search criteria for the 0 marker.

Command Syntax: :MACHine{ 1 I2):SLISt:OSEarch <occurrence >, < origin >

where:

<occurrence z- :: = integer from -1023 to + 1023
<origin > :: = {TRIGger 1 STARt IXMARker}

Example: OUTPUT XXX;“:MACHINEl:SLIST:OSEARCH +lO,TRIGGER”

Query Syntax: :MACHine{ 1 IP}:SLISt:OSEarch?

f%?tUrIWd Format: [:MACHine{ 1)P):SLISt:OSEarch] <occunence> , <origin > -z NL>

Example: 10 OIM 0s$[100]
20 OUTPUT XXX;“: MACHINEl:SLIST:OSEARCH?”
30 E N T E R XXX:Os$
40 PRINT Os$
5 0 END

HP 16528/1653B
Programming Reference

SUST Subsystem
13-13

OSTate

OSTate wry

The OSTate query returns the line number in the listing where the 0
marker resides (-1023 to + 1023). If data is not valid, the query returns
32767.

Query Syntax: :hWHine{l ~P}:SLlst:OSTate?

fl&.lrIWd Format: (:MACHine{l (P):SLlSt:OSTate] <state-num > -zNL>

where:

c state-num > :: = an integer from -1023 to + 1023, or 32767

Example: 10 DIM o~S[loo]
'20 OUTPUT XXX;":MACHINEl:SLIST:OSTATE?"

30 ENTER XXX;Os$
40 PRINT Os$

50 END

SUST Subsystem
13-14

HP 1652B/l653B
Programming Reference

OTAG

OTAG command/query

The OTAG command specifies the tag value on which the 0 Marker
should be placed. The tag value is time when time tagging is on or states
when state tagging is on. If the data is not valid tagged data, no action is
performed.

The OTAG query returns the 0 Marker position in time when time
tagging is on or in states when state tagging is on, regardless of whether
the marker was positioned in time or through a pattern search. If data is
not valid, the query returns 9.9E37 for time tagging, 32767 for state
tagging.

Command Syntax: :MACHine{l(2):SLlSt:OTAG { dime-value7 1 estate-value 7)

4 time value 7 :: = real number
-z state-value > :: = integer

Example: :OUTPUT XXX;" :MACHINEl:SLIST:OTAG 40.OE-6"

Query Syntax: :MACHine{l J2}:SLlSt:OTAG?

Returned Format: (:MACHine{l(2):SLlSt:OTAG] { dime-value.7 (<state-value 7) < NL>

Example: 10 DIM OtS[loo]
20 OUTPUT XXX:":MACHINEl:SLIST:OTAG?"

30 ENTER XXX;Ot$
40 PRINT Ot$
50 END

HP 1652B/l653B
Progmmming Reference

SUST Subsystem
13-15

RUNTiI

RUNTil command/query

The RUNTil (run until) command allows you to defme a stop condition
when the trace mode is repetitive. Specifying OFF causes the analyzer to
make runs until either the display’s STOP field is touched or the STOP
command is issued.

There are four conditions based on the time between the X and 0
markers. Using this difference in the condition is effective only when time
tags have been turned on (see the TAG command in the STRace
subsystem). These four conditions are as follows:

l The difference is less than (LT) some value.
l The difference is greater than (GT) some value.
l The difference is inside some range (INRange).
l The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 10 ns apart
since this is the minimum time resolution of the time tag counter.

There are two conditions which are based on a comparison of the
acquired state data and the compare data image. You can run until one of
the following conditions is true:

l Compare Equal (EQUal) - Every channel of every label has the
same value.

l Compare not equal (h’EQual) - Any channel of any label has a
different value.

The RUNTil query returns the current stop criteria.

Note fl
3

The RUNTil instruction (for state analysis) is available in both the SLISt
and COMPare subsystems.

SLIST Subsystem
13-16

HP 16528/1653B
Programming Reference

RUNTil

Command Syntax: :MACHine{ 1 ~2):SLISt:RUNTil <run-until-spec>

where: I

c run-until-spec > :: = (OFF1 LT, <value z= JGT, <value > 1 INRange, <value >, <value >
IOUTRange, <value>,<value> IEOUaljNEQual}

<value> :: = real number from -9E9 to +9E9

Example: OUTPUT XXX;":MACHINEl:SLIST:RUNTIL GT,800.OE-6"

Query Syntax: :hMCHine{l ~2}:SLISt:RUNTil?

Returned Format: [:MACHine{ 1 I2}:SLISt:RUNTil] <run-until-spec> c NL>

Example: 10 DIM Ru$[lOO]
20 OUTPUT XXX;":MACHINEl:SLIST:RUNTIL?"

30 ENTER XXX;Ru$
40 PRINT Ru$

50 END

HP 16528/16538 SUST Subsystem
13-17

TAVerage

TAVerage query

The TAVerage query returns the value of the average time between the X
and 0 Markers. If the number of valid runs is zero, the query returns
9.9E37. Valid runs are those where the pattern search for both the X and
0 markers was successful, resulting in valid delta-time measurements.

Query Syntax: :MACHine{ 1 IP}:SLISt:TAVerage?

RetUrtIed Format: [:MACHine{ 1 IP}:SLISt:TAVerage] -z time-value > -z NL>

where:

c time value > :: = real number

Example: 10 DIM Tv$[lOO]

20 OUTPUT XXX;“:MACHINEl:SLIST:TAVERAGE?”

30 ENTER WTv$
40 PRINT Tv$
50 END

SLIST Subsystem
13-18

HP 1882B/l883B
Programming Reference

TMAXimum
A

TMAXimum

Query Syntax:

Returned Format:

where:

-z time-value >

Example:

HP 1652B/1653B
Progmmmhg Reference

query

The TMAXimum query returns the value of the maximum time between
the X and 0 Markers. If data is not valid, the query returns 9.9E37.

:MACHine{l ~P}:SUSt:TMAXimum?

[:MACHine{l~2}:SUSt:TMAXimum] dime-value> <NLr

:: = real number

10 DIM Tx$[lOO]

20 OUTPUT XXX;":MACHINE1:SLIST:TMAXIMlJM?"

30 ENTER XXX;Tx$
40 PRINT Tx$

50 END

SUST Subsystem
13-19

TMlNlmum

TMlNimum

Query Syntax:

Returned Format:

where:

c time value x-

Example:

SLIST Subsystem
13-20

query

The TMINiium query returns the value of the minimum time between
the X and 0 Markers. If data is not valid, the query returns 9.9E37.

:MACHine{l ~P}:SLISt:TMINimum?

[:MACHine{ 1 JP}:SLISt:TMINimum] <time-value z= -z NLr

:: = real number

10 DIM Tm$[lOO]
20 OUTPUT XXX;":MACHINEI:SLIST:TMINIMlJM?"

30 ENTER XXX;Tm$
40 PRINT Tm$
50 END

HP 1652Bll653B
Programming Reference

VRUNs

VRUNs query

The VRUNs query returns the number of valid runs and total number of
runs made. Valid runs are those where the pattern search for both the X
and 0 markers was successful resulting in valid delta time measurements.

Query Syntax: :MACHine{ 1)2}:SLISt:VFIUNs?

k3tUrmd Format: [:MACHine{l~2}:SLlSt:VRUNs] <valid-runs>, <total-runs> c NL>

where:

<val id runs >

<total runs >

:: = zero or positive integer

: : = z e r o o r p o s i t i v e i n t e g e r

Example: 10 DIM Vr$[1001
20 OUTPUT XXX;":MACHINEl:SLIST:VRUNS?"
30 ENTER XXX;Vr$
40 PRINT VrJ
50 END

SLIST Subsystem
13-21

XOTag

XOTag q”=w

The XOTag query returns the time from the X to 0 markers when the
marker mode is time or number of states from the X to 0 markers when
the marker mode is state. If there is no data in the time mode the query
returns 9.9E37. If there is no data in the state mode, the query returns
32767.

Query Syntax: :MACHine{l I2):SLISt:XOTag?

Returned Format: [:MACHine{l (O}:SLISt:XOTag] (<X0-time> 1 -cXO_states>)<NL>

where:

c X0 time > :: = real number

c X0-states 5 :: = integer

Example: 10 DIM xot$[lool
20 OUTPUT XXX;":MACHINEl:SLIST:XOTAG?"
30 ENTER XXX;Xot$
40 PRINT Xot$

50 END

SLIST Subsystem
1342

HP 16528/1663B

XPATtern

XPATtern command/query

The XPATtem command allows you to construct a pattern recognizer
term for the X Marker which is then used with the XSEarch criteria when
moving the marker on patterns. Since this command deals with only one
label at a time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern reco @zer term. In whatever base
is used, the value must be between 0 and 2 - 1, since a label may not have
more than 32 bits. Because the c labelqattem > parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

The XPATtem query returns the pattern specification for a given label
name.

Command Syntax: :MACHine{l (2):SLISt:XPATtern d label-name >, < labelgattern B

where:

c label-name > :: = string of up to 6 alphanumeric characters
< labelgattern > ::= ~{#B{O(l IX). . . 1

rUQ{OI112)3)41516)7)X}. . . 1

#H(O)1 ~2~3(4~5~6~7(6~9)A)6JCIDIE(FIX). . . I
{Oll(2(3(4(5(6(7(8(9). . . 1”

Examples: OUTPUT xxx; ** : HACHINEl:SLIST:XPATTERN 'OATA'.'255' -
OUTPUT XXX;" :MACHINEl:SLIST:XPATTERN ‘ABC’.‘#BXXXXIlOl’ -

HP 16!528/1653B
Programming Reference

SLIST Subsystem
13-23

XPATtern

Query Syntax: :MACHine{l ~P]:SUSt%PATtem? -zlabel-name>

RetlNtled Format: [:MACHine{ 1 l2}:SUSt:XPATtern] <label-name > , < labelgattern > -c NL>

Example: 10 DIM Xp$[lOO]

20 OUTPUT XXX;“:MACHINEl:SLIST:XPATTERN? ‘A”’
30 ENTER XXX;Xp$

40 PRINT Xp$
50 END

SUST Subsystem
13-24

HP 16528/16538

XSEarch

XSEarch command/query

The XSEarch command defines the search criteria for the X Marker,
which is then with associated XPATtem recognizer specification when
moving the markers on patterns. The origin parameter tells the Marker
to begin a search with the trigger or with the start of data. The
occurrence parameter determines which occurrence of the XPATtem
recognizer specification, relative to the origin, the marker actually
searches for. An occurrence of 0 places a marker on the selected origin.

The XSEarch query returns the search criteria for the X marker.

Command Syntax: :MACHine{ 1 JP}:SLISt:XSEarch <occurrence > , <origin >

where:

< ocfxrrence >

<origin >

:: = integer from -1023 to + 1023

:: = (TRIGger 1 STAR}

Example: OUTPUT XXX;":MACHINEl:SLIST:XSEARCH +lO,TRIGGER"

Query Syntax: :MACHine{l(2):SLlSt:XSEarch?

Returned Format: [:MACHine{ 1 IP}:SLISt:XSEarch] <occurrence 7, <origin 7 c NL>

Example: 10 DIM Xs$[1001
20 OUTPUT XXX;":MACHINEl:SLIST:XSEARCH?"

30 ENTER XXX;Xs.$
40 PRINT Xs$

50 END

HP 16526/16538
Programming Reference

SUST Subsystem
13-25

XSTate

XSTate

The XSTate query returns the line number in the listing where the X
marker resides (-1023 to + 1023). If data is not valid, the query returns
32767.

Query Syntax: :MACHine{l IP):SLlSt:XSTate?

RetUrfWd Format: [:MACHine{ 1 JP}:SLISt:XSTate] < state-num B -Z NL7

where:

<state n u m 7 :: = an integer from -1023 to + 1023, or 32767

Example: 10 DIM xs$[lool
20 OUTPUT XXX;":MACHINEl:SLIST:XSTATE?"

30 ENTER XXX;Xs$
40 PRINT Xs$

50 END

SLIST Subsystem
13-26

HP 16628/1663B

XTAG

XTAG command/query

The XTAG command specifies the tag value on which the X Marker
should be placed. The tag value is time when time tagging is on or states
when state tagging is on. If the data is not valid tagged data, no action is
performed.

The XTAG query returns the X Marker position in time when time
tagging is on or in states when state tagging is on, regardless of whether
the marker was positioned in time or through a pattern search. If data is
not valid tagged data, the query returns 9.9E37 for time tagging, 32767 for
state tagging.

Command Syntax: : MACHine{ 1 IP}:SLlSt:XTAG { -z time-value >) -z state-value z)

where:

c time value z :: = real number

<state-value > :: = integer

Example: :OUTPUT XXX;“:MACHINEl:SLIST:XTAG 40.OE-6”

Query Syntax: :MACHine(l ~P}:SUSt:XTAG’?

k3tUrnd Format: [MACHine{ IP}:SLlSt:XTAG] {<time-value>) <state-value>}<NL>

Example: 10 DIM Xt$[lOO]
20 OUTPUT XXX;“:MACHINEl:SLIST:XTAG?”
30 ENTER XXX;Xt$

40 PRINT Xt$
50 END

HP 16528/1653B
Programming Reference

SLIST Subsystem
13-27

SWAVeform Subsystem 14
Introduction The commands in the State Waveform subsystem allow you to configure

the display so that you can view state data as waveforms on up to 24
channels identified by label name and bit number. The five commands are
analogous to their counterparts in the Tii Waveform subsystem.
However, in this subsystem the x-axis is restricted to representing only
samples (states), regardless of whether time tagging is on or off. As a
result, the only commands which can be used for scaling are DELay and
RANge.

The way to manipulate the X and 0 markers on the Waveform display is
through the State Listing (SLISt) subsystem. Using the marker commands
from the SLISt subsystem will affect the markers on the Waveform display.

The commands in the SWAVeform subsystem are:

l ACCumulate
l DELay
l INSert
l RANGe

l REMove

HP 1652B/1653B
Programming Reference

SWAVeform Subsystem
14-1

label-name

number of- -samples = integerfrom -1023 to + 1024
label-name = (sting of up to 6 alphanumeric characters
bit-id = (OlERlay 1 c bit-num > }
bit-num = integer representing a label bitfrom 0 to 31

Figure 14-l. SWAVeform Subsystem Syntax Diagram

SWAVeform Subsystem
14-2

HP 16526/l 6538
Programming Reference

SWAVeform

SWAVeform selector

The SWAVeform (State Waveform) selector is used as part of a
compound header to access the settings in the State Waveform menu. It
always follows the MACHine selector because it selects a branch directly
below the MACHine level in the command tree.

Command Syntax: :hdACHine{ 1 JP}:SWAVeform

Example: OUTPUT XXX;":MACHINEZ:SWAVEFORM:RANGE 4"

HP 16526/1653B SWAVeform Subsystem
14-3

ACCumulate

ACCumulate command/query

The ACCumulate command allows you to control whether the waveform
display gets erased between individual runs or whether subsequent
waveforms are allowed to be displayed over the previous waveforms.

The ACCumulate query returns the current setting. The query always
shows the setting as the character “0” (off) or “1” (on).

Command Syntax: :MACHine{lj2}:SWAVeform:ACCumulate { { O N 1 1) 1 { O F F 1 0) }

Example: OUTPUT XXX;” :MACHINEl:SWAVEFORM:ACCUMULATE ON”

Query Syntax: MACHine{ 1 [2}:SWAVeform:ACCumulate?

Returned Format: [MACHine{ 112}:SWAVeform:ACCumulate] (0 1 1) cNL>

Example: 10 DIM String$[lOO]

20 OUTPUT XXX;“:MACHINEl:SWAVEFORM:ACCUMULATE?”
30 ENTER XXX; Stringa
40 PRINT Strings
50 END

SWAVeform Subsystem
14-4

HP 16528/1663B
Programming Reference

DELay

DELay

Command Syntax:

where:

< n u m b e r o f- - s a m p l e s >

Example:

Query Syntax:

Returned Format:

Example:

command/query

The DELay command allows you to specify the number of samples
between the tim@ trigger and the horizontal center of the screen for the
waveform display. The allowed number of samples is from -1023 to
+ 1024.

The DELay query returns the current sample offset value.

:MACHine{ l IP}:SWAVeform:DELay < n u m b e r - o f - s a m p l e s >

:: = integer from -1023 to + 1024

OUTPUT XXX;“:MACHINE2:SWAVEFORM:DEtAY 127”

MACHine{ 12}:SWAVeform:DELay?

[MACHine{ lI2):SWAVeform:DELayl < n u m b e r - o f - s a m p l e s > <NL>

1 0 D I M String$[lOO]
20 OUTPUT XXX;“:MACHINEl:SWAVEFORM:DELAY?”
30 ENTER XXX;String.$
40 PRINT StringJ
50 END

HP 16!529/16538 SWAVeform Subsystem
w-5

INSert

INSert command

The INSert command allows you to add waveforms to the state waveform
display. Waveforms are added from top to bottom on the screen. When
24 waveforms are present, inserting additional waveforms replaces the last
waveform. Bit numbers are zero based, so a label with 8 bits is referenced
as bits O-7. Specifying OVERlay causes a composite waveform display of
all bits or channels for the specified label.

Command Syntax: MACHine{ 1 IP}:SWAVeform:INSerf <label-name >, < bit-id z=

where:

-z label-name > :: = string of up to 6 alphanumeric characters

(bit-id > :: = {OVERlay 1 < bit-num > }
<bit num> :: = integer representing a label bit from 0 to 31

Examples: OUTPUT XXX;“:MACHINEl:SWAVEFORM:INSERT ‘WAVE’ , 19”

OUTPUT XXX;“:MACHINEl:SWAVEFORM:INSERT ‘ABC’, OVERLAY”

O U T P U T XXX;“:MACHl:SWAV:INSERT ‘Pool’. #BlOOl”

SWAVeform Subsystem
14-6

HP 1652B/l663B
Programming Reference

RANGe

RANGe command/query

The RANGe command allows you to specify the number of samples
across the screen on the State Waveform display. It is equivalent to ten
times the states per division setting (st/Div) on the front panel. A number
between 10 and 1040 may be entered.

The RANGe query returns the current range value.

Command Syntax: MACHine{ 1 IO}:SWAVeform:RANGe <number of- -samples >

where:

(number of- -samples> :: = integer from 10 to 1040

Example: OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 80"

Query Syntax: MACHine(1 ~P}:SWAVeform:RANGe7

Returned Format: [MACHine{ 1 IP}:SWAVeform:FIANGe] c number-of-samples > < NL>

Example: 10 DIM String$[lOO]
20 OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE?"
30 ENTER Xxi; String$
40 PRINT String$

50 END

HP 1652Bll653B
Programming Reference

SWAVeform Subsystem
14-7

REMove

REMove command

The REMove command allows you to clear the waveform display before
building a new display.

Command Syntax: :MACHine{ 1 jP}:SWAVeform:REMove

Example: OUTPUT XXX;":MACHINEl:SWAVEFORM:REMOVE"

SWAVeform Subsystem
14-8

HP 16528/1653B

SCHart Subsystem 15
Introduction The State Chart subsystem provides the commands necessary for

programming the HP 1652B/53B’s Chart display. The commands allow
you to bui ld charts of label act ivi ty, using data normally found in the
List ing display. The chart’s y-axis is used to show data values for the label
of your choice. The x-axis can be used in two different ways. In one, the
x-axis represents states (shown as rows in the State Listing display). In the
other, the x-axis represents the data values for another label. When states
are plotted along the x-axis, X and 0 markers are available. Since the
State Chart display is simply an alternative way of looking at the data in
the State Listing, the X and 0 markers can be manipulated through the
SLISt subsystem. In fact, because the programming commands do not
force the menus to switch, you can position the markers in the SLISt
subsystem and see the effects in the State Chart display.

The commands in the SCHart subsystem are:

l ACCumulate
OHAxis
. VA%

HP 16528116538 SCHarl Subsystem
15-1

Accumulate? .

hlqh-value

state-low-value = integerfrom -1023 to + 1024
state-high-value = integerfrom <state-low v&e > to + 1024
label-name = a string of up fo 6 alphanume& characters
label low-value = stringfrom 0 to y2 - 1 (XHFFFFFFFFi
labelrhigh-value = stringfrom -z label-low-value > to 23 - I (#HFFFFFFFF)
low-value = sttingfrom 0 to y2 - 1 (#HFFFFFFFF)
high-value = sm’ngfrom c low-value > to y2 - I (#HFFFFFFFF)

SCHart Subsystem HP 16528/1653B
16-2 Programming Reference

Figure 151. SCHart Subsystem Syntax Diagram

SCHatt

SCHart selector

The SCHart selector is used as part of a compound header to access the
settings found in the State Chart menu. It always follows the MACHine
selector because it selects a branch below the MACHine level in the
command tree.

Command Syntax: :MACHine{l~2}:SCHari

E x a m p l e : OuTPuT XXX;“:MACHINE~:SCHART:VAXIS *A’, ‘0’. ‘g***

HP 16528/1653B
Programming Reference

SCHart Subsystem
153

ACCumulate

ACCumulate command/query

The Accumulate command allows you to control whether the chart
display gets erased between each individual run or whether subsequent
waveforms are allowed to be displayed over the previous waveforms.

The Accumulate query returns the current setting. The query always
shows the setting as the character “0” (off) or “1” (on).

Command Syntax: MACHine(l12):SCHart:ACCumulate {{ON 1 1) 1 {OFF) O}}

Example: OUTPUT XXX;":MACHINEl:SCHART:ACCUMULATE OFF"

Query Syntax: MACHine{ 1 12}:SCHatt:ACCumulate?

RetUrned Format: [MACHine{ 1 J2):SCHart:ACCumulateJ {o) 1) -Z NL>

Example: 10 DIM String$[lOO]
20 OUTPUT XXX;":MACHINEl:SCHART:ACCUMULATE?"
30 ENTER XXX; String$
40 PRINT String$
50 END

SCHart Subsystem
15-4

HP 16528/16538

HAXis

HAXis command/query

The HAXis command allows you to select whether states or a label’s
values will be plotted on the horizontal axis of the chart. The axis is scaled
by specifying the high and low values.

Note ”3
The shortform for STATES is STA. This is an intentional deviation from
the normal trunctation rules.

Command Syntax:

where:

c state-low value > :: = integer from -1023 to 1024
-Z state high-value > :: = Integer from <state-low-value > to + 1024

(label n a m e > :: = a string of up to 6 alphanumeric characters
.c label-low value z- :: = string from 0 to p-1 (#HFFFFFFFF)

<label-high-value > :: = string from c label-low-value Z= to p-1 (#HFFFFFFFF)

Examples:

The HAXis query returns the current horizontal axis label assignment and
scal ing.

MACHine{ 1 IP}:SCHart:HAXis {STATES, <state-low-value >, <state-high-value > (

<label-name > , < label-low-value >, <label-high-value >)

OUTPUT XXX;“:MACHINEl:SCHART:HAXIS STATES, - 100 , 100”
OUTPUT XXX;“:MACHINEl:SCHART:HAXIS ‘DATA’, ‘ -511 ’ . ‘511” ’

HP 15528/16538 SCHart Subsystem
155

HAXis

Query Syntax: MACHine{l I2}:SCHart:HAXis?

