What is XRF Analysis?

What is XRF Analysis?
ATEC Solutions
Petra, Jordan. Archaeologists have performed XRF analysis on this ancient stone city to determine its elemental composition, which offers clues into how, when, and with what the city was buit.

What is XRF Analysis?

XRF analysis is a non-destructive test method for determining the elemental composition of a sample.

Look on the wonders of Petra, Jordan, an ancient city carved out of sandstone. What secrets lie within? Archaeologists ask the same question, but they go a little deeper than the over one million tourists who visit the site each year—into the very stone itself. XRF analysis, a technique that harnesses the power of x-ray fluorescence, gives them insight into what the stone is made of, how old it is, even where it came from, down to the smithy where the tools were forged that chiseled out its famed pillars. XRF analysis is a powerful test method for everything from archaeology to alloy fabrication, mining, identifying precious metals, inspecting consumer goods, and art conservation.

To understand modern XRF analysis, however, you need to know what an XRF Analyzer is.

What is an XRF Analyzer?

An XRF analyzer is a non-destructive tool designed to perform elemental analysis on materials. XRF analyzers, also called XRF guns, perform measurements by harnessing the power of X-ray fluorescence (XRF), specifically what is called energy dispersive x-ray fluorescence (EDXRF). The XRF gun fires x-rays at the sample under test, causing the sample to emit fluorescent x-rays, and each element reacts by releasing a unique ‘fluorescent fingerprint’. XRF analyzers capture these identifying fluorescent signals, and from them, identify the contributing elements and give a comprehensive report of the sample’s elemental composition.
A user can perform an XRF analysis in mere seconds, thanks to the speed of EDXRF technology and the simple point-and-shoot functionality of portable XRF equipment. XRF guns are also lightweight, handheld devices, some weighing as little as 3 lbs (1.36 kg), that can nonetheless perform laboratory-grade analysis, making them invaluable in remote field applications.

XRF devices inspect everything from minerals to fluids over a measurement range spanning from magnesium (MG) to uranium (U).
  • They inspect both major elements: Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P
  • And trace elements: Ba, Ce, Co, Cr, Cu, Ga, La, Nb, Ni, Rb, Sc, Sr, Rh, U, V, Y, Zr, Zn
XRF technologies can be divided into two basic detector types: SDD and PIN detector.
  • Silicon drift detector (SDD) XRF guns
    • High-resolution
    • Designed for high count-rate applications
    • High-sensitivity applications
  • PIN detector XRF guns
    • Less expensive
    • Sensitive to x-rays higher on the periodic table than Sulfur (S)

How XRF Analysis Works

  1. A user fires an XRF gun at a sample.
  2. Now stimulated by x-rays, the sample displaces inner-shell electrons and outer-shell electrons take their place, a result of energy differences between the x-ray beam and the energy holding the electrons in orbit, and generates x-ray fluorescence as a result.
  3. The XRF gun receives the flourescent X-ray emissions, converts them to electrical pulses and sends the pulses to an internal preamplifier.
  4. The preamplifier sends the XRF signal to a digital signal processor.
  5. The processor converts the x-ray measurements to a digital format, and transfers the spectral data to the XRF gun’s CPU.
  6. The CPU performs compositional analysis on the data.
  7. The XRF gun displays the results, which are stored in the unit’s memory and can be transferred to an external computer.

Photo credit to Thermo Fisher Scientific


What is XRF Analysis Used For?

XRF analysis is used for a variety of quality control and chemistry-specification inspection applications. Any situation in which the elemental breakdown of a sample is needed is ideal for a handheld XRF gun, given that the sample is roughly > 1 gram, made homogenous so there are consistent results no matter where you test, and that there are official testing standards to aid with measurement and keep the operator safe.

Here are some common applications:
  • Archaeological inspection (Archaeometry)
    • X-ray fluorescence is used in archaeology as a non-destructive way to determine the chemical composition of artifacts. Archaeologists need to know everything from the soil composition at an Egyptian dig site to the type of clay used in Babylonian pottery.
  • Fabricating alloys
    • Fabrication shops use XRF guns to ensure their work product consists of the intended metal alloys, giving inspectors a surefire quality assurance method more reliable than the average test report.
  • Recycling alloys and metals
    • The metal recycling industry, especially scrap metal businesses, rely on XRF machines for:
      • Quick & accurate sorting of metals
      • Guaranteeing the right metal is sent to customers, and the quality of the metal
      • Determining the elemental composition of the scrap (does it have contaminants, hazardous elements, etc.)
  • Precious metals
    • For jewelers, an XRF instrument detects metals that are non-standard, under-karated, or counterfeit, and cannot be deciphered by standard methods like acid testing.
  • Positive material identification (PMI)
    • Positive material identification, or PMI, both prevents part failures in the field due to wrong alloy use and verifies end products.
  • Geology & mining
    • X-ray fluorescence testing helps mining companies to make vital decisions like where to focus on a mining site, when to drill, when to select a sample, and whether to relocate equipment. Mining personnel use XRF products on everything from phosphate and limestone, and even for discovering indications of oil and gas in rock surfaces.
  • Environmental/soil remediation
    • This NDT technique is used in environmental testing to determine if there’s harmful elements like lead in living or working facilities. Soil contamination is another environmental threat an XRF analyzer can discover, warning users of lead, arsenic or chromium found in a soil sample.
  • Analyzing art for conservation applications
    • Art historians and conservationists analyze old paintings, ceramics, furniture and more with XRF; this gives them clues into the geographical location of the specific materials crafting the piece, helps them match colors exactly during restoration projects, and aids dealers in authenticating valuable works of art.
  • Product inspection for consumer goods
    • X-ray fluorescence testing can be used to verify compliance with the Consumer Product Safety Improvement Act of 2008 (CPSIA), which calls for testing to determine if there are dangerous elements like lead in toys, clothes, electronics, and other consumer goods. XRF guns are also used to ensure compliance with the RoHs, which regulates how electronic products are manufactured.

Choosing an XRF Gun

ATEC recommends the following products for your XRF inspection applications.
XRF Analyzer Rental

Browse All XRF Analyzers