Returned Format: [MACHine{ 1~2}:SCHart:HA%is] {STATES, c state-low-value >, -z state-high-value Z= 1
c l a b e l - n a m e > , < l a b e l - l o w - v a l u e > , < l a b e l - h i g h - v a l u e > }

Example: 10 DIM String$[lOO]

20 OUTPUT XXX;":MACHINEl:SCHART:HAXIS?"

30 ENTER XXX; String$
40 PRINT String$

50 END

SCHart Subsystem
16-6

HP 16528/1663B
Programming Reference

VAxis

VAXis command/query

The VAXis command allows you to choose which label will be plotted on
the vertical axis of the chart and scale the vertical axis by specifying the
high value and low value.

The VAXis query returns the current vertical axis label assignment and
scaling.

Command Syntax: MACHine{ 1~2):SCHart:VAXis < label-name >, <low-value >, c high-value >

where:

c label-name > :: = a string of up to 6 alphanumeric characters
< low-va lue > :: = string from 0 to p-1 (XHFFFFFFFF)

<high-value > :: = string from <low-value > to p-1 (XHFFFFFFFF)

Examples: OUTPUT xxx ; *I :MACHINE2:SCHART:VAXIS ‘SlJMl’, ‘O’, ‘ 9 9 ” ’

OUTPUT XXX ; *’ :MACHINEl:SCHART:VAXIS ‘ B U S ’ , ‘#HOOFF’, ‘IH0500’”

Query Syntax: tvlACHine{ 1 ~P):SCHart:VAXis7

Returned Format: [MACHine{ 1 ~P}:SCHart:VAXis] -z label-name >, c low-value >, < high-value > < NL>

Example: 1 0 D I M String$[lOO]
20 OUTPUT XXX;“:MACHINEl:SCHART:VAXIS?”

3 0 ENTER X X X ; Strings
40 PRINT Stringf
50 END

HP 16528/16538 SCHart Subsystem
1 5 7

COMPare Subsystem 16
Introduction Commands in the state COMPare subsystem provide the abiity to do a

bit-by-bit comparison between the acquired state data listing and a
compare data image. The commands are:

0 C O P Y
l DATA
a CMASk
l RANGe

l RUNTil
0 FIND

HP 16526/16538 COMPare Subsystem
161

space label-nom c

label-name = sting of up to 6 characters
care-spec = stringojchuructers “{*I.}...”
* = care
. = don’t care
line-num = integerfrom -1023 to + 1023
dataqattern - “{#B{OIIIX}. . . 1

~Q~~l~l~l~l~l~l~l~l~~. . . I
#H{O~1(2~3)4~5~6~7~8~9~AIBICIDIEIFIX}... I
(0~1~2~3~4~5~6~7~8~9). . . }”

difference-occurence = integerfrom 1 to 1024
start-line = integerfrom -1023 to +I023
stop-line = integerfrom <start-line > to + 1023

Figure 161. COMPare Subsystem Syntax Diagram

COMPare Subsystem HP 16528/1663B
16-2 Programming Reference

COMPare

COMPare selector

The COMPare selector is used as part of a compound header to access
the settings found in the Compare menu. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in
the command tree.

Command Syntax: :MACHine{l I2):COMPare

Example: OUTPUT XXX;":MACHINEl:COMPARE:FINO? 819"

HP 1662B/l653B COMPare Subsystem
16-3

CMASk

CMASk command/query

The CMASk (Compare Mask) command allows you to set the bits in the
channel mask for a given label in the compare listing image to “compares”
or “don’t compares.”

The CMASk query returns the state of the bits in the channel mask for a
given label in the compare listing image.

Command Syntax: MACHine{ 1 IP}:COMPare:CMASk c label-name > , -z care-spec >

where:

<label-name > : : = a s t r i n g o f u p t o 6 a l p h a n u m e r i c c h a r a c t e r s

<: care-spec z :: = string of characters “{* 1 .}...I’ (3 2 c h a r a c t e r s m a x i m u m)
l :: = care

:: = don’t care

Example: OUTPUT XXX;":MACHINE2:COMPARE:CMASK 'STAT', I*.**..**"'

Query Syntax: MACHine{ l l2}:COMPare:CMASk? -z l a b e l - n a m e >

Returned Format: [M A C H i n e { 1 IP):COMPare:CMASk] < l a b e l - n a m e >, c ca re -spec z- < N L z

Example: 10 DIM String$[lOO]
20 OUTPUT XXX;":MACHINE2:COMPARE:CMASK? 'POO5'"

30 ENTER XXX; String$

40 PRINT String$
50 END

COMPare Subsystem
16-4

HP 16628/1653B
Programming Reference

COPY

COPY command

The COPY command copies the current acquired State Listing for the
specified machine into the Compare Listing template. It does not affect
the compare range or channel mask settings.

Command Syntax: MACHine{ 1IP):COMPare:COPY

Example: OUTPUT XXX;":MACHINEZ:COMPARE:COPY"

HP 15528/1553B
Programming Reference

COMPare Subsystem
15-5

DATA

DATA command/query

The DATA command allows you to edit the compare listing image for a
given label and state row. When DATA is sent to an instrument where no

compare image is defmed (such as at power-up) all other data in the
image is set to don’t cares.

Not specifying the -z label-name > parameter allows you to write data
patterns to more than one label for the given line number. The first
pattern is placed in the left-most label, with the following patterns being
placed in a left-to-right fashion (as seen on the Compare display).
Specifying more patterns than there are labels simply results in the extra
patterns being ignored.

Because don’t cares (Xs) are atlowed in the data pattern, it must always
be expressed as a string. You may still use different bases, though don’t
cares cannot be used in a decimal number.

The DATA query returns the value of the compare listing image for a
given label and state row.

Command Syntax: MACHine{ 112):COMPare:DATA { -z label-name z , -z line-num z , <data-pattern z (

<line-num > , <data-pattern > [, cdatagattern >I... }

where:

-Z label-name > :: = a string of up 6 alphanumeric characters
c line-num > :: = integer from -1023 to + 1023

< datagattern Z- :: = “{#El{OI 1 IX} . . . I

#Q{O~l~2~3~4~5~6~7~X). . /

#H{Olll2~3l4~5l6l71819)A181CIDIEIFIX)... 1
{0~1(2~3(4~5(6~7~6~9}. . . }”

hatTl@?S: OUTPUT XXX:" :MACHINEZ:COMPARE:DATA 'CLOCK', 42, ‘XBDllXlOlX’”
OUTPUT XXX;":MACHINE2:COMPARE:DATA 'DUT3'. 0, 'XHFF40"
OUTPUT XXX;":MACHINEl:CDMPARE:DATA 129, 'XBXXOO'. ‘#BllOl’, ‘YBlOXX’”
OUTPUT XXX;":MACH2:COMPARE:DATA -511, '4', '64', '16', 256', 'a', '16"'

COMPare Subsystem
166

HP 16628116638
Programming Reference

DATA

Query Syntax: MACHine{ 1 (P}:COMPare:DATA7 <label-name > , < line-num >

Returned Format: [MACHine{ IP}:COMPare:DATA]
c label-name >, c line-num >, -z datagattern > c NL >

Example: 10 DIM Labels [S] , ResponseJ [80]
15 PRINT "This program shows the values for a signal's Compare listing"

20 INPUT “Enter signal label: ", LabelS
25 OUTPUT XXX;":SYSTEM:HEAOER OFF" !Turn headers off (from responses)
30 OUTPUT XXX;":MACHINE2:COMPARE:RANGE?"

35 ENTER XXX; First, Last !Read in the range's end-points

40 PRINT "LINE W", "VALUE of "; Label$

45 FOR State = First TO Last !Print compare value for each state

50 OUTPUT XXX;":MACH2:COMPARE:DATA? '1) & Label$ & "'," & VAL$(State)

55 ENTER XXX; Responsej
60 PRINT State, Response$

6 5 NEXT State
70 END

HP 1652B/l653B
Programming Reference

COMPare Subsystem
16-7

FIND

FIND query

Query Syntax:

Returned Format:

where:

cdifference occurrence >
c line-number >

Example:

COMPare Subsystem
16-8

The FIND query is used to get the line number of a specified difference
occurence (first, second, third, etc) within the current compare range, as
dictated by the RANGe command (see RANGe). A difference is counted
for each line where at least one of the current labels has a discrepancy
between its acquired state data listing and its compare data image.

Invoking the FIND query updates both the Listing and Compare displays
so that the line number returned is in the center of the screen.

MACHine{ 112}:COMPare:FIND? <difference-occurrence >

[MACHine{ 1 IP}:COMPare:FIND] <difference-occurrence >, c line-number > < NLz-

: : = integer from 0 to 1024
: : = integer from -1023 to + 1023

1 0 D I M String$[lOO]
20 OUTPUT XXX;” :MACHINE2:COMPARE:FIND? 2 6 ”
3 0 ENTERdXXX; String$

40 PRINT String$
50 END

HP 1652B/l653B
Programming Reference

RANGe

RANGe command/query

The RANGe command allows you to define the boundaries for the
comparison. The range entered must be a subset of the lines in the
aquisition memory.

The RANGe query returns the current boundaries for the comparison.

Command Syntax: MACHine{ 1 IO}:COMPare:RANGe (FULL 1 PARTial, <start-line >, c stop-line >)

where:

-zstart l ine> ::= integer from -1023to +1023

<stop-line > :: = integer from -z start-line > to + 1023

Examples: OUTPUT xxx;" :MACHINE2:COMPARE:RANGE P A R T I A L , - 5 1 1 , 5 1 2 ”
OUTPUT XXX:“:MACHINEZ:COMPARE:RANGE FULL”

Query Syntax: hMCHine{ 1 IP):COMPare:RANGe?

Returned Format: [MACHine{l (P}:COMPare:RANGe] { F U L L 1 PAFtTial,<start-line>,
<stop-line>}cNLr

Example: 10 DIM String$[100]
20 OUTPUT XXX;” :MACHINE4:COHPARE:RANGE?”
30 ENTER XXX; String$

40 REM See if substring "FULL" occurs in response string:
50 PRINT "Range is ";

60 IF POS(String$,"FULL") > 0 THEN PRINT "Full" ELSE PRINT "Partial"

70 END

HP 16!528/1653B
Programming Reference

COMPare Subsystem
169

RUNTiI

RUNTil command/query

The RUNTil (run until) command allows you to define a stop condition
when the trace mode is repetitive. Specifying OFF causes the analyzer to
make rtms until either the display’s STOP field is touched or the STOP
command is i ssued.

Note d

There are four conditions based on the time between the X and 0
markers. Using this difference in the condition is effective only when time
tags have been turned on (see the TAG command in the STRace
subsystem). These four conditions are as follows:

l The difference is less than (LT) some value.
l The difference is greater than (GT) some value.
l The difference is inside some range (INRange).
l The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 10 ns apart.

There are two conditions which are based on a comparison of the
acquired state data and the compare data image. You can run until one of
the following conditions is true:

l Compare equal (EQUal) - Every channel of every label has the
same value.

l Compare not equal (NEQual) - Any channel of any label has a
different value .

The RUNTil query returns the current stop criteria for the comparison
when running in repetitive trace mode.

The RUNTil instruction (for state analysis) is available in both the SLISt
and COMPare subsys tems.

COMPare Subsystem
1610

HP 1652Bll653B
Programming Reference

RUNTiI

Command Syntax: MACHine(1 l2):COMPare:RUNTil {OFFILT,cvalue> IGT,<value> 1
INFlange, <value >, <value > (OUTRange, <value >, <value > 1 EQUal (NE&al}

Example: OUTPUT XXX;" :MACHINE2:COMPARE:RUNTIL EQUAL"

Query Syntax: hlACHine{ 1~2):COMPare:RUNTil?

Returned Format: [MACHine{l ~P}:COMPare:RUNTil] {OFF JLT,<value> lGT,<value>)

INRange, c value >, -Z value > 1 OUTRange, <value > , <value > (EQUal 1 NEQual) < NL>

Example: 10 DIM String$[lOO]
20 OUTPUT XXX;":MACHINE2:COMPARE:RUNTIL?"

30 ENTER XXX; String$
40 PRINT String$

50 EN0

HP 1652Bll6536 COMPare Subsystem
16-11

TFORmat Subsystem 17
Introduction The TFORmat subsystem contains the commands available for the Tiig

Format menu in the HP 1652B/53B logic analyzer. These commands are:

0 LABel
l REMove
l THReshold

pod-specification

-

name = sh’ng of up to 6 alphanumeric characters
polarity =: {POSitive I NEGative}
pod-specification = format (integerfrom 0 to 65535) for a pod @oak are assigned in &creasing order)
value = vol tage (real number) -9 .9 to + 9 .9

Figure 17-1. TFORmat Subsystem Syntax Diagram

HP 16528/1653B
Progmmming Reference

TFORmat Subsystem
17-1

TFORmat

TFORmat selector

The TFORmat selector is used as part of a compound header to access
those settings normally found in the Timing Format menu. It always
follows the MACHine selector because it selects a branch directly below
the MACHine level in the language tree.

Command Syntax: :MACHine{ 1 IP}:TFORmat

Example: OUTPUT ~~X;“:MACHINE~:TFORMAT:LAEIEL?”

TFORmat Subsystem
17-2

HP 16528/1663B
Programming Reference

LABel

LABel command/query

The LABel command allows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an
existing label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest-numbered pod assigned to the machine
you’re using. Each pod specification after that is assigned to the
next-highest-numbered pod. This way they match the left-to-right
descending order of the pods you see on the Format display. Not
including enough pod specifications results in the lowest-numbered
pod(s) being assigned a value of zero (all channels excluded). If you
include more pod specifications than there are pods for that machine, the
extra ones will be ignored. However, an error is reported anytime more
than five pod specifications are listed.

The polarity can be specified at any point after the label name.

Since pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (216-1). When giving the pod assignment in binary
(base 2), each bit will correspond to a single channel. A “1” in a bit
position me? the associated channel in that pod is assigned to that pod
and bit. A “0” m a bit position means the associated channel in that pod is
excluded from the label. For example, assigning #B1111001100 is
equivalent to entering ’ * * * * ..* * ..’ through the front-panel user
interface.

A label can not have a total of more than 32 channels assigned to it.

The LABel query returns the current specification for the selected (by
name) label. If the label does not exist, nothing is returned. Numbers are
always returned in decimal format.

HP 1052B/1653B TFORmat Subsystem
17-3

Command Syntax: :MACHine{l iP}:TFORmat:iABel < n a m e > [, { < p o l a r i t y > 1 <assignment>}]...

where:

< n a m e > :: = string of up to 6 alphanumeric characters
< polarity > : : = {Positive 1 NEGative)

<:as.signment > :: = format (integer from 0 to 65535) for a pod (pods are assigned in decreasing order)

Examples: OUTPUT XXX;“:MACHINEE:TFORMAT:LABEL ‘ D A T A ’ , P O S , 6 5 5 3 5 . 1 2 7 . 4 0 3 1 2 ”
OUTPUT XXX ; ” :MACHINE2:TFORMAT:LABEL ‘STAT’, 1 , 6096, POSITIVE”

OUTPUT XXX;“:MACHINEl:TFORMAT:LABEL ‘ADDR’, NEGATIVE, #B11110010101010”

Query Syntax: MACHine{ l~2}:TFORmat:iAW? c name >

Returned Format: [:MACHine{l iP}:TFORmat:LABel] < n a m e > [, <assignment>]...,<polarity> < NL>

Example: 1 0 D I M String$[lOO]
20 OUTPUT XXX;“:MACHINE2:TFORMAT:LAEiEL? ‘DATA”’

30 ENTER XXX String$

40 PRINT String$
50 END

TFORmat Subsystem
17-4

HP 16628/1653B

REMove

REMove command

The REMove command allows you to delete all labels or any one label
specified by name for a given machine.

Command Syntax: :MACHine{l IP}:TFOFtmat:REMove {<name> [ALL}

where:

< n a m e > :: = string of up to 6 alphanumeric characters

&ttJlpkS: OUTPUT XXX;” :MACHINEl:TFORMAT:REMOVE ‘ A ” ’

OUTPUT XXX;“:MACHINEl:TFORMAT:REMOVE ALL”

HP 1652Bll653B TFORmat Subsystem
17-s

THReshold

THReshold

Note ”4

Command Syntax:

where:

<N>
<value z

nL

ECL

Example:

Query Syntax:

Returned Format:

Example:

command/query

The THReshold command allows you to set the voltage threshold for a
given pod to ECL, ‘ITL or a specific voltage from -9.9V to + 9.9V in 0.1
volt increments.

On the HP 1652B, the pod thresholds of pods 1,2, and 3 can be set
independently. The pod thresholds of pods 4 and 5 are slaved together;
therefore, when you set the threshold on pod 4 or 5, both thresholds will
be changed to the specified value. On the HP 1653B, both pods 1 and 2
can be set independently.

The THReshold query returns the current threshold for a given pod.

:MACHine{ 112}:TFORmat:THFleshold -z N > (TTL 1 ECL 1 -z value > }

::= podnumber(112131415)
:: = voltage (real number) -9.9 to +9.9

:: = default value of + 1.6V
:: = default value of -1.3V

OUTPUT ~“:MACHINE1:TFORMAT:THRESHOLD14.o”

:MACHine{ l(2}:TFORrnat:THReshold < N >?

[:MACHine{ 1 J2):TFORmat:THReshold <N >] (value z- < NL>

10 DIM Value$ [loo]
20 OUTPUT XXX;":MACHINE1:TFORMAT:THRESHOLO2?"
30 ENTER XXX;Value$

40 PRINT Value$

50 EN0

TFORmat Subsystem
17-6

TTRace Subsystem 18
Introduction The ‘ITRace subsystem contains the commands available for the Timing

Trace menu in the HP 1652B/53B logic analyzer. These commands are:

l AMODe
l DURation
l EDGE
l GLITch
l PAlTern

HP 16528/1653B
Programming Reference

lTRace Subsystem
18-1

s p a c e
4 r

TRANsitional

duration-value

SpO‘e l a b e l - n a m e glrtch-spec

s p a c e l a b e l - n a m e

space label-nom?

GT = greater than
LT = fess than
duration-value = real number
label-name = sting of up to 6 alphanumeric characters
edge-spec = sting of characters “{R 1 F 1 TIX}...”
R = rising edge
F = falling edge
T = toggling or either edge
X = don’t care or ignore this channel
glitch-spec = stringofchuructers “{*I.}...”
* = search for a glitch on this channel
- ignore this channel

&tern spec := “{ #I?{01 Z IX}. . . 1
#~{0~1~2~3~4~5~6~7~X}. . . 1
#H{O~1~2~3~4~5~6~7~8~9~AIBIC~DIEIFIX}. . . 1
{O~l~2~:~~4lSl6~7lSl9}. . . }”

Figure 18-l. TTRace Subsystem Syntax Diagram

TTRace Subsystem HP 1652Bll653B
18-2 Programming Reference

lTRace

lTRace selector

The Trace selector is used as part of a compound header to access the
settings found in the Timing Trace menu. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in
the language tree.

Command Syntax: :MACHine{ll2}:TTRace

Example: OUTPUT XXX;":MACHINEl:TTRACE:GLITCH 'ABC', '....****"'

HP 16!528/16538
Programming Reference

mace Subsystem
18-3

AMODe

AMODe

Command Syntax:

where:

-z acquisition-mode >

Example:

Query syntax:

Returned Format:

Example:

command/query

The AMODe command allows you to select the acquisition mode used for
a particular timing trace. The acquisition modes available are
TRANsitional and GLITch.

The AMODe query returns the current acquisition mode.

:MACHine{ 1~2):lTRace:AMODe c acquisition-mode >

:: = {GLlTch ITRANsitional)

OUTPUT XXX; “:MACHINEl:TTRACE:AMODE GLITCH"

:tvlACHinel:l7Race:AMODe?

1 0 D I M M$[lOO]
20 OUTPUT XXX; “:MACHINEl:TTRACE:AMODE?”
30 ENTER XXX;Mf
40 PRINT M$
50 END

TTRace Subsystem
18-4

HP 16528116538

DURation

DURation command/query

The DURation command allows you to specify the duration qualifier to be
used with the pattern recognizer term in generating the timing trigger.
The duration value can be specified in 10 11s increments within the
following ranges:

l Greater than (GT) qualification - 30 11s to 10 ms
l Less than (LT) qualification - 40 ns to 10 ms.

The DURation query returns the current pattern duration qualifier
specification.

Command Syntax: :MACHine{l l2):lTRaoe:DURation {GTILT}, <duration-value7

where:

G T :: = greater than

LT :: = less than
c duration-value 7 :: = real number

Example: OUTPUT XXX; “:MACHINE1:TTRACE:OllRATION G T , 40.OE-9”

Query Syntax: :MACHine{l ~P}:?lRaoe:DURation?

f?etllmed Format: [:MACHine{l ~P):lViaoe:DUFtation] (GTILT), <duration-value7 cNL7

Example: 10 DIM D$[lOO]
20 OUTPUT XXX; “:MACHINE1:TTRACE:DURATION?”
30 ENTER XXX;D$
40 PRINT O$
50 EN0

HP 16528/1653B
Programming Reference

lTRace Subsystem
la-5

EDGE

EDGE command/query

The EDGE command allows you to specify the edge recognizer term for
the timing analyzer trigger on a per label basis. Each command deals with
only one label in the given edge specification; therefore, a complete
specification could require several commands. The edge specification uses
the characters R, F, T, X to indicate the edges or don’t cares as follows:

R = rising edge
F = falling edge
T = toggling or either edge
X = don’t care or ignore the channel

The position of these characters in the string corresponds with the
position of the channels within the label. All channels without “X” are
ORed together to form the edge trigger specification.

The EDGE query returns the edge specification for the specified label.

Command Syntax: MACHine{ 1 J2):llRace:EDGE c label-name >, <edge-spec Z=

where:

<label-name > :: = string or up to 6 alphanumeric characters
< edge-spec > :: = string of characters “(RIFIT(X}...’

Example: OUTPUT XXX; “:MACHINEl:TTRACE:EOGE ‘POOl’;XXXXXXXR’”

lTFiace Subsystem
16-6

HP 16528/1663B
Programming Reference

EDGE

Query Syntax: :MACHine{l)2):llRace:EDGE? < l a b e l - n a m e >

&?tUrtled Format: [:MACHine{l~2}:TTRace:] <label_namer,<edge_spec> <NL>

Example: 1 0 D I M E$[lOO]
20 OUTPUT XXX; “:MACHINEl:TTRACE:EDGE? ‘PODl’”
30 ENTER XXX;E$
40 PRINT E$

50 END

HP 16526/16538
Programming Reference

lTRace Subsystem
18-7

GLlTch

GLlTch command/query

The GLITch command allows you to specify the glitch recognizer term for
the timing analyzer trigger on a per label basis. Each command deals with
only one label in a given glitch specXcation, and, therefore a complete
specification could require several commands. The glitch specification
uses the characters “*” and “.” as follows:

“*’ (asterisk) = search for a glitch on this channel

“.” (period) = ignore this channel

The posit ion of these characters in the str ing corresponds with the
position of the channels within the label. All channels with the ‘*‘I are
ORed together to form the glitch trigger specification.

The GLITch query returns the glitch specification for the specified label.

Command Syntax: :MACHine{l I2):lTRace:GLlTch -Z label-name >, <glitch-spec >

where:

c label name > :: = string of up to 6 alphanumeric characters

<: glitch-spec z- :: = string of characters “{*I.}...”

Example: OUTPUT XXX; ":MACHINEl:TTRACE:GLITCH 'PODI','**.......*'"

Query Syntax: :MACHinel:TTRace:GLITch? <label-name>

Returned Format: [:MACHinel :llRace:GLlTch] <label-name >, < glitch-spec > e NL>

Example: 10 DIM G$[lOO]
20 OUTPUT XXX; ":MACHINEl:TTRACE:GLITCH? ‘PODl’”

30 ENTER XXX;G$
40 PRINT Gf
50 END

mace Subsystem
16-6

HP 16528/1663B
Programming Reference

PATTern

PAlTern command/query

The PAlTern command allows you to construct a pattern recognizer term
for the timing analyzer trigger on a per label basis. Each command deals
with only one label in the given pattern; therefore, a complete timing trace
specification could require several commands. Since a label can contain
up to 32 bits, the range of the pattern value will be between 0 and (232)-1,
The value may be expressed in binary (#B), octal (#a), hexadecimal
(#H) or decimal (default). When the value of a pattern is expressed in
binary, it represents the bit values for the label inside the pattern
recognizer term. Since a pattern value can contain don’t cares, the
pattern specification parameter is handled as a string of characters
instead of a number.

The PAlTern query returns the pattern specification for the specified
label in the base previously defmed for the label.

Command Syntax: :MACHine{ 1 IP}:lTRace:PATTern -z label-name > , < pattern-spec >

where:

c label name > :: = string of up to 6 alphanumeric characters

< pattern-spec > :: = “{#B(OI 1 IX) . . 1

#a{011 ~2~3~4~5~6~7~X). . . I
XH{O~1~2~3~4~5~6~7~6ISIAIBICJDIEJFIX)... I
{O/l ~2~3~4~5~6~7~6~9). . .)”

Example: OUTPUT XXX; ":MACHINEl:TTRACE:PATTERN 'DATA', '255'"

HP 1652B/l653B
Programming Reference

mace Subsystem
19-9

PAlTern

Query Syntax: :MACHine{ 1 JP):~Fhe:PATTern? -z label-name r

RetlNtlC?d Format: [:MACHine{ 1 ~P}:lTRace:PATTern] <label-name >, < pattern-spec> c NL>

Example: 10 DIM P$[lOO]

20 OUTPUT XXX; “:MACHINEZ:TTRACE:PATTERN? ‘DATA”’

30 ENTER XXX;P$

40 P R I N T P$
50 END

llRace Subsystem
18-10

HP 16528/l 6538
Programming Reference

TWAVeform Subsystem 1 9
Introduction The TWAVeform subsystem contains the commands available for the

Timing Waveforms menu in the HP 1652B/53B. These commands are:

l ACCumulate
l DELay
l INSert
l MMODe
l OCONdition
l OPATtern
l OSEarch
l OTIMe
l RANGe

l REMove
l RUNTil
l SPERiod
l TAVerage
l TMAXimum
l TMINimum
. VRUNs
l XCONdition

l XOTime
l XPATtem
l XSEarch
l XTIMe

HP 1652Bll653B TWAVeform Subsystem
19-l

OSEarch

Figure 19-l. TWAVeform Subsystem Syntax Diagram

WAVeform Subsystem
192

HP 16528/1653B
Programming Reference

c

space t ime-va lue c

,
O,CO%4

Figure 19-l. TWAVeform Subsystem Syntax Diagram (continued)

HP 16526/1653B
Programming Reference

lWAVeform Subsystem
19-3

delay-value =’ real number between -2500 s and + 2500 s
module-spec = {11213(4(5}
bit-id = integerftom 0 to 31
waveform = string containing < acquisition-spec > {I 12)
acquisition-spec = {A 1 B) Cl D JE} (slot where acquisition card is located)
label-name = string of up to 6 alphanumeric characters
labelgatteru = “{#B{OIIIX}. . . I

~Q~~l~l~l~l~l~l~l~l~~. -. I
#H{O~1~2~3~4~5~6~7~8I9JAIBICJDJEIFIX).. . I
{0~1~2~:?~4~5(6~7~8~9}. . . }”

occurrence = integer
time-value = real number
label-id = sting of one alpha and one numeric character
module-num = slot number in which the timebase card is installed
time-range = real number between 100 ns and 10 ks
run-until-spec = (OFF I LT, (value > I GT, < value > (ZNRange < value > , c value > I

OUTRange < value >, < value > }
GT = greater than
LT = less than
value = real number

Figure 191. TWAVeform Subsystem Syntax Diagram (continued)

lWAVeform Subsystem
19-4

HP 16528/1653B
Programming Reference

WAVeform

TWAVeform Selector

The TWAVeform selector is used as part of a compound header to access
the settings found in the Tiig Waveforms menu. It always follows the
MACHine selector because it selects a branch below the MACHine level
in the command tree.

Command Syntax: :MACHine{ 1 J2):TWAVeform

Example: OUTPUT XXX;":MACHINEl:TWAVEFORM:OELAY lOOE-9"

HP 10528/1653B
Programming Reference

TWAVeform Subsystem
19-5

ACCumulate

ACCumulate command/query

The Accumulate command allows you to control whether the chart
display gets erased between each individual run or whether subsequent
waveforms are allowed to be displayed over the previous ones.

The ACCumulate query returns the current setting. The query always
shows the setting as the character “0” (off) or “1” (on).

Command Syntax: :MACHine{ 1 J2):TWAVeform:ACCumulate c setting >

where:

c setting > : : = {OIOFF} o r (1 (ON)

Example: OUTPUT XXX;“:MACHINEl:TWAVEFORM:ACCUMULATE ON”

Query Syntax: :MACHine{l ~2):TWAVeform:ACCumulate?

Returned Format: [:MACHine{ 1~2}:TWAVeform:ACCumulate] (0 11) -c NL>

Example: 10 DIM P$ [iool
20 OUTPUT XXX;“:MACHINEl:TWAVEFORM:ACCUMULATE?”
30 ENTER XXX; P$
40 PRINT P$

50 END

TWAVeform Subsystem
19-6

HP 16528/1663B

DELay

DELay command/query

The DELay command specifies the amount of time between the timing
trigger and the horizontal center of the the timing waveform display. The
allowable values for delay are -2500 s to + 2500 s. In glitch acquisition
mode, as delay becomes large in an absolute sense, the sample rate is
adjusted so that data will be acquired in the time window of interest. In
transitional acquisition mode, data may not fall in the time window since
the sample period is ftved at 10 11s and the amount of time covered in
memory is dependent on how frequent the input signal transitions occur.

The DELay query returns the current time offset (delay) value from the
trigger.

Command Syntax: :MACHine{ iI2):lWAVeform:DELay -c delay-value >

where:

c delay-value > :: = real number between -2500 s and + 2!500 8

Example: OUTPUT XXX ; ” :MACHINEl:TWAVEFORM:DELAY lOOE-6”

Query Syntax: MACHine{ 1 JP}:lWAVeform:DELa~

Returned Format: [:MACHine{ 1 IO}:TWAVeform:DELay] <time-value > < NL >

t%W’llpk!: 1 0 D I M 01s [loo]

20 OUTPUT XXX;“:MACHINEl:TWAVEFORM:DELAY?”
30 ENTER XXX; Ol$
40 PRINT 01s

50 END

HP 16528/1663B TWAVeform Subsystem
19-7

INSert

INSert command

The INSert command inserts waveforms in the timing waveform display.
The waveforms are added from top to bottom. When 24 waveforms are
present, inserting additional waveforms replaces the last waveform .

The first parameter specifies the label name that will be inserted. The
second parameter specifies the label bit number or overlay.

If OVERLAY is specified, all the bits of the label are displayed as a
composite overlaid waveform.

Command Syntax: :MACHine{ 112):TWAVeform:INSertc label-name > { -z bit-id > 1 OVERlay}

where:

c label name > :: = string of up to 6 alphanumeric characters
-z bit-id > :: = integer from 0 to 31

Example: OUTPUT XXX;“:MACHINEl:TWAVEFORM:INSERT ‘WAVE’,lO”

TWAVeform Subsystem
188

HP 16528/1653B
Progmmming Reference

MMODe

MMODe

Command Syntax:

Example:

Query Syntax:

Returned Format:

where:

(marker mode Z=

Example:

HP 1652Bll653B
Programming Reference

command/query

The MMODe (Marker Mode) command selects the mode controlling
marker movement and the display of the marker readouts. When
PATTern is selected, the markers will be placed on patterns. When
TIME is selected, the markers move on time. In MSTats, the markers are
placed on patterns, but the readouts will be time statistics.

The MMODe query returns the current marker mode.

:MACHine{l~2}:TWAVeform:MMODa {OFFJPATTern lTlMEIMSTats}

OUTPUT XXX; ":MACHINEl:TWAVEFORH:MMODE TIME"

:MACHine{l(2):TWAVeform:MMODe?

[:MACHine{ 1 IP):TWAVeform:MMODe] c marker-mode > < NL>

::= {OFFIPATTernITlMEIMSTats}

10 DIM M$ [loo]
20 OUTPUT XXX;":MACHINEl:TWAVEFORM:MMODE?"

30 ENTER XXX; MS
40 PRINT M$
50 END

TWAVeform Subsystem
19-9

OCONdition

OCONdition command/query

The OCONdition command specifies where the 0 marker is placed. The
0 marker can be placed on the entry or exit point of the OPATtem when
in the PATTern marker mode.

The OCONdition query returns the current setting.

Command Syntax: :MACHine{ 1~2):TWAVeform:OCONdition {ENTering 1 MITing}

Example: OUTPUT XXX; “:MACHINE1:TWAVEFORM:OCONDITION ENTERING”

Query Syntax: :MACHine{ 1)2}:TWAVeform:OCONdition?

&?tUrned Format: [:MACHine{ 112}:TWAVeform:OCONdition] (ENTering 1 EXITing} < NL>

Example: 1 0 D I M Oc$ [loo]
20 OUTPUT XXX;” :MACHINE1:TWAVEFORM:OCONDITION?”
30 ENTER XXX; Oc$
40 PRINT Oc$

50 END

TWAVeform Subsystem
19-10

HP 16528/1653B
Programming Reference

OPATtern

OPATtern command/query

The OPATtem command allows you to construct a pattern recognizer
term for the 0 marker which is then used with the OSEarch criteria and
OCONdition when moving the marker on patterns. Since this command
deals with only one label at a time, a complete specification could require
several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern reco@zer term. In whatever base
is used, the value must be between 0 and 2 - 1, since a label may not have
more than 32 bits. Because the < labelpattern > parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

The OPATtem query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the 0 marker for a given label. If the 0 marker
is not placed on valid data, don’t cares (XX...X) are returned.

Command Syntax: :MACHine{ 1 I2):TWAVeform:OPATtern <label-name > , c label-pattern >

where:

< labe l -name > :: = string of up to 6 alphanumeric characters
c label-pattern > :: = “{#B{Oj 1 IX} . . . 1

#0{0~1~2~3~4~5~6~7~X}. . . I

XH{OIl~2~3~4~5(6~7)6~9)A~BICIDIEIFIX). . . I
{Oil ~2~3~4~5)6~7~6~9}. . . }”

Example: OUTPUT XXX: “:MACHINEl:TWAVEFORM:OPATTERN ‘A’,‘511’”

TWAVeform Subsystem
19-11

OPATterrw

Query Syntax: :MACHine{l J2}:TWAVeform:OPATtem? <label-name >

RetllrMd Format: [:MACHine{ 1~2}:lWAVeform:OPATtern] < label-name > , clabelgattern > c NL>

Example: lo DIM op$ [loo]
20 OUTPUT XXX;":MACHINEl:TWAVEFORM:OPATTERN? 'A"'

30 ENTER XXX; Op$

40 PRINT Op$
50 END

TWAVeform Subsystem
19-12

HP 10528/1653B
Programming Reference

OSEarch

OSEarch command/query

The OSEarch command defines the search criteria for the 0 marker
which is then used with the associated OPATtem recognizer specification
and the OCONdition when moving markers on patterns. The origin
parameter tells the marker to begin a search with the trigger or with the X
marker. The actual occurrence the marker searches for is determined by
the occurrence parameter of the OPATtem recognizer specification,
relative to the origin. An occurrence of 0 places a marker on the selected
origin. With a negative occurrence, the marker searches before the origin.
With a positive occurrence, the marker searches after the origin.

The OSEarch query returns the search criteria for the 0 marker.

Command Syntax: :MACHine{l~2):TWAVeform:OSEarch coccumzinoe z=, <origin z=

where:

c origin > :: = {TRIGger JXMAFMr}
<occurrence > :: = integer from -9999 to +99%l

Example: OUTPUT XXX; “:MACHINEl:TWAVEFORM:OSEARCH +lO.TRIGGER”

Query Syntax: :MACHine{ 112}:TWAVeform:OSEarch?

Returned Format: [:MACHine{ 112}:lWAVeform:OSEarch] <occurrence >, <origin > c NL>

Example: 10 D I M OS$ [loo]
20 OUTPUT XXX;“:MACHINEl:TWAVEFORM:OSEARCH?”

30 ENTER XXX; Os$
40 PRINT Os$
50 END

HP 16528/1663B
Programming Reference

TWAVeform Subsystem
1813

OTlMe

OTlMe command/query

The OTIMe command positions the 0 marker in time when the marker
mode is TIME. If data is not valid, the command performs no action.

The OTIMe query returns the 0 marker position in time. If data is not
valid, the query returns 9.9E37.

Command Syntax: :MACHine{ l(2):TWAVeform:OTIMe <time-value >

where:

.: t i m e - v a l u e z :: = real number -2.SKs to +2.5Ks

Example: OUTPUT XXX; ":MACHINEl:TWAVEFORM:OTIME 30.OE-6"

Query Syntax: :MACHine{l (P}:TWAVeform:OTIMe?

Returned Format: [:MACHine{ 1 IP}:TWAVeform:OTIMe] dime-value z- c NL>

Example: 10 DIM ots [loo]
20 OUTPUT XXX;" :MACHINEl:TWAVEFORM:OTIME?"
30 ENTER XXX; Ot$

40 PRINT Ot$
50 END

TWAVeform Subsystem
1914

HP 16528/l 6538
Programming Reference

RANGe

RANGe command/query

The RANGe command specifies the full-screen time in the timing
waveform menu. It is equivalent to ten times the seconds-per-division
setting on the display. The allowable values for RANGe are from 100 ns
to 10 ks.

The RANGe query returns the current full-screen time.

Command Syntax: :MACHine{l JP}:TWAVeform:RANGe <time-value>

where:

-c time-range > :: = real number between 100 ns and 10 ks

Example: OUTPUT XXX;" :MACHINEl:TWAVEFORM:RANGE lOOE-9"

Query Syntax: :MACHine(l ~P}:lWAVeform:WGe?

Returned F o r m a t : [:MACHine{l~2}:lWAVeform:FWNGe] <time-value> cNL>

Example: 10 DIM Rgj [loo]

20 OUTPUT XXX;":MACHINEl:TWAVEFDRM:RANGE?"
30 ENTER XXX; RgS
40 PRINT Rg$
50 END

HP 1652W16538
Programming Reference

TWAVeform Subsystem
1915

REMove

REMove command

The REMove command deletes all waveforms from the display.

Command Syntax: :MACHine{l~P):TWAVeform:REMove

Example: OUTPUT XXX;" :MACHINEl:TWAVEFORM:REMOVE"

TWAVeform Subsystem
1916

HP 16526/1653B

RUNTil

RUNTil command/query

The RUNTil (run until) command defines stop criteria based on the time
between the X and 0 markers when the trace mode is in repetitive. When
OFF is selected, the analyzer will run until either the “STOP” touch screen
field is touched or the STOP command is sent. Run until the time
between X and 0 marker options are:

l Less Than (LT) a specified time value
l Greater Than (GT) a specified time value
l In the range (INRange) between two time values
l Out of the range (OUTRange) between hvo time values

End points for the INRange and OUTRange should be at least 10 ns apart
since this is the minimum time at which data is sampled.

This command affects the timing analyzer only, and has no relation to the
RUNTil commands in the SLISt and COMPare subsystems.

The RUNTil query returns the current stop criteria.

Command Syntax: MACHine{ 1 IP}:lWAVeform:RUNTil -z run-until-spec >

where:

< run-until-spec > : : = { O F F 1 LT,cvalues 1 GT,<value> 1 lNFhge<value>,<value> 1
OUTRange -z value z , <value > }

< v a l u e > :: = real number

Examples: OUTPUT XXX;“:MACHINEl:TWAVEFORM:RUNTIL GT, 800.OE-6”

OUTPUT XXX;“:MACHINE1:TWAVEFORM:RLlNTIL INRANGE, 4 . 5 . 5 . 5 ”

HP 16528/1653B
Progmmming Reference

TWAVeform Subsystem
19-17

RUNTil

Query Syntax: :MACHine{ 1~2):WAVeform:RUNTII?

Returned Format: [:MACHine{l(2):TWAVeform:RUNTil] <run-until-spec> <NL>

Example: 10 DIM Ru$ [lDO]

20 OUTPUT XXX;":MACHINEl:TWAVEFORM:RUNTIL?"
30 ENTER XXX; Ru$

40 PRINT Ru.$
50 END

TWAVeform Subsystem
1918

HP 1852Bll883B
Programming Reference

SPERiod

SPERiod wry

The SPERiod query returns the sample period of the last run.

Query Syntax: :MACHine{l~2}:TWAVeform:SPERiod?

Returned Format: [:MACHine{ 1 12):TWAVeform:SPERiodJ <time-value> cNL>

where:

<t ime value > : : = r e a l n u m b e r

Example: 10 DIM sp$ [IOO]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:SPERIOO?"
30 ENTER XXX; Sp$
40 PRINT Sp$

50 EN0

HP 1652B/1653B
Progtamming Reference

TWAVeform Subsystem
19-19

TAVerage

TAVerage wry

The TAVerage query returns the value of the average time between the X
and 0 markers. If there is no valid data, the query returns 9.9E37.

Query syntax: :MACHine{l 12}:TWAVeform:TAVerage?

h3tURIed Format: [:MACHine{ l I2}:TWAVeform:TAVerage] -Z time-value > -c NL>

where:

-c t i m e v a l u e > : : = r e a l n u m b e r

Example: 10 DIM Tv$ [loo]
20 OUTPUT XXX;":MACHINEl:TWAVEFORM:TAVERAGE?"

30 ENTER XXX; Tv$
40 PRINT Tv$

50 END

TWAVeform Subsystem
m-20

HP 16528/1653B
Programming Reference

TMAXimum

TMAXimum

Query Syntax:

Returned Format:

where

c time value >

Example:

HP 16528/1653B
Programming Reference

query

The TMAXimum query returns the value of the maximum time between
the X and 0 markers. If there is no valid data, the query returns 9.9E37.

:MACHine{ 1~2}:TWAVeform:TMAXimum?

[:MACHine{l12}:TWAVeform:TMAJGmum] c time-value > c NL>

:: = real number

10 DIM Tx$ [loo]

20 OUTPUT XXX;":MACHINEl:TWAVEFORM:TMAXIMUM?"

30 ENTER XXX; Tx$
4 0 PRINT Tx$

50 END

TWAVeform Subsystem
19-21

TMlNimum

TMINimum

Query Syntax:

Returned Format:

where:

<: time-value >

Example:

TWAVeform Subsystem
1942

The TMINimum query returns the value of the minimum time between
the X and 0 markers. If there is no valid data, the query returns 9.9E37.

:fdACHine{l J2):TWAVeform:TMINimum?

[:MACHine{ 1(2}:TWAVeform:TMINimum] <time-value > c NLr

:: = real number

10 DIM Tm$ [loo]
20 OUTPUT XXX;":MACHINEl:TWAVEFDRM:TMINIMUM?"

30 ENTER XXX; Tm$
4 0 PRINT Tm$

50 END

HP 16528/1663B

VRUNs

VRUNs ww

The VRUNs query returns the number of valid runs and total number of
runs made. Valid runs are those where the pattern search for both the X
and 0 markers was successful resulting in valid delta time measurements.

Query Syntax: :MACHine{ 1 JS}:TWAVeform:VRlJNs?

Returned Format: [:MACHine(l ~P}:lWAVeform:VFtUNs] <valid-runs>, <total-runs> c NL>

where:

-z valid runs >

<total-runs z-

: : = z e r o o r p o s i t i v e i n t e g e r

: : = z e r o o r p o s i t i v e i n t e g e r

Example: lo DIM vrS [loo]
20 OUTPUT XXX;":MACHINEl:TWAVEFORM:VRUNS?"

30 ENTER XXX; Vr$
40 PRINT Vr$
50 END

HP 1652B/l653B
Programming Reference

TWAVeform Subsystem
19-23

XCONdition

XCONdition command/query

The XCONdition command specifies where the X marker is placed. The
X marker can be placed on the entry or exit point of the XPATtem when
in the PATTern marker mode.

The XCONdition query returns the current setting.

Command Syntax: MACHine{ 1 12):TWAVeform:XCONdition {ENTering 1 EXITing)

Example: OUTPUT XXX; ":MACHINE1:TWAVEFORM:XCONDITION ENTERING"

Query Syntax: :MACHine{ 1 12):TWAVeform:XCONdition?

h3tUtTled Format: [:MACHine{ 1 I2):TWAVeform:XCONditionl {ENTering 1 EXITing} -z NL>

Example: 10 DIM XcS [lo01
20 OUTPUT XXX;" :MACHINE1:TWAVEFORM:XCONDITION?"
30 ENTER XXX; Xc$
40 PRINT Xc$
50 END

TWAVeform Subsystem
IS-24

HP 1652B/l653B
Programming Reference

XOTime

XOTime

Query syntax:

Returned Format:

where:

<time-value >

Example:

HP 10528/1653B
Programming Reference

query

The XOTime query returns the time from the X marker to the 0 marker.
If data is not valid, the query returns 9.9E37.

:MACHine{l~2):TWAVeform:XOTime?

[:MACHine{ 1) 2):TWAVeform:XOTime) -z time-value > c NL>

:: = real number

10 DIM XotS [loo]
20 OUTPUT XXX;":MACHINEl:TWAVEFORM:XOTIME?"

30 ENTER XXX; Xot$
40 PRINT Xot$

50 END

WAVeform Subsystem
19-25

XPATtern

XPATtern

Command Syntax:

where:

<iabel name>
clabelgattemz-

Example:

command/query

The XPATtem command allows you to construct a pattern recognizer
term for the X marker which is then used with the XSEarch criteria and
XCONdition when moving the marker on patterns. Since this command
deals with only one label at a time, a complete specification could require
several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern reco@zer term. In whatever base
is used, the value must be between 0 and 2 - 1, since a label may not have
more than 32 bits. Because the < labelqattem > parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

The XPATtem query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the X marker for a given label. If the X marker
is not placed on valid data, don’t cares (XX...X) are returned.

:MACHine{ l(2):TWAVeform:XPATtern <label-name > , < label-pattern >

:: = string of up to 6 alphanumeric characters
:: = “(#B(O)1 IX} . (

SQ{Oll12)3)4)5)6)7)X). .)

+H(Olll2~3~4~5l6l7l8ISIAIBICIDIEIFIX)... I
(0~1)2~3)4~5~6)7~8~9}. . }”

OUTPUT XXX; ":MACHINEl:TWAVEFORM:XPATTERN 'A'.'511'"

TWAVeform Subsystem
1826

HP 1652Wl653B

XPATtern

Query Syntax: :MACHine{ 1(2}:TWAVeform:XPATtem? -z label-name >

&?tWled Format: [:MACHine{ 1~2}:TWAVeform:XPATtern] c label-name > , -z labelgattern z < NL>

Example: 10 DIM Xp$ [lOD]
20 OUTPUT XXX;":MACHINEl:TWAVEFORM:XPATTERN? 'A"'

30 ENTER XXX; Xp$

40 PRINT Xp$
50 END

HP 16526/1653B
Programming Reference

TWAVeform Subsystem
19-27

XSEarch

XSEarch command/query

The XSEarch command defines the search criteria for the X marker
which is then used with the associated XPATtern recogaizer specification
and the XCONdition when moving markers on patterns. The origin
parameter tells the marker to begin a search with the trigger. The
occurrence parameter determines which occurrence of the XF’ATtem
recognizer specification, relative to the origin, the marker actually
searches for. An occurrence of 0 (zero) places a marker on the origin.

The XSEarch query returns the search criteria for the X marker.

Command Syntax: :MACHine{ 1 12):lWAVeform:XSEarch <occurrenoe >, <origin >

where:

<origin > :: = TRlGger
c. occurrence > :: = integer from -9999 to +9999

Example: OUTPUT XXX; “:MACHINE1:TWAVEFORM:XSEARCH,+10.TRIGGER”

Query syntax: :MACHine(l(2}:TWAVeform:XSEarch? c occurrence > , <origin >

Returned Format: [:MACHine{ 1 12):TWAVeform:XSEarchl <occurrence >, <origin z= < NL>

Example: 1 0 D I M Xs$ [loo]
20 OUTPUT XXX;” :MACHINEl:TWAVEFORM:XSEARCH?”

30 ENTER XXX; Xs$
40 PRINT Xs$
50 END

TWAVeform Subsystem
19-28

HP 1652B/1653B

XTlMe

XTIMe

Command Syntax:

where:

-z t i m e - v a l u e >

Example:

Query Syntax:

Returned Format:

Example:

command/query

The XTIMe command positions the X marker in time when the marker
mode is TIME. If data is not valid, the command performs no action.

The XTIMe query returns the X marker position in time. If data is not
valid, the query returns 9.9E37.

:MACHine{ 1 IP}:TWAVeform:XTIMe <time-value >

:: = real number from -2SKs to +2.5Ks

O U T P U T m “:MACHINEl: lWAVEFORM:XTIME 4 0 . 0 E - 5 ”

:MACHine{l JP}:TWAVeform:XlIMe?

[:MACHine{ 1 IP}:TWAVeform:XTIMe] dime-value > c NL>

10 DIM Xt$ [loo]
20 OUTPUT)(XX;“:MACHINEl:TWAVEFORM:XTIME?”

3 0 E N T E R W Xt$
40 P R I N T X t $
5 0 E N D

TWAVeform Subsystem
19-29

SYMBol Subsystem

Introduction The SYMBol subsystem contains the commands that allow you to define
symbols on the controller and download them to the HP 1652Bb3B logic
analyzer. The commands in this subsystem are:

l BASE
l PAlTern
l RANGe

l REMove
l WIDTh

s p a c e l a b e l - n a m e
1

Figure 20-l. SYMBol Subsystem Diagram

HP 16528/16538
Programming Reference

SYMBol Subsystem
20-l

label-name == s t ing of up to 6 alphanumeric characters
symbol-name = smhg of up to 16 alphanumeric characters
pattern-value = “{#B{OI1JX}. . . 1

~Q~~l~l~1~l~l~l~l~l~~~~~ I
#H{OI1~2(3~4~5)6(7~8(9~A~BIC~DIE~FIX}. . . (
(0~2~21314~5l6~7~8~9). . . }”

start-value =: “{#B{OII}. . . 1
#Q{O~1~2~3~4~5~6~7}. . . 1
#H{OIj’~2~3~4~5~6~7~8~9~AIBJCIDIEIF}. . . 1
(0~1~2~3~4~5~6~7~8~9). . . }”

stop-value = “{#B{OII}. . . I
#Q~~l~1213l4~l617~. . - I
#H(~l~(2~3~4~5~6~7~8I9JAJBJCIDJEJF). . . 1
{0~1~2~3~4~5~6~7~8~9}... }”

width-value = integerfrom I to 16

Figure 20-l. SYMBol Subsystem Syntax Diagram (continued)

SYMBol Subsystem
20-2

HP 16528/1653B
Programming Reference

SYMBol

SYMBol selector

The SYMBol selector is used as a part of a compound header to access
the commands used to create symbols. It always follows the h4ACHiae
selector because it selects a branch directly below the MACHine level in
the command tree.

Command Syntax: :MACHine{l(2}:SYMBol

Example: OUTPUT XXX;":MACHINEl:SYMBOL:BASE 'DATA', BINARY"

HP 16528/1653B SYMBol Subsystem
20-3

BASE

BASE

Note ”4

Command Syntax:

where:

-Z label-name 1
<base value >

Example:

SYMBol Subsystem
20-4

command

The BASE command sets the base in which symbols for the specified label
will be displayed in the symbol menu. It also specifies the base in which
the symbol offsets are displayed when symbols are used.

BINary is not available for labels with more than 20 bits assigned. In this
case the base will default to HEXadecimal.

MACHine{ 1 I2):SYMBol:BASE <label-name >, < base-value 5

:: = string of up to 6 alphanumeric characters

:: = {BINary 1H&decimal) OCTal 1DECimal 1ASCii}

OUTPUT XXX;":MACHINEl:SYMBOL:BASE 'DATA',HEXADECIMAL"

HP 16528/l 6638
Programming Reference

PAlTern

PAlTern command

The PATTern command allows you to create a pattern symbol for the
specified label.

Because don’t cares (X) are allowed in the pattern value, it must always be
expressed as a string. You may still use different bases, though don’t cares
cannot be used in a decimal number.

Command Syntax: MACHine{ 1 (~}:SYMB~~:PATT~~~K l a b e l - n a m e >, -z s y m b o l - n a m e >, < p a t t e r n - v a l u e >

where:

-z l a b e l - n a m e > : : = s t r i n g o f u p t o 6 a l p h a n u m e r i c c h a r a c t e r s

-Z symbol-name Z- : : = s t r i n g o f u p t o 1 6 a l p h a n u m e r i c c h a r a c t e r s
c p a t t e r n v a l u e > ::= “{#e{o~l~x). . . 1

XQ(O~l~2l3l4~5~6l7lX). . . I

XH(O(l~2~3~4~5~6~7~8~9~AlBICIDIEIFIX). . . I
{Oil (2~3~4~5)6~7~8)9}. . . }”

Example: OUTPUT XXX;":MACHINEl:SYMBOL:PATTERN 'STAT', 'MEM~RO'.'#HOlXX'"

HP 16528/1653B SYMBol Subsystem
20-5

RANGe

RANGe command

The RANGe command allows you to create a range symbol containing a
start value and a stop value for the specified label. The va!ues may be in
binary (#B), octal (#a), hexadecimal (#H) or decimal (default). You
may not use “don’t cares” in any base.

Command Syntax: :MACHine{ l(2):SYMBol:RANGe <label-name > , e symbol-name > , <start-value >,
<stop-value >

where:

< labe l -name > :: = string of up to 6 alphanumeric characters
-Z symbol-name > :: = string of up to 16 alphanumeric characters

<: start_value > : : = ‘@{#B{OIl}. . 1
#Q{O(l~2~3)4~5~6~7). . I
#H{Olll2~3~4~5l6l7~slSIAIBICIDIEIF). . . I

{Oil ~2~3~4~5~6~7~8~9). . .I”
<: stop value > : : = “{#B{Oll}. . . I

%0{0~1~2~3~4~5~6~7}. . . I
#H{Oll~2~3~4~5(6~7~8~9~A(BICID1EIF). . . I
(Oll~2~3~4~5~6~7~8~9). . . }”

Example: OUTPUT XXX;” :MACHINEl:SYMBOL:RANGE ‘ S T A T ’ . ‘IO~ACC’.‘O’.‘#HOOOF’”

SYMBol Subsystem
20-6

HP 1652B/l663B
Programming Reference

REMove

REMove command

The RJZMove command deletes all symbols from a specified machine.

Commend Syntax: :MACHine{l~2}:SYMBol:REMove

bmlpk: OUTPUT XXX;":MACHINEl:SYMBOL:REMOVE"

HP 1052B/1653B
Programming Reference

SYMBol Subsystem
20-7

WIDTh

WIDTh

Note #i

command

The WIDTh command specifies the width (number of characters) in
which the symbol names will be displayed when symbols are used.

The WIDTh command does not affect the displayed length of the symbol
offset value.

Command Syntax:

where:

<: label-name 5
c width value z-

SYMBol Subsystem
20-a

:MACHine{ 1 I2):SYMBol:WIDTh <label-name>, <width-value >

:: = string of up to 6 alphanumeric characters

:: = integer from 1 to 16

OUTPUT XXX;" :MACHINEl:SYMBOL:WIDTH 'DATA',9 -

HP 16528/16!53B
Programming Reference

SCOPe Subsystem 21
Introduction The SCOPe subsystem provides access to the commands and the

osci l loscope subsystem commands that control the basic operat ion of the
oscilloscope. At the SCOPe subsystem level is a command that turns the
oscilloscope on or off (SMODe) and the AUToscale command.

Addit ional ly , the fol lowing subsystems are a par t of the SCOPe subsystem.
Each is explained in a separate chapter.

l CHANnel subsystem (chapter 22)
l TRIGger subsystem (chapter 23)
l ACQuire subsystem (chapter 24)
l TIMebase subsystem (chapter 25)
l WAVeform subsystem (chapter 26)
l MEASure subsystem (chapter 27)

Not all scope-related functions can be duplicated with programming
instructions. If you are unable to get a desired configuration strictly
through programming instruct ion, t ry the fol lowing s teps:

1. Manually configure the HP 1652B/53B through the front panel.

2. Save configuration to a disk (through the front panel or through the
:MMEM:STORE "CONFIG","Setups" instruction).

Now you can use the command MMEM: LOAD "CONFIG" to load in the desired
configurat ion.

Figure 21-1. SCOPe Subsystem Syntax Diagram

HP 16528/16538
Programming Reference

SCOPe Subsystem
21-1

SCOPe

SCOPe selector

The SCOPe selector is used to indicate the beginning of a compound
command (or query) for a function within the SCOPe subsystem. Since
SCOPe is a root-level command, it will normally appear as the first
element of a compound header.

Command Syntax: :SCOPe

Example: OUTPUT XXX; ":SCOPE:TRIGGER:SLOPE NEGATIVE"

SCOPe Subsystem
21-2

HP 16528/16538

AUToscale

AUToscale command

The AUToscale command causes the oscilloscope to automatically select
the vert ical sensit ivity, vert ical offset , t r igger level and timebase se t t ings
for optimum viewing of any input s ignals . The tr igger source is the lowest
channel on which the trigger was found. If no trigger is found, the
oscil loscope defaults to auto-tr igger.

Command syntax: :SCOPe:AUToscale

Example: OUTPUT XXX;":SCOPE:AUTOSCALE"

HP 16528/1653B SCOPe Subsystem
21-3

SMODe

SMODe command/query

The SMODe command allows the oscilloscope to be turned on or off over
the bus.

The SMODe query returns the current status of the oscillosocpe.

Command Syntax: :SCOPe:SMODe {ON)OFF}

Example: OUTPUT XXX;“:SCOPe:SMOOe ON”

Query Syntax: :SCOPe:SMODe?

Returned Format: [:SCOPe:SMODe] {ON IOFF) < NL>

Example: 10 DIM Sm$[lOO]
20 OUTPUT XXX;“:SCOPE:SMODE?”

30 ENTER XXX;Sm$
40 PRINT Sm$
50 END

SCOPe Subsystem
21-4

HP 16528/1653B
Programming Reference

CHANnel Subsystem 22
Introduction The CHANnel subsystem commands control the channel display and the

vertical axis of the oscilloscope. Each channel must be programmed
independently for all offset, range and probe functions. The commands
are:

0 C H A N n e l
0 COUPling
0 OFFSet
l PROBe
l RANGe

HP 1652Bll653B
Programming Reference

CHANnel Subsystem
22-l

channel-number = {I 1 2)
offset-arg = real number dtjining the voltage at the center of the display. The offset range depends on
the input impedance setting. The of/set range for 1 MC? input is - 125 V to + 125 K The offset range for
50Qinputis-5Vto+5V.
probe-arg = integerftom 1 through lOlW, specifying the probe attenuation with respect to 1.
range-arg = real number specifying vemCal sensitivity. The allowable range is 15 mV to 10 Vfor a

probe attenuation of 1. The specified range is equal to 4 times VoltslDiv.

Figure 22-l. CHANnel Subsystem Syntax Diagram

CHANnel Subsystem
22-2

HP 16528/1653B
Programming Reference

CHANnel

CHANnel selector

The CHANnel selector is used as part of a compound command header to
access the settings found in oscilloscope’s CHANnel menu. It always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command Syntax: :SCOP~:CHAN~~I < N >

where:

cN> ::= {l 12)

Example: OUTPUT XXX; ":SCOPE:CHANNEL2:OFFSET 2.5"

HP 10526/1653B
Programming Reference

CHANnel Subsystem
22-3

COUPling

COUPling command/query

The COUPling command sets the input impedance for the selected
channel. The choices are either 1M Ohm (DC) or 50 Ohms (DCFifIy).

The query returns the current input impedance for the specified channel.

Command Syntax: :SCOPe:CHANnel{ 1 I2):COUPling {DC) DCFifty}

Example: OUTPUT XXX ; ” :SCOPE:CHANNELl:COUPLING DC”

Query Syntax: :SCOPe:CHANnel{ 1 IP}:COUPling?

k3tIJrrWd Format: [:SCOPe:CHANnel{l I2):COUPlingl { D C 1 DCFifty} c NL>

Example: 1 0 DIM cct[lool
20 OUTPUT XXX;“:SCOPE:CHANNELl:COUPLING?”

30 ENTER XXX;Cc$
40 PRINT Cc$
50 END

CHANnel Subsystem
22-4

HP 16528/1653B

OFFSet

OFFSet command/query

The OFFSet command sets the voltage that is represented at center
screen for the selected channel. The allowable offsets for 1:l probes are:

42VcSOmVldiv
4 10 V at 100 mV/div and 200 mV/div
2 SOV at 50 mV/div and 1 Vldiv
4 250 V L 2 Vldiv

The allowable offset is -t5 V for any vertical range when the input
impedance is set to 50 R.

The offset value is recompensated whenever the probe attenuation factor
is changed.

The query returns the current value for the selected channel.

Command Syntax: :SCOPe:CHANnel{ 1 IP}:OFFSet <value >

where:

cl value > ::= {-2~Vto+~Vmax.atlMR 1 -~vto+5vat~sL}

Example: OUTPUT XXX;":SCOP:CHANl:OFFS 1.5"

Query Syntax: :SCOPe:CHANnel{l JP}:OFFSet?

f%?tUrMd Format: [:SCOPe:CHANnel{ 1 I2):OFFSeq <value > c NL>

Example: 10 DIM Co$[lOO]
20 OUTPUT XXX;":SCOPE:CHANNELl:OFFSET?"

30 ENTER XXX;Co$
40 PRINT Co$

50 END

HP 16528/1663B
Programming Reference

CHANnel Subsystem
22-5

PROBe

PROBe command/query

The PROBe command specifies the attenuation factor for an external
probe connected to a channel. The command changes the channel voltage
references such as range, offset, trigger levels and automatic
measurements. The actual sensitivity is not changed at the channel input.
The allowable probe attenuation factor is an integer from 1 to 1ooO.

The query returns the probe attenuation factor for the selected channel.

Command Syntax: :SCOPe:CHANnel{l I2):PROBe catten>

where:

c atten > :: = integer from 1 to loo0

Example: OUTPUT XXX;":SCOPe:CHANl:PROB 10"

Query Syntax: :SCOPe:CHANnel{ 1)2}:PROBe?

Returned Format: [:SCOPe:CktANnel{ 1 I2}:PROBe] <atten > <NL>

Example: 10 DIM Att$[lOO]
20 OUTPUT XXX;": SCOPE:CHANNELl:PROEE?"

30 ENTER XXX;Att$
40 PRINT AttJ
50 END

CHANnel Subsystem
22-6

RANGe

RANGe command/query

The FMNGe command defines the full-scale (4 x Volts/Div) vertical axis
of the selected channel. The values for the RANGe command are
dependent on the current probe attenuation factor for the selected
channel. The allowable range for a probe attenuation factor of 1:l is
60 mV to 40 V. For a larger probe attenuation factor, multiply the range
limit by the probe attenuation factor.

The RANGe query returns the current range setting.

Command Syntax: :SCOPe:CHANnel{l J2):FlANGe < r a n g e >

where:

-c range > :: = 60 mV to 40 V for a probe attenuation factor of 1: 1

Example: ouTPuT ~X~;":~COPE:CHANNEL~:RANGE 4.8"

Query Syntax: :SCOPe:CHANnel{l~2}:RANGe?

Returned Format: [:SCOPe:CHANnel{l I2):FtANGe] <ranger -Z NL>

Example: 10 DIM PrS[loo]
20 OUTPUT XXX;“:SCOPE:CHANNELl:RANGE?”
30 ENTER XXX;Pr$

40 PRINT PrS
50 END

HP 16528/1653B
Programming Reference

CHANnel Subsystem
22-7

TRlGger Subsystem 23
Introduction The commands of the TRIGger subsystem allow you to se t ah the tr igger

conditions necessary for generating a trigger. There are two trigger
modes: Edge and Immediate. If a command is valid for the chosen trigger
mode, then that setting wiII be accepted by the oscilloscope. However, if
the command is not valid for the trigger mode, an error wih be generated.
None of the commands of this subsystem are used in conjunct ion with
Immediate trigger mode. See Figure 23-l for the TRIGger subsystem
syntax diagram.

The Edge In the Edge trigger mode, the oscilloscope triggers on an edge of a
Trigger Mode waveform, specified by the SOURce, LEVel, and SLOPe commands. If a

source is not specified, then the current source is assumed.

‘The Immediate In the Immediate trigger mode, the oscilloscope wiII trigger by itself when
Trigger Mode the arming requirements are met.

HP 165213/1663B
Programming Reference

TRlGger Subsystem
23-l

level -value = trigger level in volts

Figure 23-l. TRlGger Subsystem Syntax Diagram

TRlGger Subsystem
23-2

HP 16528/1653B
Programming Reference

TRIGger

TRlGger selector

The TRIGger selector is used as part of a compound command header to
access the settings found in oscilloscope’s Trigger menu. It always follows
the SCOPe selector because it selects a branch below the SCOPe level in
the command tree.

Command Syntax: :SCOPe:TRIGger

Example: OUTPUT XXX; ":SCOPE:TRIGGER:CHANNELi;LEVEL 2.0"

HP 16528/16536
Programming Reference

TRlGger Subsystem
23-3

LEVEL

LEVEL command/query

The LEVEL command sets the trigger level voltage for the selected
source or path. This command cannot be used in the IMMEDIATE
trigger mode.

The query returns the trigger level for the current path or source.

Note d
There is no shortform for LEVEL. This is an intentional deviation from
the normal truncation rule.

Command Syntax: :SCOPe:TRIGger:LML <value >

where:

<value > : : = T r i g g e r l e v e l i n v o l t s

Example: OUTPUT XXX;":SCOPE:TRIG:LEVEL 1.0"

Query Syntax: :SCOPe:TRIGger:LML?

Returned Format: [:SCOPe:TRIGger:LEVEL] <value > < NL>

Example: 10 DIM El$[lOO]

20 OUTPUT XXX;" :SCOPE:TRIGGER:SOURCE CHANNELl;LEVEL?"

30 ENTER XXX;El$
40 PRINT El$

50 END

TRiGger Subsystem
23-4

HP 16526/1663B

MODE

MODE command/query

The MODE command allows you to select the trigger mode for the
oscilloscope. The EDGE mode will trigger the oscilloscope on an edge
whose slope is determined by the SLOPe command at a voltage set by the
LEVEL command. In the IMMediate trigger mode, the oscilloscope goes
to a freerun mode and does not wait for a trigger. The IMMediate mode is
used in armed-by other machine applications.

The query returns the current mode.

Command Syntax: :SCOPe:TRIGger:MODE {EDGE 1 IMMediate}

Example: OUTPUT XXX;":SCOPE:TRIGGER:MOOE EDGE"

Query Syntax: :SCOPe:TRIGger:MODE?

Returned Format: [:SCOPe:TRIGger:MODE] {EDGE)IMMediate}<NL>

Example: 10 DIM Md$[lOO]
20 OUTPUT XXX;":SCOPE:TRIGGER:MOOE?"

30 ENTER XXX;Md$

40 PRINT Md$

50 END

HP 16528/16538
Programming Reference

TRlGger Subsystem
23-5

SLOPe

SLOPe command/query

The SLOPe command selects the trigger slope for the previously
specified trigger source. This command can only be used in the EDGE
trigger mode.

The query returns the slope of the current trigger source.

Command Syntax: :SCOPe:TRIGger:SLOPe {Positive 1 NEGative}

Example: OUTPUT XXX;“:SCOP:TRIG:SOURCE CHANl;SLOPE POS”

Query Syntax: :SCOPe:TRIGger:SLOPe?

Returned Format: [:SCOPe:TRIGger:SLOPe] {Positive 1 NEGative} -c NLr

Example: 10 DIM Ts$[lOO]
20 OUTPUT XXX;":SCOP:TRIG:SOlJR CHANl;SLOP?"
30 ENTER XXX;Ts$
40 PRINT Ts$
50 END

TRlGger Subsystem
23-6

HP 16528/1653B
Programming Reference

SOURce

SOURce command/query

The SOURce command is used to select the trigger source and is used for
any subsequent SLOPe and LEVEL commands. This command can only
be used in the EDGE trigger mode.

The query returns the current trigger source.

Command Syntax: :SCOPe:TRIGger:SOURce {CHANnel{l12})

Example: OUTPUT xxx;":SCOP:TRIG:SOUR CHANl"

Query Syntax: :SCOPe:TRIGger:SOURce?

Returned Format: [:SCOPe:TRIGger:SOUFice] {CHANnel{ 112)) < NL >

Example: 10 DIM Tso$[lOO)
20 OUTPUT XXX;":SCOPE:TRIGGER:SOURCE?"
30 ENTER XXX;Tso$
40 PRINT Tso$

50 END

HP 16528/1653B
Programming Reference

TRlGger Subsystem
23-7

ACQuire Subsystem 24
Introduction The ACQuire subsystem commands are used to select the type of

acquisition and the number of averages to be taken if the average type is
chosen. The commands are:

0 couNt

l TYPE

/-dCOUNt?) I

count-alp: = (2 14 18 I16 I32) 64 I128 1256) An integer that specifies the number of averages to be taken of
each time point.

Figure 24-l. ACQuire Subsystem Syntax Diagram

HP 16528/16538 ACQuire Subsystem
Programming Reference 24-1

Acquisition Type In the Normal mode, with the ACCumulate command OFF, the

Normal oscilloscope acquires waveform data and then displays the waveform.
When the oscilloscope makes a new acquisition, the previously acquired
waveform is erased from the display and replaced by the newly acquired
waveform.

When the Accumulate command is ON, the oscilloscope displays all the
waveform acquisitions without erasing the previously acquired waveform.

Acquisition Type In the Average mode, the oscilloscope averages the data points on the

Average waveform with previously acquired data. Averaging helps eliminate
random noise from the displayed waveform. In this mode the
Accumulate command is OPP. When Average mode is selected, the
number of averages must also be specified using the COUNt command.
Previously averaged waveform data is erased from the display and the
newly averaged waveform is displayed.

ACQuire Subsystem
24-2

HP 16528/1663B
Programming Reference

ACQuire

ACQulre selector

The ACQuire selector is used as part of a compound command header to
access the sett ings found in oscil loscope’s Acquire menu. I t always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command Syntax: :SCOPe:ACQuire

bmpk?: OUTPUT XXX: ":SCOPE:ACQUIRE:TYPE NORMAL"

HP 16528/1653B
Programming Reference

ACQuire Subsystem
24-3

COUNt

COUNt command/query

The COUNt command specifies the number of acquisitions for the
running weighted average. This command generates an error if Normal
acquisition mode is specified.

The query returns the last specified count.

Command Syntax: :SCOPe:ACQuire:COUNt <count >

where

Zcount > : := {2~4~8~16~32~s4~128~25s)

&Hllpk OUTPUT XXX;":SCOPE:ACQUIRE:COUNT 16"

Query Syntax: :SCOPe:ACQuire:COUNt?

RetUrIWd Format [:SCOPe:ACQuire:COUNt] -Z count z -Z NLs

Example: 10 DIM A~$[1001
20 OUTPUT XXX;":SCOPE:ACQ:COUN?"

30 ENTER XXX;Ac$
40 PRINT Acf

50 END

ACQuire Subsystem
24-4

HP 16528/16636

TYPE

TYPE command/query

The TYPE command selects the type of acquisition that is to take place
when the STARt command is executed. One of three acquisition types
may be selected: the NORMal, AVERage, or Accumulate mode.

The query returns the last specified type.

Command Syntax :SCOPe:ACQuire:TYPE {NORMal 1 AVERage 1 ACCumulate}

&Ntlpk: OUTPUT XXX;": SCOPE:ACQUIRE:TYPE NORMAL”

Query Syntax: :SCOPe:ACQuire:TYPE?

f%?turned Format: [:SCOPe:ACQuire:TYPE] {NORMal 1 AVERage} < NL>

&KrIp~e: 10 DIM At$[lOO]
20 OUTPUT XXX;“:SCOPE:ACQUIRE:TYPE?”
30 ENTER XXX;At$
40 PRINT AtS

50 END

HP 15528/1653B ACQuire Subsystem
24-5

TIMebase Subsystem

Introduction The commands of the TIMebase subsystem control the Tiiebase, Trigger
Delay Time, and the Timebase Mode. If TRIGGERED mode is to be
used, ensure that the trigger specifications of the TRIGger subsystem have
been set. Refer to Figure 25-1 for the TIMebase subsystem syntax diagram.

space delay-org

delay-arg = delay time in seconds, ftom -2500 seconds through + 2500 seconds
range-q = a real numberfrom 5 ns through 10s

Figure 25-l. TIMebase Subsystem Synfax Diagram

HP 16528/1653B TIMebase Subsystem
Programming Reference 25-1

TiMebase

TIMebase selector

The TIMebase selector is used as part of a compound command header to
access the settings found in oscilloscqe’s Timebase menu. It always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command SyntSx: :SCO~e:~l~ebase

Example: OUTPUT XXX; ":SCOPE:TIHEBASE:MOOE AUTO"

TIMebase Subsystem
252

HP 10528/1653B
Programming Reference

DELAY

DELAY

Note ”4

Command Syntax:

where:

-z delay time z-

Example:

Query Syntax:

Returned Format:

Example:

command/query

The DELAY command sets the time between the trigger and the center
of the screen if the trigger events count is zero. If the trigger events count
is non-zero, the center of the screen is the tr igger events count plus the
delay time.

The query returns the current delay setting.

The DELAY command in the TIMebase subsystem has no shortform.
This is an intentional deviation from the normal truncation rules.

:SCOPe:TIMebase:DELAY -c delay time >

:: = delay time in seconds

OUTPUT XXX:":SCOPe:TIMebase:OELAY ZUS"

:SCOPe:TIMebase:DELAY?

[:SCOPe:TIMebase:DELAY] <value > < NL>

10 DIM Dt$[lOO]
20 OUTPUT XXX;":SCOPe:TIMebase:DELAY?"

30 ENTER XXX;Dt$
40 PRINT Dt$

50 END

HP 16528/1653B TIMebase Subsystem
2 5 3

MODE

MODE

Note ”4

Command Syntax:

Example:

TIMebase Subsystem
25-4

command/query

The MODE command sets the oscilloscope timebase to either Auto or
Triggered mode. When the AUTO mode is chosen, the oscilloscope waits
approximately one second for a trigger to occur. If a trigger is not
generated within that time, then auto trigger is executed. If a signal is not
applied to the input , a baseline is displayed. If there is a s ignal at the input
and the specified trigger conditions have not been met within one second,
the waveform display will not be synchronized to a trigger.

When the TRIGGERED mode is chosen, the oscilloscope waits until a
trigger is received before data is acquired. The TRIGGERED mode
should be used when the tr igger source signal is less than at a 40 Hz
repetition rate.

The Auto-Trig On field in the trigger menu is the same as the AUTO
mode over HP-IB or RS-232C. Setting the mode to TRIGgered is the
same as the Auto-Trig Off on the front panel.

The query returns the current TIMebase mode.

The TRIGGERED argument for MODE has no shortform. This is an
intentional deviation from the normal truncation rule.

:SCOPe:TIMebase:MODE (TRIGGERED(AUT0)

OUTPUT XXX;“:SCOPE:TIME:MODE AUTO

HP 16528/1653B
Programming Reference

MODE

Query Syntax: :SCOPe:TlMebase:MODE?

RetUrned Format: [:SCOPe:TIMebase:MODE] {AUTOITRIGGERED} cNL>

Example: 10 DIM Tm$[lOO]
20 OUTPUT XXX;“:SCOPe:TIMEBASE:MOOE?”

30 ENTER XXX;Tm$

40 PRINT Tm$

50 END

HP 1652B/l653B
Programming Reference

TIMebase Subsystem
255

RANGe

RANGe command/query

The RANGE command sets the fbll-scale horizontal time in seconds. The
RANGE value is ten times the front panel field of s/div.

The query returns the current range.

Command syntax: :SCOPe:TIMrbase:RANGe c range z-

where:

<range > :: = time in seconds

Example: OUTPUT XXX;" :SCOPE:TIMEBASE:RANGE 2US"

Query Syntax: :SCOPe:TIMebase:RANGe?

Returned Format: [:SCOPe:TIMebase:FWNGe] <range > -z NL>

Example: 10 DIM Tr$[lOO]
20 OUTPUT XXX;" :SCOPE:TIMEBASE:RANGE?"
30 ENTER XXX;Tr$
40 PRINT Tr$

50 END

TIMebase Subsystem
256

HP 16528/1553B
Progmmming Reference

WAVeform Subsystem

Introduction The commands of the WAVeform subsystem are used to transfer
waveform data from the oscilloscope to a controller. The commands are:

l COUNt
l DATA
l FORMat
l POINts
l PREamble
l RECord
l SOURce
l TYPe
l Valid
l XINCrement
l XORigin
l XREFerence
l YINCrement
l YORigin
l YREFerence

HP 1652B/1663B WAVeform Subsystem
26-l

channel-# = (112)

\ /

PREamb I e”

RECord

POINtsl

PREamb I e”

c

c

c

c

c

c

XINCrement7 c

Figure 26-l. WAVeform Subsystem Syntax Diagram

WAVeform Subsystem HP 16528/1653B
262 Programming Reference

Waveform
Record

The waveform record is actually contained in two portions; the waveform
data and preamble. The waveform data is the actual data acquired for
each point. The preamble contains the information for interpreting
waveform data. Data in the preamble includes number of points acquired,
format of acquired data, average count and the type of acquired data.
The preamble also contains the X and Y increments, origins, and
references for the acquired data for translation to time and voltage values.

The values set in the preamble are based on the settings of the variables in
the ACQuire, WAVeform, CHANnel, and TIMebase subsystems. The
ACQuire subsystem determines the acquisition type and the average
count, the WAVeform subsystem sets the number of points and the format
mode for sending waveform data over the remote interface and the
CHANnel and TIMebase subsystems set all the X - Y parameters.

Data Acquisition
Types

Normal Mode

Average Mode

The two acquisition types that may be chosen are Normal and Average.

In the Normal mode, with Accumulate command OFF, the oscihoscope
acquires waveform data and then displays the waveform. When the
oscil loscope takes a new acquisi t ion, the previously acquired waveform is
erased from the display and replaced by the newly acquired waveform.

When ACCumulate is set ON, the oscil loscope displays al l the waveform
acquisi t ions without erasing the previously acquired waveform.

In the Average mode, the oscil loscope averages the data points on the
waveform with previously acquired data. Averaging helps eliminate
random noise from the displayed waveform. in this mode ACCumulate is
set to OFF. When Average mode is selected the number of averages must
also be specified using the COUNt command. Previously displayed
waveform data is erased from the display and the newly averaged
waveform is displayed.

HP 16529/16539 WAVeform Subsystem
26-3

Format for Data ohere are three formats for transferring waveform data over the remote

Transfer interface. The formats are WORD, BYTE, and ASCII.

WORD and BYTE formatted waveform records are transmitted using the
arbitrary block program data format specified in IEEE-488.2. When you
use this format, the ASCII character string “#8-z DDDDDDDD > ” is sent
before the actual data. Each D represents an ASCII digit. The eight-digit
number represents the number of bytes to follow.

For example, if 2048 points of data are to be transmitted, the ASCII string
#800002048 would be sent.

BYTE Format In BYTE format, the six least significant bits represent the waveform data.
This means that the display is divided into 64 vertical increments. The
most significant bit is not used. The second most significant bit is the
overflow bit. If this bit is set to “1” and all data bits are set to “0” then the
waveform is clipped at the top of the screen. If all “0”s are returned, then
the waveform is clipped on the bottom of the display (see figure 26-2).

N O R M A L A N D A V E R A G E ACOUISITION TYPE

128 64 32 16 8 4 2

“8

OVERFLOW ,~53oIBL*O

Figure 262. Byte Date Structure

The data returned in BYTE format are the same for either Normal or
Average acquisition types. The data transfer rate in this format is faster
than the other two formats.

WAVeform Subsystem
2 6 4

HP 16528/1653B
Progmmming Reference

WORD Format Word data is two bytes wide with the most s ignif icant byte of each word
being transmitted first. Each 16-bit value effectively places a data point on
screen. The screen therefore is divided into 16384 vertical increments. The
WORD data structure for normal and average acquisition types are shown
in figure 26-3.

The relationship between BYTE and WORD formats are similar. Byte
data values equal word data values divided by 256. This is the reason that
the least s ignif icant byte in the normal acquisi t ion mode always contains
“0”s. In the average acquisition mode, the extra bits of resolution gained by
averaging occupy the least significant byte of the word. However, this is
only true when RECord type is set to WIND OW .

NORMAL ACQUISITION TYPE

AVERAGE ACQUISITION TYPE

MSB LSB
32768 16384 6192 4896 Pa-38 ,024 512 256 128 6 4 32 1 6 s 4 2 1

DATA (FRACTION)-

Figure 26-3. Word Data Structure

ASCII Format ASCII formatted waveform records are transmitted one value at a time,
separated by a comma. The data values transmitted are the same as would
be sent in the WORD format except that they are converted to an integer
ASCII format (six or less characters) before being transmitted. The
header before the data is not included in this format.

HP 16528/1653B
Programming Reference

WAVeform Subsystem
26-5

Data Conversion

Conversion from Data
Value to Voltage

Conversion from Data
Value to Time

Conversion from Data
Value to Trigger Point

WAVeform Subsystem
26-6

Data sent from the HP 1652B/53B is raw data and must be scaled for
useful interpretation. The values used to interpret the data are the X and
Y references, X and Y origins, and X and Y increments. These values are
read from the waveform preamble or by the queries of these values.

The formula to convert a data value returned by the instrument to a
voltage is:

voltage = [(data value - yreference) x yincrement] + yorigin

The time value of a data point can be determined by the position of the
data point. As an example, the third data point sent with XORIGIN =
16ns, XREPERENCE = 0 and XINCREMENT = 2ns. Using the
formula:

time = [(data point number - xreference) X xincrement] + xorigin

would result in the following calculation:

time = [(3 - 0) x 2ns] + 16ns = 22ns.

The trigger data point can be determined by calculating the closest data
point to time 0.

HP 16528/1653B
Programming Reference

WAVeform

WAVeform selector

The WAVeform selector is used as part of a compound command header
to access the settings found in oscilloscope’s Waveform menu. It always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command Syntax: :SCOPe:WAVeform

Example: OUTPUT XXX; ":SCOPE:WAVEFORM:"

HP 16528/16.538 WAVeform Subsystem
2G7

COUNt

The COUNt query returns the AVERage count that was last specified in
the Acquire subsystem. If the display mode is either NORMal or
Accumulate, a 1 is returned. If the display mode is AVERage, the
average number is returned.

Query Syntax: :SCOPe:WAVeform:COUNt?

Returned Format: [:SCOPe:WAVeform:COUNt] < c o u n t > cNL>

where:

< c o u n t > : : = {2~4~8~16~32~64~128~266)

Example: 10 DIM Ac$[lOO]
20 OUTPUT XXX;" :SCOPE:WAVEFORM COUNT?”

30 ENTER XXX;Ac$
40 PRINT Ac$

50 END

WAVeform Subsystem
28-8

HP 18828/1883B
Programming Reference

DATA

DATA query

The DATA query returns the waveform record stored in a specified
channel buffer. The SOURce command of this subsystem has to be used
to select the specified channel. The data is transferred based on the
FORMAT (BYTE, WORD or ASCII) chosen and the RECORD
specified (FULL or WINDOW). Since WAVeform:DATA is a query
only, it can not be used to send a waveform record back to the
oscilloscope from the controller. If a waveform record is to be saved for
later reloading into the oscilloscope, the SYSTem:DATA command
should be used. See the DATA instruction in the SYSTem subsystem for
information concerning the -Z block data > parameter.

Query Syntax: : S C O P e : W A V e f o r m : [S O U R c e CHANnel{ 1 IP};]DATA?

Returned Format: [:SCOPe:WAVeform:DATA]#800004096 <block data > < NL>

The following example program moves data from the HP 1652B/53B to a
controller.

Example: 100 CLEAR XXX
110 OUTPUT XXX:":SYSTEM:HEAOER OFF"

120 OUTPUT XXX;":SCOPE:ACQUIRE:TYPE NORMAL"
130 OUTPUT XXX;":SCOPE:WAVEFORM:SOURCE CHANNELI"
140 OUTPUT XXX;":SCOPE:WAVEFORM:FORMAT BYTE"
150 OUTPUT XXX;":SCOPE:WAVEFORM:RECORO FULL"
160 OUTPUT XXX;":SCOPE:AUTOSCALE"
170 DIM Header$[EO]

180 Length=4096
190 ALLOCATE INTEGER WAVEFORM(l:Length)

200 OUTPUT XXX;":SCOPE:WAVEFORM:OATA?"
210 ENTER XXX USING "XlOA";Header$
220 ENTER XXX USING "X.B";Waveform(*)
230 ENTER XXX USING "#.B";Lastchar

240 END

HP 1652B/l653B
Programming Reference

WAVeform Subsystem
26-9

FORMat

FORMat command/query

The FORMat command speciGes the data transmission mode of
waveform data over the remote interface.

The query returns the currently specified format.

Command Syntax: :SCOPe:WAVeform:FORMat {BYTEIWORDIASCii)

Example: OUTPUT XXX;":SCOPE:WAV:FORMAT"

Query Syntax: : S C O P e : W A V e f o r m : F O R M a t ? ”

%?tUW?d Format: [:SCOPe:WAVeform:FORMat] {BYlE(WORD(ASCii] cNL>

Example: 10 DIM FO$[~OO]
20 OUTPUT XXX;":SCOPE:WAVEFORM:FORMAT?"

30 ENTER XXX;Fo$

40 PRINT Fo$

50 END

WAVeform Subsystem
26-10

HP 16528/16538
Programming Reference

POINts

POINts w=w

When WAVeform RECord is set to PULL, the POINts query always
returns a value of 2048 points. When WAVeform RECord is set to
WINDOW, then the query returns the number of points displayed on
screen.

Query Syntax: :SCOPe:WAVeform:POIN?

Returned Format: [:SCOPe:WAVeform:POINts] <points> <NL>

where:

<points > :: = number of points depending on setting of WAVeform FECord command

Example: 10 DIM Po$[lOO]
20 OUTPUT XXX;":SCOPE:WAVEFORM:POINTS?"

30 ENTER XXX;Po$
40 PRINT Po$

50 END

HP 16528/1653B
Programming Reference

WAVeform Subsystem
26-11

PREAmble

PREAmble query

The PREAmble query returns the preamble of the specified channel. The
channel is specified using the SOURce command.

Note d
The short form for PREAMBLE is PREAmble. This is an intentional
deviation from the normal truncation rule.

Query Syntax: :SCOPe:WAVeform:[SOURce CHANnel(1)P);]PREAmble?

Returned Format: [:SCOPe:WAVeform:PRf3rnble]

c. format z ,

awe=-,
c points B,
<count>,

c Xincrement >,

-=z Xorigin >,
c Xreference z ,
-z Yincrement > ,
c Yorigin > ,

< Yreference > -z NL >

Example: 10 DIM Pr$[300]
20 OUTPUT XXX;":SCOPE:UAVEFORM:PREAMBLE?"

30 ENTER XXX;Pr$
40 PRINT Pr$
50 END

WAVeform Subsystem
2(i-12

HP 16!528/16538

RECord

RECord command/query

The RECord command specifies the data you want to receive over the
bus. The choices are FULL or WINDOW. When FULL is chosen the
entire 2048 point record of the specified channel is transmitted over the
bus. In WINDOW mode, only the data displayed on screen will be
returned. Use the SOURce command to select the channel of interest.
The query returns the present mode chosen.

Command Syntax: :SCOPe:WAVeform:RECord {FULL(WINDow}

Example: OUTPUT XXX;":SCOPE:WAV:SOUR CHANl:REC FULL"

Query Syntax: : S C O P e : W A V e f o r m : R E C o r d ?

Returned Format: [:SCOPe:WAVeform:RECord] {FULLIWINDow} cNL>

Example: 10 DIM Wr$[lDO]

20 OUTPUT XXX;":SCOPE:WAVEFORM:SOURCE CHANNELl:RECORD?"

30 ENTER XXX;Wr$

40 PRINT Wr$

50 END

HP 1652Bll653B
Programming Reference

WAVeform Subsystem
2813

SOURce

SOURce

Commend Synfex:

Example:

Query Syntax:

Returned Format:

Example:

WAVeform Subsystem
2&14

command/query

The SOURce command specifies the channel that is to be used for all
subsequent waveform ummands.

The query returns the presently selected channel.

:SCOPe:WAVeform:SOUR CHANnel(l j2)

OUTPUT XXX;" :SCOPE:UAVEFORM:SOURCE CHANNELl"

:SCOPe:WAVeforrn:SOUR?

[:SCOPe:WAVefon:SOUR] CHANnel c N > < NL>

10 DIM Ws$[lOO]
20 OUTPUT XXX;" :SCOPE:WAVEFORM:SOURCE?"

30 ENTER XXX:Ws$
40 PRINT Ws$
50 END

HP 1652B/l653B
Programming Reference

TYPE query

The TYPE query returns the present acquisition type which was specified
in the ACQuire subsystem.

Query Syntsx: :SCOPe:WAVeform:lYPE?

~etutned Format: [:SCOPe:WAVeform:TYPE](NORmal (AVERage JACCumulate} -Z NL>

Example: 10 DIM wt$[loo]
20 OUTPUT XXX;" :SCOPE:WAVEFORM:TYPE?"
30 ENTER XXX;Wt$
40 PRINT Wt$

50 EN0

HP 165213/1653B
Programming Reference

WAVeform Subsystem
2815

VALid

VALid

The VALid query checks the oscilloscope for acquired data. If a
measurement is completed, and data has been acquired by all channels,
then the query reports a 1. A 0 is reported if no data has been acquired for
the last acquisition.

Query Syntax: :SCOPe:WAVeform:VALid?

Returned Format: [:SCOPe:WAVeform:VALid] (01 l}<NL>

where:

0 :: = No data acquired
1 :: = Data has been acquired

Example: 10 DIM Da$[lOO]
20 OUTPUT XXX;":SCOPE:VAVEFORM:VALID?"
30 ENTER XXX;Da$

40 PRINT Da$
50 END

WAVeform Subsystem
2&16

HP 16628/1663B

XINCrement

XlNCrement query

The XINCrement query returns the X-increment currently in the
preamble. This value is the time between the consecutive data points.

Query Syntax: :SCOPe:WAVeform:XINCrement?

&?tUrt’Ied Format: [:SCOPe:WAVeform:XINCrement] <value > -Z NL>

where:

- c v a l u e > : : = X - i n c r e m e n t v a l u e c u r r e n t l y i n p r e a m b l e

Example: IO DIM Xi$[lOO]

20 OUTPUT XXX;":SCOPE:WAVEFORM:XINCREMENT?"

30 ENTER XXX;Xi$

40 PRINT Xi$

50 END

HP 1662S/l6536
Programming Reference

WAVeform Subsystem
2617

XORigin

XORigin query

The XORigin query returns the X-origin value currently in the preamble.
The value represents the time of the first data point in memory with
respect to the trigger point.

Query Syntax: : S C O P e : W A V e f o r m : X O R i g i n ?

Returned Format: [: S C O P e : W A V e f o r m : X O R i g i n] <value> < NL>

where:

<value B : : = X - o r i g i n v a l u e c u r r e n t l y i n p r e a m b l e

Example: 10 DIM Xo$[lOO]
20 OUTPUT XXX;":SCOPE:WAVEFORM:XORigin?"

30 ENTER XXX;Xo$

40 PRINT Xo$

50 END

WAVeform Subsystem
2618

HP 16528/1653B

XREFerence

XREFerence query

The XREFerence query returns the X-reference value in the preamble.
The value specifies the first data point in memory and is always 0.

Query Syntax: :SCOPe:WAVeform:XREFerence?

h3tUrrld Format: [: S C O P e : W A V e f o r m : X R E F e r e n c e] <value > <NL>

where:

-c v a l u e > : : = X - r e f e r e n c e v a l u e i n p r e a m b l e

Example: 10 DIM Xo$[lOO]
20 OUTPUT XXX;":SCOPE:WAVEFORM:XREFerence?"

30 ENTER XXX;Xo$

40 PRINT Xo$

50 END

HP 16528/1653B
Programming Reference

WAVeform Subsystem
2619

YlNCrement

YlNCrement query

The YINCrement query returns the Y-increment currently in the
preamble. This value is the voltage difference between consecutive data
values .

Query Syntax: :SCOPe:WAVeform:YINCrement?

RetUrned Format: [:SCOPe:WAVeform:YlNCrement] <value> c NL>

where:

c v a l u e > : : = Y - i n c r e m e n t v a l u e c u r r e n t l y i n p r e a m b l e

Example: 10 DIM Yi$[lOO]
20 OUTPUT XXX;":SCOPE:WAVEFORM:YINCREMENT?"

30 ENTER XXX;Yi$

40 PRINT Yi$

50 END

WAVeform Subsystem
26-20

HP 16528/1663B
Programming Reference

YORigin

YORigin wry

The YORigin query returns the Y-origin value currently in the preamble.
This value is the voltage at the center of the screen.

Query Syntax: :SCOPe:WAVeform:YO!4igin?

Returned Format: [:SCOPe:WAVeform:YORgin] <value> c NL>

where:

c value > :: = Y-origin value currently in preamble

Example: lo DIM YO$[IOO]
20 OUTPUT XXX;":SCOPE:WAVEFORM:YORigin?"

30 ENTER XXX;Yo$

40 PRINT Yo$
50 END

HP 16528/1663B WAVeform Subsystem
Programming Reference 26-21

YREFerence

YREFerence query

The YREFerence query returns the Y-reference value in the preamble.
The value specifies the data value at center screen where Y-origin occurs.

Query Syntax: :SCOPe:WAVeform:YREFerence?

Returned Format: [: S C O P e : W A V e f o r m : Y R E F e r e n o e] c v a l u e > < NL>

where:

<value > : : = Y - r e f e r e n c e v a l u e i n p r e a m b l e

Example: 10 DIM ~o$[iODl

20 OUTPUT XXX;":SCOPE:WAVEFORM:YREFerence?"

30 ENTER XXX;Yo$

40 PRINT Yo$

50 END

WAVeform Subsystem
2622

HP 16528/1663B
Programming Reference

MEASure Subsystem 27
Introduction The instructions in the MEASure subsystem are used to make automatic

parametric measurements on displayed waveforms. The instructions are:

l ALL
l FALLTime
l FREQuency
l NWIDth
l OVERShoot
a PERiod
l PRESHoot
l PWIDth
l RISETime
l SOURce
l VAMPlitude
l VBASe
@vIaAx
l VMIN
l VPP
0 VTOP

Before using any of the MEASure subsystem queries, be sure that you
have used to SOURce command to specify which channel is to be used.
All subsequent measurements will be made from that channel’s waveform.

If a waveform characteristic cannot be measured, the instrument responds
with 9.9E + 37.

HP 16528/1663B MEASure Subsystem
27-1

The following characteristics can be measured:

The frequency of the first complete cycle displayed is measured using the
50% level.

Frequency

Period

Peak-to-Peak

Positive Pulse Width

Negative Pulse Width

Risetime

Falltime

Preshoot and
Overshoot

Preshoot

Overshoot

MEASure Subsystem
27-2

The period of the first displayed waveform is measured at the 50% level.

The absolute minimum and the maximum voltages for the selected source
are measured.

Pulse width is measured at the 50% level of the first displayed pulse.

Pulse width is measured at the 50% level of the first displayed pulse.

The risetime of the first displayed rising edge is measured. To obtain the
best possible measurement accuracy, select the fastest sweep speed while
keeping the rising edge on the display. The risetime is determined by
measuring time at the 10% and the 90% voltage points of the rising edge.

Falltime is measured between the 10% and the 90% points of the first
displayed falling edge. To obtain the best possible measurement accuracy,
select the fastest sweep speed possible while keeping the fal l ing edge on
the display.

Preshoot and overshoot measure the perturbation on a waveform above or
below the top and base voltages.

is a perturbation before a rising or a falling edge and measured as a
percentage of the top-base voltage.

is a perturbation after a rising or falling edge and is measured as a
percentage of the top-base voltage.

For complete details of the measurement algorithms, refer to the
Front-panel Operating Reference Manual.

Refer to figure 27-l for the MEASure subsystem syntax diagram.

HP 16528/1653B
Programming Reference

channel-# = un infeger { 2 1 2).

Figure 27-l. MEASure Subsystem Syntax Diagram

HP 16528/16538
Programming Reference

MEASure Subsystem
27-3

MEASure

MEASure

Command Syntax:

Example:

selector

The MEASure selector is used as part of a compound command header
to access the set t ings found in oscil loscope’s Measure menu. I t always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

:SCOPe:MEASure

OUTPUT XXX; ":SCOPE:MEASURE:SOURCE CHANZ"

Note d
All queries in this subsystem return the measurement results of the last
channel specified by the SOURce command. If you want measurement
results from the other channel, you must use the SOURce command
before using any of the queries.

MEASure Subsystem
27-4

HP 16526/l 6538
Programming Reference

ALL

ALL

Query Syntax:

Returned Format:

Example:

query

The ALL query makes a set of measurements on the displayed waveform
using the selected source.

:SCOPe:MEASure:[SOURce CHANnel(1 IP};]ALL?

[:SCOPe:MEASure:ALL PERiod] <real number > ;

[RISETime] <real number > ;

[FALLTime] <real number > ;

(FREOuency] <real number > ;

[PWIDtH] c real number > ;

[NWIMH] <real number > ;

[VPP] c real number > ;
PAMPlitude] -c real number > ;

[PRESHoot] <real number > ;

[OVERShoot] c real number > -c NL>

10 DIM Query$[30D]
2 0 !PRINTER IS 701 !THIS LINE SENDS RESULTS TO PRINTER
30 OUTPUT XXX;” :SCOPE:MEASURE:SOUR CHANI”

40 OUTPUT XXX;” :SCOPE:MEASURE:ALL?”

50 ENTER XXX;Query$
60 Query$=Query$[POS(Query$,“;“)+l]
70 LOOP
80 I=POS(Query$.“:“)
90 EXIT IF NOT I
100 PRINT Query$ [l, I-l]
110 Query$=Query$ [I+l]

120 END LOOP
130 PRINT Query$

140 PRINTER IS 1
150 END

HP 16528/1653B MEASure Subsystem
27-5

FALLTime

FALLTime
A

query

The FALLTime query makes a falI time measurement on the selected
channel. The measurement is made between the 90% to the 10% voltage
point of the f irs t fal l ing edge displayed on screen.

Note 6
The short form of FALLTIME is FALLTime. This is an intentional
deviation of the normal truncation rule.

Query Syntax: :SCOPe:MEASure:[SOUR CHANnel{l 12};]FALLTime?

Returned Format: [:SCOPe:MEASure:FALLTime] <value > c NL>

where:

c value > :: = time in seconds between 10% and 90% voltage points

Example: 10 DIM Ft$[lOO]
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANNELE;FALLTIME?"

30 ENTER XXX;Ft$

40 PRINT Ft$

50 END

MEASure Subsystem
27-6

HP 16528/1653B

FREQuency

FREQuency query

The FREQency query makes a frequency measurement on the selected
channel. The measurement is made using the first complete displayed
cycle at the 50% voltage level .

Query Syntax: :SCOPe:MEASure:[SOUR CHANnel{lI2};]FREQuency?

k?turned Format: [:MEAsure:FREOuency] <value> <NL>

where:

<value > :: = frequency in HerQ

Example: 10 DIM Frcy$[lOO]
20 OUTPUT XXX;":SCOPE:MEASURE:SOUR CHANl;FREQ?"

30 ENTER XXX;Frcy$

40 PRINT Frcy$

50 END

HP 16528/16538 MEASure Subsystem
27-7

NWIDth

NWIDth query

The NWIDth query makes a negative width time measurement on the
selected channel. The measurement is made between the 50% points of
the first falling and the next rising edge displayed on screen.

Query Syntax: :SCOPe:MEASure:[SOU!%e CHANnel{l JP};]NWlMh?

Returned Format: [:SCOPe:MEASure:NWIDth] <value> <NL>

where:

<value B :: = negative pulse width in seconds

Example: 10 DIM Nw$[lOO]
20 OUTPUT XXX; ":SCOPE:MEASURE:SOURCE CHANP;NWID?"
30 ENTER XXX;Nw$

40 PRINT Nw$

50 END

MEASure Subsystem
27-8

HP 18528/1853B
Programming Reference

OVERShoot

OVERShoot query

The OVERShoot query makes an overshoot measurement on the selected
channel. The measurement is made by finding a distortion following the
first major transition. The result is the ratio of VMAX or VMIN vs.
VAMPlitude.

Note d
The short form of OVERSHOOT is OVERShoot. This is an intentional
deviation from the normal truncation rule.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{lI2};]OVERShoot?

Returned Format: [:SCOPe:MEASure:OVERShoot] <value> -= NL>

where:

-= v a l u e > : : = r a t i o o f o v e r s h o o t t o V a m p l i t u d e

Example: 10 DIM Ovs$[lOO]
20 OUTPUT XXX;":SCOPE:MEASURE SOURCE CHANl;OVER?"

30 ENTER XXX;Ovs$
40 PRINT Ovs$
50 END

HP 165218/l 6538
Programming Reference

MEASure Subsystem
27-9

PERiod

PERiod query

The PERiod query makes a period measurement on the selected channel.
The measurement equivalent to the inverse of frequency.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{l jP};]PERiod?

Returned Format: (:SCOPe:MEASure:PERiod] <value> c NLz-

where:

<value > :: = waveform period in seconds

Example: lo DIM Pd$[lOOl
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANNELl;PERIDD?"

30 ENTER XXX;Pd$

40 PRINT Pd$

50 END

MEASure Subsystem
27-10

HP 16528/1653B

PRESHoot

PRESHoot query

The PRESHoot query makes the preshoot measurement on the selected
channel. The measurement is made by finding a distortion which precedes
the first major transition on screen. The result is the ratio of VMAX or
VMIN vs. VAMPlitude.

Note d
The short form of PRESHOOT is PRESHoot. This is an intentional
deviation of the normal truncation rule.

Query Syntax: : S C O P e : M E A S u r e : [S O U R c e CHANnel{ 1 I2};]PRESHoot?

Rf?tUrtWd Format: [:SCOPe:MEASure:PRESHoot] <value> <NL>

where:

c v a l u e > : : = r a t i o o f p r e s h o o t t o V a m p l i t u d e

Example: 10 DIM Prs$[lOO]
20 OUTPUT XXX;":SCOPE:MEASURE:CHANNELZ:PRESH?"

30 ENTER XXX:Prs$

40 PRINT Prs$

50 END

HP 1652B/l653B
Programming Reference

MEASure Subsystem
27-l 1

PWlDth

PWIDth wry

The PWIDth query makes a positive pulse width measurement on the
selected channel. The measurement is made by finding the time difference
between the 50% points of the first rising and the next falling edge
displayed on screen.

Query Syntax: :SCOPe:MEASure:[SOUFtca CHANnelI 1 IP};]PWIMh?

RetUrned Format: [:SCOPe:MEASure:PWIDth] <value> c NL>

where:

c value r :: = positive pulse width in seconds

Example: lo DIM Pw$[lOO]
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANNELZ;PWIOTH?"
30 ENTER XXX;Pw$

40 PRINT Pw$
50 END

MEASure Subsystem
27-12

HP 16528/1663B
Programming Reference

RISETime

RISETime query

The RISETime query makes a risetime measurement on the selected
channel by finding the 10% and 90% voltage levels of the first rising edge
displayed on screen.

Note d
The short form of RISETIME is RISETime. This is an intentional
deviation from the normal truncation rule.

Query Syntax: :SCOPe:MEASure:[SOURe CHANnel(1 IS};]RISETime?

Returned Format: [:SCOPe:MEASure:RISETime] <value > c NL >

where:

<value > :: = risetime in seconds

Example: 10 DIM Tr$[lOO]
20 OUTPUT XXX;":SCOPE:MEASURE:SOlJRCE CHANNELl;RISETIME?"

30 ENTER XXX;Tr$
40 PRINT Tr$

50 END

HP 16528/1653B
Programming Reference

MEASure Subsystem
27-13

SOURce

SOURce

Command Syntax:

where:

c source >

Example:

Query Syntax:

Returned Format:

Example:

MEASure Subsystem
27-14

command/query

The SOURce command specifies the source to be used for subsequent
measurements. If the source is not specified, the last waveform source is
assumed.

The query returns the presently specified channel.

:SCOPe:MEASure:SOUR <source>

::= {l 12)

OUTPUT XXX;":SCOPE:MEASlJRE:SOURCE CHANI"

: S C O P e : M E A S u r e : S O U R c e ?

[:SCOPe:MEASure:SOUFke] CHANnel -z N> c NL>

10 DIM so$[loo]
20 OUTPUT XXX;" :SCOPE:MEASURE:SOURCE?"
3 0 E N T E R XXX;So$

40 PRINT So$
50 END

HP 16528/1663B
Programming Reference

VAMPlitude

VAM Plitude query

The VAMPlitude query makes a voltage measurement on the selected
channel. The measurement is made by finding the relative maximum and
minimum points on screen.

Query Syntax: :SCOPe:MEASure:[SOlJFce CHANnel{l IP};]VAMPlitude?

Returned Format: [:SCOPe:MEASure:VAMPlitude] <value > < NL>

where:

<value > : : = d i f f e r e n c e b e t w e e n t o p a n d b a s e v o l t a g e

Example: 10 DIM Va$[lOO]
20 OUTPUT XXX;":SCOPE:MEASURE:SDURCE CHANNELZ;VAMP?"
30 ENTER XXX;Va$
40 PRINT Va$

50 END

HP 16528/l 6538
Programming Reference

MEASure Subsystem
27-15

VBASe

VBASe query

The VBASe query returns the base voltage (relative minimum) of a
displayed waveform. The measurement is made on the selected source.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel(1 12};]VBASe?

Returned Format: [:SCOPe:MEASure:VBASe] <value > c NL>

where:

c v a l u e > : : = v o l t a g e a t b a s e l e v e l o f s e l e c t e d w a v e f o r m

Example: 10 DIM Vb$[lOO]

20 OUTPUT XXX;":SCOPE:MEASlJRE:SOURCE CHANl;VBAS?"
30 ENTER XXX;Vb$

40 PRINT Vb$

50 END

MEASure Subsystem
27-16

HP 16526/l 6538
Programming Reference

VMAX

V M A X query

The Vh4AX query returns the absolute maximum voltage of the selected
source.

Query Syntax: :SCOPe:MEASure:(SOUR CHANnel{l (P};]VMAX?

k!turWd Format: (:SCOPe:MEASure:VMAX] <value > < NLT-

where:

<value > :: = maximum voltage of selected waveform

Example: 10 DIM Vma$[lOO]

20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANL;VMAX?"

30 ENTER XXX;Vma$
40 PRINT Vma$

50 END

HP 16528/l 6538 MEASure Subsystem
27-17

VMIN

VMIN

The Vh4IN query returns the absolute minimum voltage present on the
selected source.

Query Syntax: :SCOPe:MEASure:[SOUFke CHANnel{l~2};]VMIN?

Returned Format: [:SCOPe:MEASure VMIN] -z value > c NL 5

where:

c value > :: = minimum voltage of selected waveform

Example: 10 DIM Vmi$[lOO]
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANl;VMIN?"

30 ENTER XXX;Vmi$

40 PRINT Vmi$

50 END

MEASure Subsystem
27-18

HP 18526/1653B

VPP

VPP

query

The VPP query makes a peak-to-peak voltage measurement on the
selected source. The measurement is made by finding the absolute
maximum and minimum points on the displayed waveform.

Query Syntax: :SCOPe:MEASure:[SOUR CHANnel{lI2};]VPP?

Returned Format: [:SCOPe:MEASure:VPP] cvaluez <NL>

where:

<value> : : = p e a k t o p e a k v o l t a g e o f s e l e c t e d w a v e f o r m

Example: 10 DIM Vpp$[lOO]
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANl;VPP?"

30 ENTER XXX;Vpp$

40 PRINT Vpp$
50 END

HP 16528/1653B MEASure Subsystem
27-19

VTOP

VTOP

The VTOP query returns the voltage at the top (relative maximum) of
waveform on the selected source.

Query Syntax: :SCOPe:MEASure:[SOLJRce CHANnel{l I2};]VTOP7

Returt’d F o r m a t : [:SCOPe:MEASure:VTOP] <value> <NL>

where:

c value > :: = voltage at the top of the selected waveform

Example: 10 DIM vt$[lool
20 OUTPUT XXX;“:SCOPE:MEASURE:SOURCE CHAN2;VTOP?”
30 ENTER XXX;Vt$
40 PRINT Vt$

50 END

MEASure Subsystem
27-20

HP 16528/1653B
Programming Reference

Message Communication
and System Functions

A

Introduction This appendix describes the operation of instruments that operate in
compliance with the IEEE 488.2 (syntax) standard. Although the
HP 1652B and HP 1653B logic analyzers are RS-232C instruments, they
were designed to be compatible with other Hewlett-Packard IEEE 488.2
compatible instruments.

The IEEE 488.2 standard is a new standard. Instruments that are
compatible with IEEE 488.2 must also be compatible with IEEE 488.1
(HP-IB bus standard); however, IEEE 488.1 compatible instruments may
or may not conform to the IEEE 488.2 standard. The IEEE 488.2
standard defines the message exchange protocols by which the instrument
and the controller will communicate. It also defines some common
capabilities, which are found in all IEEE 488.2 instruments. This
appendix also contains a few items which are not specifically defined by
IBEE 488.2, but deal with message communication or system functions.

Note d
The syntax and protocol for RS-232C program messages and response
messages for the HP 1652B/1653B are structured very similar to those
described by 488.2. In most cases, the same structure shown in this
appendix for 488.2 will also work for RS-232C. Because of this, no
additional information has been included for RS-232C.

HP 1652B/l653B Message Communication and System Functions
Progremming Reference A-l

Protocols The protocols of IEEE 488.2 define the overall scheme used by the
controller and the instrument to communicate. This includes defining
when it is appropriate for devices to talk or listen, and what happens when
the protocol is not followed.

Functional Elements Before proceeding with the description of the protocol, a few system
components should be understood.

Input Buffer. The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send a string of commands to the
instrument which could take some time to execute, and then proceed to
talk to another instrument while the first instrument is parsing and
executing commands.

Output Queue. The output queue of the instrument is the memory area
where all output data (-C response messages >) are stored until read by
the controller.

Parser. The instrument’s parser is the component that interprets the
commands sent to the instrument and decides what act ions should be
taken. “Parsing” refers to the action taken by the parser to achieve this
goal. Parsing and executing of commands begins when either the
instrument recognizes a c program message terminator > (defined later
in this appendix) or the input buffer becomes full. If you wish to send a
long sequence of commands to be executed and then talk to another
instrument while they are executing, you should send all the commands
before sending the c program message terminator > .

Message Communication and System Functions HP 16528/1653B
A-2 Programming Reference

Protocol Overview The instrument and controller communicate using < program message > s
and < response message > s. These messages serve as the containers into
which sets of program commands or instrument responses are placed.
c program message > s are sent by the controller to the instrument, and
c response message z= s are sent from the instrument to the controller in
response to a query message. A < query message > is defined as being a
< program message > which contains one or more queries. The
instrument will only talk when it has received a valid query message, and
therefore has something to say. The controller should only attempt to
read a response after sending a complete query message, but before
sending another c program message > . The basic rule to remember is
that the instrument will only talk when prompted to, and it then expects to
talk before being told to do something else.

Protocol Operation When the instrument is turned on, the input buffer and output queue are
cleared, and the parser is reset to the root level of the command tree.

The instrument and the controller communicate by exchanging complete
< program message > s and < response message > s. This means that the
controller should always terminate a < program message > before
attempting to read a response. The instrument will terminate -z response
message > s except during a hardcopy output.

If a query message is sent , the next message passing over the bus should
be the < response message > . The controller should always read the
complete < response message > associated with a query message before
sending another < program message > to the same instrument.

The instrument allows the controller to send multiple queries in one query
message. This is referred to as sending a “compound query.” As will be
noted later in this appendix, multiple queries in a query message are
separated by semicolons. The responses to each of the queries in a
compound query wil l also be separated by semicolons.

Commands are executed in the order they are received.

HP 1662B11653B
Programming Reference

Message Communication and System Functions
A-3

Protocol Exceptions If an error occurs during the information exchange, the exchange may not
be completed in a normal manner. Some of the protocol exceptions are
shown below.

Command Error. A command error will be reported if the instrument
detects a syntax error or an unrecognized command header.

Execution Error. An execution error will be reported if a parameter is
found to be out of range, or if the current settings do not allow execution
of a requested command or query.

Device-specific Error. A device-specilic error will be reported if the
instrument is unable to execute a command for a strictly device dependent
reason.

Query Error. A query error will be reported if the proper protocol for
reading a query is not followed. This includes the interrupted and
unterminated conditions described in the following paragraphs.

Message Communication and System Functions
A-4

HP 16528/1653B
Programming Reference

Syntax
Diagrams

The syntax diagrams in this appendix are similar to the syntax diagrams in
the IEEE 488.2 specification. Commands and queries are sent to the
instrument as a sequence of data bytes. The allowable byte sequence for
each functional element is defined by the syntax diagram that is shown
with the element description.

The allowable byte sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that follows the direction of the arrows. If there is a path around an
element, that element is optional. If there is a path from right to left
around one or more elements, that element or those elements may be
repeated as many times as desired.

Syntax
Overview

This overview is intended to give a quick glance at the syntax defined by
IEEE 488.2. It should allow you to understand many of the things about
the syntax you need to know. This appendix also contains the details of
the IEEE 488.2 defined syntax.

IEEE 488.2 defines the blocks used to build messages which are sent to
the instrument. A whole string of commands can therefore be broken up
into individual components .

Figure A-l shows a breakdown of an example c program message > .
There are a few key items to notice:

1. A semicolon separates commands from one another. Each
< program message unit > serves as a container for one command.
The < program message unit > s are separated by a semicolon.

2. A < program message > is terminated by a < NL > (new line). T h e
recognition of the < program message terminator > , or < PMT > ,
by the parser serves as a signal for the parser to begin execution of
commands. The < PMT > also affects command tree traversal (see
the Programming and Documentation Conventions chapter).

3. Multiple data parameters are separated by a comma.,

HP 16528/1653B Message Communication and System Functions
Programming Reference A-5

4. The first data parameter is separated from the header with one or
more spaces.

5. The header MACHINEl:ASSIGN 2,3 is an example of a compound
header. It places the parser in the machine subsystem until the
< NL > is encountered.

6. A colon preceding the command header returns you to the top of the
command tree.

Message Communication and System Functions
A-6

HP 16528/16538
Programming Reference

: T W A V E F O R M : O S E A R C H 3 0 , T R I G G E R ; D E L A Y 3 8 ns <NL>

>T----F--I=------
4

<program message unit>

I 1

TWAVEFORM~OSEARCH 30,TRIGGER

<<ownand program header>
~~~progra\l~~‘~

< w h i t e  space>  <white s p a c e >

/
q rogrnm  m n e m o n i c >  : <program  mnemon,c>  <progrm data> <program  data separator> <program  doto>

TWAVE FORM OSEARCH 30 TRIGGER
-

<dec!mal  numeric p r o g r a m  d a t a > <program data>
30 TRIGGER

DELAY

<uh,  le space> <declmaI p r o g r a m  doto>

<program message  termlnctor>
S P  <NL>

<white SDOC~>  N L

dota>

----l
< s u f f i x  program  dot&

38 SP “5

/7\
<white space> <suffix multiplier> <SUfflX tInIt>

” s

Figure A-l. < program message > Parse Tree

HP 16628/1653B
Programming Reference

Message Communication and System Functions
A-7



Device Listening The l is tening syntax of  IEEE 488.2 is  designed to be more forgiving than
Syntax the talking syntax. This allows greater flexibility in writing programs, as

well as allowing them to be easier to read.

Upper/Lower Case Equivalence. Upper and lower case letters are
equivalent. The mnemonic SINGLE has the same semantic meaning as
the mnemonic single.

<white space > . <white space > is defined to be one or more characters
from the ASCII set of 0 - 32 decimal, excluding 10 decimal (NL). c white
space > is  used by several  instrument  l is tening components  of  the syntax.
It is usually optional, and can be used to increase the readability of a
program.

Figure A-2. <white space >

Message Communication and System Functions
A-8

HP 16528/1653B
Programming Reference



HP 16!52B/l653B
Programming Reference

< program message >.  The (: program message > is  a complete message
to be sent to the instrument. The instrument will begin executing
commands once it has a complete -E  program message > , or when the
input buffer becomes full. The parser is also repositioned to the root of
the command tree after executing a complete c  program message 7.

Refer to “Tree Traversal Rules” in the “Programming and Documentation
Conventions,” chapter 4 for more details.

<program
message  uwt

separator>

I?, piiii-z-B

Figure A-3. c program message >

C program message unit > . The < program message unit > is the
container for individual commands within a < program message 7.

Figure A-4. <program message unit >

Message Communication and System Functions
A-9



Figure A-5. c command message unit >

<program  doto>

Figure A-6. <query message unit >

Message Communication and System Functions
A-10

HP 16528/16538
Programming Reference



HP 16528/16538

< program message unit separator > . A semicolon separates c program
message unit > s, or individual commands.

ii<whityace> /---+E

Figure A-7. < program message unit separator >

< command program header > / < query program header 7. T h e s e
e lemen ts  se rve  as  the headers of commands or queries.  They represent
the action to be taken.

‘-i

<comran  cormmnd
progro” header>

c

Figure A-8. < command program header 7

Message Communication and System Functions
A-11



Where c simple command program header > is defined as

Where <compound command program header> is defined as

Where < common command program header > is defined as

+y--GG-r
.541*O/BL45

where <program mnemonic > is defined as

tupper/lower
- case  alpha>  7

b < d i g i t > -

Where < upperflower case alpha > is defined  as a single ASCII encoded
byte in the range 41- 5A, 61-  7A (65 - 90, 97 - 122 decimal).

Where < digit > is defined as a single ASCII encoded byte in the range 30 -
39 (48 - 57 decimal).

Where ( _ ) represents an “underscore”, a single ASCII-encoded byte with the
value SF (95 decimal).

Figure A-8. <command program header > (continued)

Message Communication and System Functions
A-12

HP 16528/1663B
Programming Reference



Y

<Comnon  q u e r y

program  header>

Where <simple  quevprogram  header > is defined as

- m”emo”lc> /---+p

< p r o g r a m

Where -C compound query program header > is defined as

l-a-, 54lZwBL45
Where < common query program header > is defined as

HP 16528/1653B
Programming Reference

l--+3--
Figure A-9. <query program header >

Message Communication and System Functions
A-13



< program data > . The < program data > element represents the
possible types of data which may be sent to the instrument. The
HP 1652B/1653B  will accept the following data types: < character
program data > , -Z  decimal numeric program data >, < suffi program
data > , <string program data > , and <arbitrary block program data > .

Figure A-10. < program data >

1

Figure A-l 1. < character program data >

Message Communication and System Functions
A-14

HP 16528/16538
Programming Reference



U%ere  c mantissa > is defined as

Where c optional digits > is defined as

(y---z&j
Where < exponent  > is defined as

Figure A-12. c decimal numeric program data >

HP 16628/16536
Programming Reference

Message Communication and System Functions
A-15



-$iyz-;::+sb

Figure A-13. <suffix  program data >

Suffer Multiplier. The suffix multipliers that the instrument will accept
are shown in table A-l.

Table A-l. <suffix mutt>

Value

lE18
lE1.5
lE12
lE9
lE6
lE3
lE-3
lE-6
l.E-9
lE-12
lE-15
lE-18

Mnemonic

EX
P E
T
G
M A
K
M
U
N
P
F
A

Suffer  Unit. The suffix  units that the instrument will accept are shown in
table A-2.

Table A-2. < suffix unit >

Message Communication and System Functions
A-16

HP 16528/1653B
Programming Reference



HP 16628/l  6538
Programming Reference

< i n s e r t e d ’ >  --,

\ <non-single J
) q u o t e  char>

I I

where <inserted ‘> is defined as a single ASCII character with the value 27
(39 decimal).

Where +z non-single quote char > is defined as a single ASCII character of
any value except 27 (39 decimal).

Where c inserted “> is defined as a single ASCII character with the value 22
(34 decimal).

Where <non-double quote char > is defined as a single ASCII character of
any value except 22 (34 decimal)

Figure A-14. <string program data >

Message Communication and System Functions
A-17



Where <non-zero digit > is defined as a single ASCII encoded byte in the
range 31- 39 (49 - 57 decimal).

Where < &bit byte > is defined as an &bit byte in the range 00 - FF (0 - 255
decimal).

Figure A-15. c arbitrary block program data >

C program data separator > . A comma separates multiple data
parameters of a command from one another.

Figure A-16. < program data separator >

Message Communication and System Functions
A-16

HP 16528/1663B
Programming Reference



HP 16528/1653B
Programming Reference

< program header separator > . A space separates the header from the
first or only parameter of the command.

Figure A-17. < program header separator >

< program message terminator > . The < program message terminator >
or < PMT > serves as the terminator to a complete < program
message > . When the parser sees a complete c program message > it
will begin execution of the commands within that message. The -C  PMT >
also resets the parser to the root of the command tree.

~--y----b <whi  te  space>

where  < NL > is defined as a single ASCII-encoded byte Q4  (10 decimal).

Figure A-18. < program message terminator >

Message Communication and System Functions
A-19



: S Y S T E M : A R M B N C  1 ; : T W A V E F O R M : D E L A Y  3.8E-9 <NL>
-1 I

I I I I
I I I I

1 -
CresDc~nse  messor~e  u n i t > <resoonse message  u n i t  s e p a r a t o r >

<response header> < r e s p o n s e  h e a d e r  separator> <response data>

,~,+YSTE;AR~,C SP 1

.,A \ T 1
<response rn”l3llO”lC> <response mnemonic> <white space> <NRl  numeric r e s p o n s e  d a t a >

SYS IEM ARMBNC 1
I

< r e s p o n s e  message  unit> <response message terminator>

TWAVEFORM.DELAY  3.8E-9 NL

<response header> <response header separator> <response data>
TWAVEFORM:DELAY 3.8EG9

~:r esponse mnemon  I c> <response mnemonic> <white space> <NR3 n u m e r i c  r e s p o n s e  data>
TWAVEFORM DELAY 3.8E-9

Figure A-19. <response message > Tree

Message Communication and System Functions HP 16528/1653B
A-20 Programming Reference



Device Talking Syntax The talking syntax of IEEE 488.2 is designed to be more precise than the
listening syntax. This allows the programmer to write routines which can
easily interpret and use the data the instrument is sending. One of the
implications of this is the absence of c white space > in the talking
formats. The instrument will not pad messages which are being sent to the
controller with spaces.

HP 16528/1653B

< response message > . This element serves as a complete response from
the instrument. It is the result of the instrument executing and buffering
the results from a complete -C  program message > . The complete
c  response message > should be read before sending another c  program
message > to the instrument.

Figure A-20. e response message >

< response message unit > . This element serves as the container of
individual pieces of a response. Typically a < query message unit > will
generate one < response message unit >, although a < query message
unit > may generate multiple c  response message unit > s.

< response header > . The c  response header > , when returned,
indicates what the response data represents.

Message Communication and System Functions
A-21’



?Vhere  <simple response mnemonic > is defined as

where  < compound response header > is defined as

pf*Fk&i_LI:--1-
54120/&60

Where < common response header Y is defined as

Figure A-21. <response message unit >

Message Communication and System Functions
A-22

HP 16528/1653B
Programming Reference



Where -z response mnemonic > is defined  as
/ \

<upper
- case  alpha>  -

<upper \ ,
case  alpha> \ \

\ / )

it < d i g i t > -

where < uppercase alpha > is defined as a single ASCII encoded byte in the
range 41-  5A (65 - 90 decimal).

mere  ( _ ) represents an ‘underscore”, a single ASCII-encoded byte with the
value 5F (95 decimal).

Figure A-21. < response message unit> (Continued)

< response data > . The < response data > element represents the
various types of data which the instrument may return. These types
include: < character response data >, < nrl numeric response data > ,
< 1x3 numeric response data > , c string response data > , < definite
length arbitrary block response data > , and c  arbitrary ASCII response
data > .

Figure A-22. =z character response data >

HP 165218/16538
Programming Reference

Message Communication and System Functions
A-23



E)/ F:_
<digit>

- Y120/8L64

\A

Figure A-23. < nrl numeric response data >

,a, ;_..;wR

-

\ /

Figure A-24. < nr3 numeric response data z-

II_:_ <Inserted”>  \

I I

Figure A-25. < string response data >

Message Communication and System,Functions
A-24

HP 16528/1653B
Programming Reference



HP 16528116538

Figure A-26. <definite length arbitrary block response data >
\

Where <ASCII  data byte > represents any ASCII-encoded data byte except
c NL > (OA, 10 decimal).

Notes

1. The END message provides an unambiguous termination to an
element that contains arbitrary ASCII characters.

2. The IEEE 488.1 END message serves the dual function of
terminating this element as well as terminating the < RESPONSE
MESSAGE > . It is only sent once with the last byte of the indefinite
block data. The NL is present for consistency with the
< RESPONSE MESSAGE TERMINATOR > . Indefinite block
data format is not supported in the HP 1652BD653B.

Figure A-27. <arbitrary ASCII response data >

Message Communication and System Functions
A-25



< response data separator > . A comma separates multiple pieces of
response data within a single c  response message unit > .

Figure A-26. < response data separator >

< response header separator > . A space (ASCII decimal 32) delimits the
response header, if returned, from the first or only piece of data.

Figure A-29. < response header separator >

< response message unit separator > . A semicolon delimits the
< response message unit > s if multiple responses are returned.

Figure A-30. <response message unit separator >

=Z response message terminator > . A c  response message terminator >
(NL) terminates a complete < response message > . It should be read
from the instrument along with the response itself.

Message Communication and System Functions
A-26

HP 16528/1653B
Programming Reference



Common
Commands

IEEE 488.2 defines a set of common commands. These commands
perform functions which are common to any type of instrument. They can
therefore be implemented in a standard way across a wide variety of
instrumentation. All the common commands of IEEE 488.2 begin with an
asterisk. There is one key difference between the IEEE 488.2 common
commands and the rest of the commands found in this instrument. The
IEEE 488.2 common commands do not affect the parser’s position within
the command tree. More information about the command tree and tree
traversal can be found in the Programming and Documentation
Conventions chapter .

Table A-3. HP 16528/538’s  Common Commands

Command Command Name

*cLS
*ESE
*ESE?
*ESR?
*IDN?
*opt
‘OPC?
*RST
*SRE
*SRE?
* S T B ?
‘WAI

Clear Status Command
Event Status Enable Command
Event Status Enable Query
Event Status Register Query
Identification Query
Operation Complete Command
Operation Complete Query
Reset (not implemented on HP 1652B/1653B)
Service Request Enable Command
Service Request Enable Query
Read Status Byte Query
Wait-to-Continue Command

HP 16528/1653B
Programming Reference

Message Communication and System Functions
A-27



Status Reporting B

Introduction The status reporting feature available over the bus is the serial poll. IEEE
488.2 defines data structures, commands, and common bit definitions.
There are also instrument defined structures and bits.

HP 1052Bll553B

The bits  in the status byte act  as summary bits  for  the data structures
residing behind them. In the case of queues, the summary bit is set if the
queue is not empty. For registers, the summary bit is set if any enabled bit
in the event register is set. The events are enabled via the corresponding
event enable register. Events captured by an event register remain set
until the register is read or cleared. Registers are read with their
associated commands. The “*CLS’  command clears all event registers
and all queues except the output queue. If “*CL!!?’  is sent immediately
following a c program message terminator > , the output queue will also
be cleared.

Status Reporting
B-l



Status Reporting
B-2

ENABLE
F;;;;;ER

L O G I C A L  O R

---r

1

mi  i F+ERS

N O T E .  U R O  A N D  RQC  NOT IMPLEMENTED

mi  0  pgFER5

1 LOGICAL OR )

QUEUES :
O - O U T P U T
M-MESSAGE

1
M R E M L
SOSAC z

S T A T U S

GSBVL
BYTE
C *STE)

S E R V I C E
REQUEST
ENABLE 16500802
REGISTER
(*SRE)

Figure B-l. Status Byte Structures and Concepts

HP 16528/16538



Event Status  Register

Service Request
Enable Register

Bit Definitions

Note d

HP 16526/1663B
Progrsmming Reference

The Event Status Register is a 488.2 defined register. The bits in this
register are “latched.” That is,  once an event happens which sets a bit ,  that
bit will only be cleared if the register is read.

The Service Request Enable Register is an 8-bit register. Each bit enables
the corresponding bit  in the status byte to cause a service request. The
sixth bit does not logically exist and is always returned as a zero. To read
and write to this register use the *SRE? and *SRE commands.

The following mnemonics are used in figure B-l and in the “Common
Commands” chapter:

MAV - message available. Indicates whether there is a response in the
output queue.

ESB - event status bit. Indicates if any of the conditions in the Standard
Event Status Register are set and enabled.

MSS - master summary status. Indicates whether the device has a reason
for requesting service. This bit is returned for the *STB? query.

RQS - request service.  Indicates if the device is requesting service. This
bit is returned during a serial poll. RQS  will be set to 0 after being read
via a  ser ial  pol l  (MSS is  not  reset  by *STB?).

MSG - message. Indicates whether there is a message in the message
q u e u e .

PON - power on. Indicates power has been turned on.

URQ - user request. Always 0 on the HP 1652B/1653B.

CME - command error. Indicates whether the parser detected an error.

The error numbers and/or strings for CME, EXE, DDE, and QYE can be
read from a device defined queue (which is not part of 488.2) with the
query :SYSTEM:ERROR?.

Status  Repotting
B-3



EXE - execution error. Indicates whether a parameter was out of range,
or  inconsis tent  with  current  set t ings .

DDE - device specific error. Indicates whether the device was unable to
complete an operation for device dependent reasons.

QYE - query error. Indicates whether the protocol for queries has been
viola ted.

RQC - request control. Always 0 on the HP 1652B/1653B.

OPC - operation complete. Indicates whether the device has completed
all pending operations. OPC is controlled by the *OPC common
command. Because this command can appear after any other command,
it serves as a general purpose operation complete message generator.

LCL - remote to local. Indicates whether a remote to local transition has
occurred.

MSB - module summary bit. Indicates that an enable event in one of the
modules Status registers  has occurred.

Key Features A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete. The IEEE 488.2 structure provides one technique
which can be used to find out if any operation is finished. The *OPC
command, when sent to the instrument after the operation of interest, will
set the OPC bit in the Standard Event Status Register. If the OPC bit and
the RQS bit have been enabled a service request will be generated. The
commands which affect the OPC bit are the overlapped commands.

OUTPUT XXX;“*SRE 32 ; *ESE  1’  lenables  an OPC service request

Status Reporting
B-4

HP 1662B/l653B



Status Byte. The Status Byte contains the basic status information which
is sent over the bus in a serial poll. If the device is requesting service
(RQS set), and the controller serial polls the device, the RQS bit is
cleared. The MSS (Master Summary Status) bit (read with *STB?) and
other bits of the Status Byte are not be cleared by reading them. Only the
RQS bit is cleared when read.

The Status Byte is cleared with the *CLS common command.

,--55TATUS  SUMMARY MESSAGES-

SERVICE
REOUEST 4

GENERATION

- READ BY SERIAL POLL

t

STATUS BYTE REGISTER

- READ BY rSTB7

HP 16628/16538 Status Reporting
Programming Reference B-5

0 SERVICE REOUEST
ENABLE REGISTER

Figure B-2. Service Request Enabling



Serial Poll The HP 1652B/1653B supports the IEEE 488.1 serial poII  feature. When
a serial poll of the instrument is requested, the RQS bit is returned on bit
6 of  the status byte.

Using Serial Poll This example wil l  show how to use the service request  by conduct ing a
(HP-16) serial poll of ah  instruments on the HP-IB bus. In this example, assume

that there are two instruments on the bus; a Logic Analyzer at address 7
and a printer at address 1.

The program command for serial poIl  using HP BASIC 4.0 is Stat =
SPOLL(707).  The address 707 is the address of the oscilloscope in the
this example. The command for checking the printer is Stat =
SPOLL(701)  because the address of  that  instrument is  01 on bus address
7. This command reads the contents of the HP-IB Status Register into the
variable called Stat. At that time bit 6 of the variable Stat can be tested to
see if it is set (bit 6 = 1).

The serial polI  operation can be conducted in the following manner:

1. Enable interrupts on the bus. This allows  the controller to “see” the
SRQ line.

2. Disable interrupts on the bus.

3. If the SRQ line is high (some instrument is requesting service) then
check the instrument at address 1 to see if bit 6 of its status register
i s  h igh .

Status Reporting HP 16528/1653B
B-6 Programming Reference



HP 16528/1653B
Programming Reference

4.  To check whether  bi t  6 of  an instruments s tatus register  is  high,  use
the following Basic statement:

I F  B I T  ( S t a t ,  6 )  T H E N

5. If bit 6 of the instrument at address 1 is not high, then check the
instrument  a t  address  7  to  see i f  bi t  6  of  i ts  s ta tus  regis ter  is  high.

6.  As soon as  the instrument  with s tatus  bi t  6  high is  found check the
rest of the status bits to determine what is required.

The SPOLL(707)  command causes much more to happen on the bus than
simply reading the register. This command clears the bus automatically,
addresses the talker and listener, sends SPE (serial poll enable) and SPD
(serial poll disable) bus commands, and reads the data. For more
information about serial poll, refer to your controller manual, and
programming language reference manuals.

After the serial poll is completed, the RQS bit in the HP 1652B/1653B
Status Byte Register will be reset if it was set. Once a bit in the Status
Byte Register is set, it will remain set until the status is cleared with a
*CLS  command, or the instrument is reset.

Status Reporting
B-7



Parallel Poll Parallel poll is a controller initiated operation which is used to obtain
information from several devices simultaneously. When a controller
initiates a Parallel Poll, each device returns a Status Bit via one of the DIO
data lines. Device DIO assignments are made by the controller using the
PPC (Parallel Poll Configure) sequence. Devices respond either
individually, each on a separate DIO line; collectively on a single DIO
line;  or  any combination of  these two ways.  When responding collect ively,
the result is a logical AND (True High) or logical OR (True Low) of the
groups  of  s ta tus  b i ts .

Figure B-2 shows the Parallel Poll Data Structure. The summary bit is
sent in response to a Parallel Poll. This summary bit is the “ist”  (individual
status) local  message.

The Parallel Poll Enable Register determines which events are
summarized in the ist. The *PRE command is used to write to the enable
register and the *PRE? query is used to read the register. The *IST?
query can be used to read the “ist”  without doing a parallel poll.

Status Reporting
B-8

HP 18528/1853B



D E V I C E  D E F I N E D  COtdDITIONS

D E V I C E  D E F I N E DCONDITIONS 15 14 13 12 I 11 I10 8L I 9 I
L

I
L

;

-

-

-

-

-

-

-

-

-

-

-

7

I

i

-

-

-

-

-

-

-

-

T 11

SUNMARY MESSAGE

Figure B-3. Parallel Poll Data Structure

HP 16528/1653B
Programming Reference

Status Reporting
B-9



Polling HP-16  Devices Parallel  Poll  is  the fastest  means of gathering device status when several
devices are connected to the bus. Each device (with this capability)  can
be programmed to respond with one bit of status when parallel polled.
This  makes i t  possible  to obtain the s tatus of  several  devices in one
operation. If a device responds affirmatively to a parallel poll, more
information about i ts  specific status can be obtained by conducting a serial
poll  of the device.

Configuring Parallel Certain devices, including the HP 1652B/1653B, can be remotely
Poll Responses programmed by a controller to respond to a parallel poll. A device which

is currently configured for a parallel poll responds to the poll by placing
its current status on one of the bus data lines. The response and the
data-bit number can then be programmed by the PPC (parallel Poll
Configure) statement. No multiple listeners can be specified in this
statement. If more than one device is to respond on a single bit, each
device must be configured with a separate PPC statement.

Example: A S S I G N  @ D e v i c e  T O  7 0 7
P P O L L  C O N F I G U R E  @Device;Mask

The value of Mask (any’numeric expression can be specified) is first
rounded andthen  used to configure the device’s parallel response. The
least significant 3 bits (bits 0 through 2) of the expression are used to
determine which data line the device is to respond on (place its status on).
Bit 3 specifies the “true” state of the parallel poll response bit of the
device.  A value of  0 implies that  the device’s response is  0 when i ts  s tatus
bit  message is  t rue.

Example: The following statement configures the device at address 07 on the
interface select  code 7 to respond by placing a 0 on bit  4 when i ts  s tatus
response is “true.”

P P O L L  C O N F I G U R E  707;4

Status Reporting
B-10

HP 16528/1663B
Programming Reference



Conducting a Parallel The PPOLL (Parallel Poll) function returns a single byte containing up to
Poll 8 status bi t  messages for  al l  devices on the bus capable of  responding to

the poll. Each bit returned by the function corresponds to the status bit of
the device(s) configured to respond to the parallel poll (one or more
devices can respond on a single line). The PPOLL function can only be
executed by the controller. It is initiated by the simultaneous assertion of
ATN and EOI.

Example: Response = PPOLL(7)

Disabling Parallel Poll The PPU (Parallel Poll Unconfigure) statement gives the controller the
Responses capability of disabling the parallel poll responses of one or more devices

on the  bus .

Examples: The fol lowing statement  disables  device 5 only:

P P O L L  U N C O N F I G U R E  7 0 5

This statement disables all devices on interface select code 8 from
responding to a parallel poll

P P O L L  U N C O N F I G U R E  8

If no primary address is specified, all bus devices are disabled from
responding to a parallel poll. If a primary address is specified, only the
specified devices (which have the parallel poll configure capability) are
disabled.

HP 1652~/1653B Status Reporting
B-l 1



HP-IB Commands The following paragraphs describe actual HP-IB commands which can be
used to perform the functions of the Basic commands shown in the
previous examples.

Parallel Poll Uncontigure  Command. The parallel poll unconfigure
command (PPU) resets all parallel poll devices to the idle state (unable to
respond to a parallel poll).

Parallel Poll Configure Command. The parallel poll configure command
(PPC) causes the addressed listener to be configured according to the
parallel poll enable secondary command PPE.

Parallel Poll Enable Command. The parallel poll enable secondary
command (PPE) configures the devices which have received the PPC
command to respond to a parallel poll on a particular HP-IB DIO line
with a particular level.

Parallel Poll Disable Command. The parallel poll disable secondary
command (PPD) disables the devices which have received the PPC
command from responding to the parallel poll.

Table B-l.  Parallel Poll Commands

Command Mnemonic Decimal
Code

A!xIuIso
Character

Parallel Poll Unconfigure
(Multiline Command)
Parallel Poll Configure
(Addressed Command)
Parallel Poll Enable
(Secondary Command)
Parallel Poll Disable
(Secondary Command)

PPU

PPC

PPE

PPD

21 NAK

5 ENQ

96-111 I-O

112 P

Status Reporting
B-12

HP 1652B/l653B
Programming Reference



Error Messages C

Device
Dependent
Errors

HP 16526/16538
Programming Reference

This section covers the error messages that relate to the HP 1652B/53B
Logic Analyzers.

200 Label not found

201  Pattern string invalid

202 Qualifier invalid

203 Data not available

300 RS-232C error

Error Messages
C-l



Command
Errors

-100 Command error (unknown command)(generic  error)

-101 Invalid character received

-110 Command header error

-111 Header delimiter error

-120 Numeric argument error

-121 Wrong data type (numeric expected)

-123 Numeric overflow

-129 Missing numeric argument

-130 Non numeric argument error (character,string, or block)

-131 Wrong data type (character expected)

-132 Wrong data type (string expected)

-133 Wrong data type (block type #D required)

-134 Data overflow (string or block too long)

-139 Missing non numeric argument

-142 Too many arguments

-143 Argument delimiter error

-144 Invalid message unit delimiter

Error Messages
c-2

HP 16528116638



Execution
Errors

HP 16528/16538
Programming Reference

-200 No Can Do (generic execution error)

-201 Not executable in Local Mode

-202 Settings lost due to return-to-local or power on

-203 Trigger ignored

-211 Legal command, but settings couflict

-212 Argument out of range

-221 Busy doing something else

-222 Insuffkient  capability or configuration

-232 Output buffer full or overflow

-240 Mass Memory error (generic)

-241 Mass storage device not present

-242 No media

-243 Bad media

-244 Media full

-245 Directory full

-246 File name not found

-247 Duplicate file name

-248 Media protected

Error Messages
c - 3



Internal Errors -300 Device Failure (generic hardware error)

-301 Interrupt fault

-302 System Error

-303 Time out

-310 RAM error

-311  RAM failure (hardware error)

-312 RAM data loss (software error)

-313 Calibration data loss

-320 ROM error

-321 ROM checksum

-322 Hardware and Firmware incompatible

-330 Power on test failed

-340 Self Test failed

-350 Too Many Errors (Error queue overflow)

Error Messages
C-4

HP 1652B/1653B
Progremming Reterence



Query Errors -400 Query Error (generic)

-410 Query INTERRUPTED

-420 Query UNTERMINATED

-421 Query received. lndeftite  block response in progress

-422 Addressed to Talk, Nothing to Say

-430 Query DEADLOCKED

HP 165218/16538 Error Messages
C-5



Index

*CLS  command S-3
*ESE command S-4
*ESR command S-6
*IDN command S-8
*OPC cammand  S - 9
*RST  command S-10
*SRE command S-11
*STB  command S-13
*WA1  command S-15
.~. 4-3
32767 4-2
9.9E + 37 4-2
:: = 4-3
[ 1 4-3
{} 4 - 3
I 4-3

A

ACCumuIate  command/query 144,15-4,  19-6
Acquisition data 6-11
Addressed taIk/Iisten  mode 2-l
ALL 27-S
AMODe  command/query 18-4
Analyzer 1 Data Information 6-9
Analyzer 2 Data Information 6-11
Angular brackets 4-3
Arguments l-4
ARM command/query 10-4
ARMBnc command 6-4
ASCII Format 26-S
ASSign mmmand/query  10-5

AUToload  command/query 7-4
AUToscale  21 -3
AUToscale  command 10-6
Average Mode 24-2,26-3

B

BASE command 20-4
Bases l-8
BASIC l-2
Baud rate 3-S
Bit definitions B-3
Block data 1-3, l-16,6-6
Block length specifier 6-6
Block length specifier 6-7,6-37
Braces 4-3
BRANch command/query 12-S - 12-7
BYTE Format 26-4

C

Cable
RS-232C 3-2

CATaIog  query 7-S
chart display 15-l
Clear To Send (CTS) 3-4
CLOCk  command/query 11-4
CMASk command/query 16-4
CME B-3
COLumn  command/query B-3,13-6  - 13-7
Combining commands l-5

HP 16628/l  6628
Programming Reference

index-l



Comma l-7
Command l--3,1-13

*cLs  5 - 3
‘ESE  5 - 4
*opt  5 - 9
* R S T  5-1.0
* S R E  5-21
*WA1  5-15
ACCumuIate  14-4,15-4,  19 -6
AMODe  18-4
A R M  10-4
ARMBnc  6 - 4
ASSign  10-5
AUToload  7 - 4
AUToscaIt:  lo-6,21-3
B A S E  20-4
BRANch 12-5
CLOCk  1.1-4
CMASk :16-4
COLumn  g-3,13-6
COMPare  16-3
CONFig  ‘7-9,7-14
COPY 7-6, 16-5
COUNt  24-4
COUPling  22-4
CPERiod  11-5
D A T A  6-5,16-6
DELay  14-5,19-7,25-3
DOWNload  7 - 7
DSP 6-W
DURation  18-5
EDGE 18-6
FIND 12-8
FORMat  26-10
GLITch  1.8-8
HAXis  15-5
HEADer  l-12,6-22
IASSembler  7 -10
INITiaIize  7 - 8
INSert  14-6, 19-8

Command (continued)
KEY 6-23
LABel ll-6,17-3
LEVel  23 -4
LINE 8-5, U-9
LOAD:CONFig 7-9
LOAD:IASSembler  7 -10
LOCKout  3-7,6-Z
LONGform  l-12,6-27
MACHine  10-3
MASTer 11 -8
MENU 6-28
MESE 6-29
MMODe  13-10,19-9
M O D E  23-5,25-4
N A M E  10-7
OCONdition  19-10
OF’FXet  22 -5
OPATtern  13-11,19-11
OSEarch  13-13,19-13
OTAG 13-15
OTIMe 9-5,19-14
PACK 7-11
PAlTern  l&9,20-5
PREstore  12-10
PRINt  6 -34
PROBe  22-6
PURGe  7 -12
RANGe  12-12, 14-7, 16-9, 19-l5,20-6,22-7,25-6
RECord  26-13
REMove 11-9,14-g,  17-5,19-16,20-7
REName  7 -13
RESTart  12 -14
RMODe  6 -35
Run Control 6-l
RUNTiI  l3-16,16-10,19-17
SCHart  15 -3
SEQuence 12-16
SETup 6 -36
SFORmat  11 -3

Index-2 HP 16528/1552B
Programming Reference



Command (continued)
SLAVe  11-10
SLISt 13 -5
SLOPe  23-6
SMODe 21-4
SOURce  23-7,26-14,27-14
STARt 6 -38
STOP 6-39
STORe  12-17
STORe:CONFig 7-14
STRace 12-4
SWAVeform 14-3
SYMBol 20-3
SYStem:DATA 6-5
SYStem:SETup  6 -36
TAG 12-19
TERM 12-21
TFORmat  17 -2
THReshold  11-11, 17-6
‘ITRate  18 -3
TWAVeform  19-5
T Y P E  lo-8,24-5
VAXis  15-7
WIDTh 20-8
WLISt 9 - 2
XCONdition  19-24
XPATtern  13-23,19-26
XSEarch  13-25,19-28
XTAG,  13-27
XTIMe 9-6,19-29

Command errors C-2
Command mode 2-l
Command set organization 4-10
Command structure l-11
Command tree 4-4
Command types 4-4
Common commands l-5,4-4,5-1, A-27
Communication l-2
COMPare  selector 16-3
COMPare  Subsystem 16-1
Complex qualifier 12-7

Compound commands l-4
CONFig  command 7-9,7-14
Confiiation file l-10 - l-11
Controller mode 2-l
Controllers 1-2
Conventions 4-3
COPY command 7-6, 16-5
COUNt  2 4 - 4
COUNt  query 26-8
COUPhng  22-4
CPERiod  command/query 11-5

D

D A T A  6-5,26-9
command 6-5
State (no tags ) 6-12
State (with either time or state tags) 6-12
Timing Glitch 6-14
Transitional Timing 6-15

Data bits 3-5 - 3-6
8-Bit  mode 3-6

Data block
Acquisition data 6-11
Analyzer 1 data 6-9
Analyzer 2 data 6-11
Data preamble 6-8
Section data 6-8
Section header 6-8

Data Carrier Detect (DCD) 3-4
DATA command/query 6-5 - 6-19,16-6  - 16-7
Data Communications Equipment 3-l
Data mode 2-l
Data preamble 6-8
DATA query 13-8
Data Set Ready (DSR) 3-4
Data Terminal Equipment 3-l
Data Terminal Ready (DTR) 3-3
DCE 3- l
DCL 2-3

HP 16528/16528
Programming Reference

Index-3



DDE B-4
Definite-length block response data 1-16
Definitions 4-3
DELay  25-3
DELay  command/query 145,19-7
Device address l-3

HP-IB 2-2
RS-232C 3-6

Device clear 2-3
Device dependent errors C-l
DLISt

Command 8-2
DLISt selector 8-2
DLISt Subsystem 8-l
Documentation conventions 4-3
DOWNload command 7-7
DSP command 6-20
DTE 3-1
Duplicate keywords l-5
DURation  command/query 18-5

E

EDGE command/query 18-6 - 18-7
EDGE Trigger Mode 23-l
Ellipsis  4 - 3
Embedded strings l-2 - l-3
Enter statement l-2
Error messages C-l
ERRor  query 6-21
ESB B-3
Event Status Register B-3
EXE B-4
Execution errors C-3
Exponents 1-8
Extended interface 3-3

F

FALLtime  27-6
FIND command/query 12-8 - 12-9
FIND query 16-8
FORMat  26-10
Fractional values 1-8
FREQuency  27-7

G

GET 2-3
GLITch  command/query 18-8
Glitch Timing Data 6-14
Group execute trigger 2-3

H

HAXis  command/query 15-5  - 15-6
HEADer  command 1-12
HEADer  command/query 6-22
Headers l-3 - l-4, l-7
Host language l-3
HP-IB 2-1, B-6
HP-II3 address 2-l
HP-IB commands B-12
HP-IB device address 2-2
HP-IB interface 2-l
HP-IB interface code 2-2
HP-IB interface functions 2-l

Index-4 HP 16628/1652B



I L

IASSembler  command 7-10
IEEE 488.1 2-1, A-l
IEEE 488.1 bus commands 2-3
IEEE 488.2 A-l
IEEE 488.2 Standard l - l
IFC 2-3
InIinity  4 - 2
Initialization l-10
INITiaIize  command 7-8
Input buffer A-2
INSert  command 146,19-8
Instruction headers l-3
Instruction parameters l-4
Instruction syntax l-2
Instruction terminator l-9
Instructions l-3
Instrument  address 2-2
Interface capabilities 2-1

RS-232C 3-5
Interface clear 2-3
Interface code

HP-IB 2-2
Interface select code

RS-23:!C  3 - 6
Internal errors C-4

K

KEY command/query 6-23
Keyword data l-8
Keywords 4-l

LABel command/query 11-6 - ll-7,17-3 - 17-4
LCL B-4
LERquery  6-2.5
LEVel  23 -4
LINE command/query 8-513-9
Linefeed l -9 ,4 -3
Listening syntax A-8
LOAD:CONFig command 7-9
LOADIASSembler  command 7-10
Local 2-2
Local lockout 2-2
LOCKout  command 3-7
LOCKout  command/query 6-26
Longform l - 7
LONGform  command 1-12
LONGform  command/query 6-27
Lowercase 1-7

M

Machine selector 10-3
MACHine Subsystem 10-l
MASTer command/query 11-8
MAV B-3
MENU command/query 6-28
MESE command/query 6-29
MESR query 6-31-  6-32
MMEMory  subsystem 7-l
MMODe command/query U-10,19-9
Mnemonics 1-8,4-l
M O D E  23-5,254  - Z-5
Module Level Commands 21-1
MSB B-4
MSG B-3
MSS B-3

HP 16528/16.528
Programming Reference

Index-5



Multiple numeric variables 1-17
Multiple program commands l-9
Multiple queries 1-17
Multiple subsystems l-9

Overlapped command 5-9,5-l5,6-38  - 6-39
Overlapped commands 4-2
OVERshoot  27 -9

P
N

NAME command/query 10-7
New Line character l-9
N L  l-9,4-3
Normal Mode 24-2,26-3
Notation conventions 4-3
Numeric base 1-15
Numeric bases l-8
Numeric data l-8
Numeric variables 1-15
NWIDth 27-8

0

OCONdition  command/query 19-10
OFFSet 22 -5
OPATtern  command/query l3-ll- 13-X&19-11
19-12
OPC B-4
Operation Complete B-4
OR notation 4-3
oscilloscope 21-1
Oscilloscope Subsystem commands 21-1
OSEarch  command/query l3-l3,19-13
OSTate 13-14
OSTate query 9-3
OTAG command/query U-15
OTIMe command/query 9-5,19-14
Output buffer l-6
Output command 1-3
Output queue A-2
OUTPUT statement l-2

PACK command 7-11
Parallel poll B-8
Parallel poll commands B-12
Parameter syntax rules l-7
Parameters l-4
Parity 3-5
Parse tree A-7
Parser A-2
PATTern  command 20-5
PATTern  command/query 18-9 - 18-10
PATTern  Trigger Mode 23-l
PERiod  27-10
POINts  query 26-11
PON B-3
PPC B-12
PPD B-12
PPE B-12
PPOWer  query 6-33
PPU B-12
PREamble  26-12
Preamble description 6-8
PREShoot  27-11
PREstore  command/query 12-10 - 12-11
PRINt  command 6-34
Printer mode 2-1
PROBe  22-6
Program data A-14
Program examples 4-11
Program message A-9
Program message syntax l-2
Program message terminator l-9
Program syntax 1-2
Programming conventions 4-3
Protocol 3-5, A-3

Index-6 HP 16628/16626
Programming Reference



None 3-5
XON/XOFF  3-5

Protocol exceptions A-4
Protocols A-2
PURGe  command 7-12
PWIDth 27-12

Q

Query l-3,1-6,  1-13
*ESE 5-4
*ESR 5-6
*IDN 5-8
*opt  5 - 9
*SRE 5 -11
*STB 5-13
Accumulate 14-4,15-4,19-6
ALL 27-5
AMODe  18-4
A R M  10-4
ARMBnc 6 - 4
ASSign  10-5
AUToload  7 - 4
BRANch 12-5
CATalog 7 - 5
CLOCk  11-4
CMASk 16-4
COLumn  8-3, 13-6
COUNt  244,26-8
COUPIing  22-4
CPERiod  11-5
D A T A  6-5,13-8,16-6,26-9
DELay  14-5,19-7,25-3
DURa  tion 18-5
EDGE 18-6
ERRor  6 -21
FALLtime  27-6
F I N D  12-8,16-8
FORMat  X-10
FREQuency  27-7

Query (co&wed)
GLITch  18-8
HAxis  15-5
HEADer  6 -22
KEY 6-23
LABel 11-6, 17-3
LER 6-25
LEVel  23 -4
L I N E  8-5,X3-9
LOCKout  6 -26
LONGform  6 -27
MASTer 11 -8
MENU 6-28
MESE  6-29
MESR 6-31
MMODe  13-10,19-9
M O D E  23-5,25-4
N A M E  10-7
NWIDth  27-8
OCONdition  19-10
OFFSet 22 -5
OPATtem  13-l&19-11
OSEarch  13-l3,19-13
OSTate 9-3,13-14
O T A G  U-15
OTIMe 9-5,19-14
OVERshoot  27 -9
PAlTern  18-9
PERiod  27-10
POINts  26-11
PPOWer  6 -33
PREamble  26-12
PREShoot  27 -11
PROBe  22-6
PWIDth  27-12
RANGe  12-12,14-7,16-9,19-15,22-7,25-6
RECord  26-13
RESTart  12 -14
RISetime  2 7 - U
RMODe  6 -35
RUNTil  13-16,16-10,19-17

HP 16528/1652B
Programming Reference

Index-7



Query (continued)
SEQuence  12-16
SETup 6 -36
SLAVe  l : l -10
SLOPe  23-6
SMODe  21-4
SOURce  23-7,26-14,27-14
SPERiod  19-19
STORe  12-17
SYSTem:DATA 6-5
SYStem:SETup 6-36
TAG 12-19
TAVerage  13-18,19-20
TERM 12-21
THReshold  11-11, 17-6
TMAXimum  13-19,19-21
TMINimum  13-20,19-22
T Y P E  lo-8,24-5,26-15
UPLoad  7 -15
VALid  26-16
VAMPIitude  27-15
VAX& 15-7
VBASe 27-16
VMAX  27-17
VMIN 27-18
V P P  27-l!>
VRUNs  13-21,19-23
V T O P  27-20
XCONdition  19-24
XINCrement  26-17
XORigin  26-18
XOTag 13-22
XOTime  19-25
XPATtern  13-23,19-26
XREFerence  26-19
XSEarch  U-25,19-28
XSTate 9 -4 ,  13-26
XTAG 13-27
XTIMe 9-6,19-29
YINCrement  26-20
YORigin  26-21

Query (continued)
YREFerence  26-22

Query errors C-5
Query responses l-11,4-2
Question mark l-6
QYE B-4

R

R A N G e  22-7,25-6
RANGe command 20-6
RANGe command/query 12-12 - 12-13,147,
16-9,19-15
Receive Data (RD) 3-2 - 3-3
record 26-13

waveform 26-3
Remote 2-2
Remote enable 2-3
REMove command ll-9,14-8,17-5,19-16,20-7
REN 2-3
REName  command 7-13
Request To Send (RTS) 3-4
Response data 1-16
Response message A-21
Responses 1-12
RESTart  command/query 12-14 - 12-15
RISetime  27-13
RMODe  command/query 6-35
Root 4-4
RQC B-4
RQS B-3
RS-232C 3-1,3-6,  A-l
Run Control Commands 6-l
RUNTil  command/query 13-16  - l3-17,16-10  -
16-11.19-17 - 19-18

index-6 HP 16528/1662B
Programming Reference



S

SCHart selector 15-3
SCHart Subsystem 15-1
SCOPe  Subsystem 21-1
SDC 2-3
Section data 6-8
Section data format 6-6
Section header 6-8
Selected device clear 2-3
Separator A-18
SEQuence  command/query 12-16
Sequential commands 4-2
Serial poll B-6
Service R.equest  Enable Register B-3
SETup  6 -36
SETup  command/query 6-36 - 6-37
SF0Rma.t  selector 11-3
SFORmat  Subsystem 11-l
Shortform l-7
Simple commands l-4
SLAVe  command/query 11-10
SLISt selector U-5
SLISt Subsystem U-1
SLOPe  23-6
SMODe  command 21-4
SMODe  query 21-4
SOURce  23-7,26-14,27-14
Spaces l-4
SPERiod  query 19-19
Square brackets 4-3
STARt  command 6-38
State data

with either time or state tags 6-12
without tags 6-12

Status l-17,5-2, B-l
Status byte B-5
Status registers 1-17
Status reporting B-l

Stop bits 3-5
STOP command 6-39
STORe  command/query 12-17 - 12-18
STORe:CONFii command 7-14
STRace selector 12-4
STRace Subsystem 12-1
String data l-8
String variables 1-14
Subsystem

ACQuire  2 4 - l
CHANnel  2 2 - l
COMPare  16-1
DLIST 8-l
MACHine  1 0 - l
MEASure  27-1
MMEMory  7 - l
S C H a r t  15-l
SCOPe  21-1
SFORmat  1 1 - l
SLISt 13 -1
STRace 12-1
SWAVeform  14-1
SYMBol 20-l
TFORmat  17 -1
TIMebase 25-l
TRIGger  2 3 - l
TTRace  18-1
TWAVeform  19-1
WAVeform  26-l
WLISt 9 - l

Subsystem commands 4-4
Suffix multiplier A-16
Suffix units A-16
SWAVeforrn selector 14-3
SWAVeform Subsystem 14-1
SYMBol selector 20-3
SYMBol Subsystem 20-l
syntax A-8
Syntax diagram

ACQuire  Subsystem 24-l
CHANnel  Subsystem 22-2

HP 16528/1662B
Programming Reference

Index-9



Syntax Diagram (continued)
Common commands 5-2
COMPare  Subsystem 16-2
DLISt  Subsystem 8-l
MACHine  Subsystem 10-2
MEASure  Subsystem 27-3
MMEMory  subsystem 7-2 - 7-3
SCHart  Subsystem 15-2
SCOPe  Subsystem 21-1
SFORmat  Subsystem 11-l
SLISt Subsystem 13-2
STRace Subsystem 12-l
SWAVeform  Subsystem 14-2
SYMBol Subsystem 20-2
System commands 6-3
TFORmat Subsystem 17-1
TIMebase Subsystem 25-l
TRIGger  Subsystem 23-2
‘ITRace  Subsystem 18-2
TWAVeform Subsystem 19-2
WAVeform  Subsystem 26-2
WLISt Subsystem 9-l

Syntax diagrams 4-2
IEEE 488.2 A-5

System commands 4-4,6-l

T

TAG command/query 12-19 - 12-20
Talk only  mode 2-l
Talking syntax A-21
TAVerage  query 13-18,19-20
TERM command/query 12-21-  12-22
Terminator 1-9, A-26
TFORmat selector 17-2
TFORmat Subsystem 17-1
Three-wire InI  erface 3-2
Threshold command/query 11-l&17-6
Timing Glitch Data 6-14
TMAXimum  query X+-19,19-21

TMINimum  query l3-20,19-22
TraiIingdots  4 - 3
Transitional Timing Data 6-15
Transmit Data (TD) 3-2 - 3-3
Truncation rule  4-l
‘ITRace  selector 18-3
‘ITRace  Subsystem 18-1
TWAVeform selector 19-5
TWAVeform Subsystem 19-1
TYPE 24-5
TYPE command/query 10-B
TYPE query 26-15

U

Units l-8
UPLoad  query 7-15
Uppercase 1-7
URQ B-3

V

VALid  26-16
VAMPIitude  27-15
VAXis  command/query 15-7
VBASe 27-16
VMAX 27-17
VMIN 27-18
VPP 27-19
VRUNs  query U-21,19-23
V T O P  27-20

W

waveform
record 26-3

White space l-4

Index-l 0 HP 16628/1652B
Programming Reference



WIDTh command 20-8
WLISt selector 9-2
WLISt Subsystem 9-l
WORD Format 26-5

X

XCONdition  command/query 19-24
XINCrement  query 26-17
XORigjn  query 26-18
XOTag query 13-22
XOTime  query 19-25
XPATtern  command/query 13-23 - 13-24,19-26  -
19-27
XREFerence  query 26-19
XSEarch  command/query 13-25,19-B
XSTate query 9-4, 13-26
XTAG command/query 13-27
XTIMe command/query 9-6,19-29
xxx 4-3,  4-5
XXX (meaning of) 1-3

Y

YINCrement  query 26-20
YORigin  query 26-21
YREFerence  query 26-22

HP 1652)3/l  6528
Programming Reference

Index-l 1




